ON TUBULAR NEIGHBORHOODS OF FIXED POINTS
OF LOCALLY SMOOTH ACTIONS

T. Y. Dain and S. K. Kim

1. Introduction. G. E. Bredon, in his book [1], defines a locally smooth action
of a compact Lie group on a topological space. Locally smooth actions of com-
pact Lie groups on manifolds form a class of actions lying between that of topo-
logical actions and that of smooth actions.

An action of a compact Lie group G on a topological space M is said to be
locally smooth if there exists a linear tube about each orbit. A linear tube is de-
fined as follows: Let H be a closed subgroup of G and G(x)={g-x|g€ G} bean
orbit of type G/H, and let J be a Euclidean space on which H acts orthogonally.
Then a linear tube about G(x) in M is a G-equivariant imbedding ¢: G xy V> M
such that ¢ (G Xy V') is an open neighborhood of G(x) in M, where G Xy V' is the
twisted product of G and V. The twisted product is defined to be the orbit space
of the action H on GXV given by h-(g,v)=(g-h~',h-v) for h€H, and
(g,v)EGX V. If G acts locally smoothly on M, then M is a topological manifold
and any connected component of the fixed point set F(G,M)={xeEM |g-x=x
for all g€ G is a topological submanifold of M. It is well known that there is a
linear tube about each orbit of any smooth action. Thus a smooth action of a
compact Lie group is locally smooth [1]. The following facts about locally
smooth actions are shown in [1: pp. 179-185].

If a compact Lie group G acts locally smoothly on the m-manifold M with the
orbit space M/G connected, then there exists a maximum orbit type G/H for G in
M, i.e., H is conjugate to a subgroup of the isotropy group G,={g€ G| g-x=x}
of G at each x € M. The orbits of this type are called the principal orbits. The
union Mg, of the orbits of maximum orbit type G/H is open and dense in M
and its image M y,/G in M/G is also connected. Let V' be a linear slice at x
(xeVCM, G,(V)=V). Then the orbit G(x) is principal if and only if G, acts
trivially on V and G Xg, V=(G/G,) X V. Let G(x) be an exceptional orbit (i.e.,
dim G(x)=dim of a principal orbit, but they are not equivalent), and let V' be a
linear slice at the point x. If HC G, is a principal isotropy group for G, on V,
then H is just the ineffective part of G, on V. Therefore G,/H is a finite group
acting effectively on the slice V. If F(G,, V) has codimension one in V, i.e., G(x)
is a special exceptional orbit, then G,/H has order two and acts by reflection
across the hyperplane F(G,, V) of V.

The purpose of this paper is to study an invariant tubular neighborhood of the
fixed point set F(G, M) of a locally smooth action of a compact Lie group G on
a manifold M. An open (or closed) invariant tubular neighborhood of F(G, M)
in M is a normal bundle p: E— F(G, M) such that E is a G-invariant open (or
closed) neighborhood of F(G, M) in M, and the action of G on each fiber is
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equivalent to an orthogonal action on the Euclidean k-space R¥, where k=
dim M —dim F(G, M). We note that if a compact Lie group G acts smoothly
on a manifold M and if F is any connected component of the fixed point set
F(G,M), then there exists an open (and a closed) invariant tubular neighbor-
hood of F'in M [1]. However, F. Raymond found that if the action is only topo-
logical, then F does not necessarily have an invariant closed tubular neighbor-
hood in M [9]. In case there is an invariant closed tubular neighborhood of the
fixed point set in a manifold M, by deleting the interior of the tubular neighbor-
hood we obtain an action on a manifold with boundary having no fixed points.

We prove that an invariant tubular neighborhood can be found for many cases
when the codimension of F(G, M) in M is bigger by 1, 2 or 3 than the dimension
of a principal orbit. We also find an example of a locally smooth action of a com-
pact Lie group on a manifold for which the fixed point set does not have an in-
variant tubular neighborhood. We use the fact that the 4-sphere S* can be imbed-
ded in a 7-manifold M having no topological closed tube [5]. Finally, we thank
F. Raymond for his suggestion of the tubular neighborhood problem to us.

2. Invariant tubular neighborhoods. We assume that a compact Lie group G
acts effectively and locally smoothly on a topological m-manifold M with the
fixed point set F(G,M). Let F be a connected component of F(G, M) of dimen-
sion n, and k be the codimension of F in M, i.e., k=m —n. Let d denote the
dimension of a principal orbit of G on M, and w: M — M/G be the natural orbit
map taking x into its orbit G(x) for each x € M. By the definition of a locally
smooth action, F is covered by { V) }rea, @ collection of open subsets of F such
that: (1) ¥, is homeomorphic to the Euclidean n-space R” for each A € A; (2) for
each A €A, V, has a neighborhood N, in M, which is equivalent to ¥y x R* and
P is corresponding to ¥, X {0} under this equivalence, thus the submanifold F is
locally flat in M; and (3) the action of G on V), X R¥ induced by this equivalence is
the product of the trivial action on ¥, with an orthogonal action on R¥. There-
fore, there is an induced orthogonal action of G on R* with the fixed point set
F(G,R*)={0} and the dimension of a principal orbit of G on R* equals the
dimension of a principal orbit of G on M [l1].

THEOREM 1. Let a compact Lie group G act effectively and locally smoothly
on a topological m-manifold M with the fixed point set F(G,M). Let F be a con-
nected component of F(G, M) of dimension n, and k be the codimension of F in
M. Let d denote the dimension of a principal orbit of G on M. Then F has an
open or closed invariant tubular neighborhood in M provided that any one of the
JSfollowing conditions is satisfied:

(1) n=0.

2) d=k-1.

(3) k=1.

4) k=2 and n#2.

(5) kz3andd=k—-2.

(6) k>4 andd=k—3 and n#2 and G is connected.
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Proof. (1) n=0. By the definition of a locally smooth action, a single point set
F has a neighborhood N=R" such that the action of G on N is equivalent to an
orthogonal action on R”. Then the projection p: N — F is trivially an invariant
tubular neighborhood of Fin M.

(2) d=k—1. We know that for each A €A, the orbit space of G on N, is
N\/G =N, X (Rk/G). Since G acts orthogonally on R¥ with d=k—1, R¥/G=
R, ={r€R,r=0}. Therefore we have N,/G=V,xR,. This implies that the
orbit space M/G is a manifold with boundary F(G, M) and F is locally collared
in M/G. Therefore Fhasacollar C=Fx[0,1]in M/G [2). Leti: FX[0,1]>C
be the homeomorphism. Then the map p: = ~}(C) = F, given by p(zx Y (x))=f
for all x=i(f,r)€C, is an invariant tubular neighborhood of F in M.

(3) k=1. In this case, the group G acts orthogonally on R! with the fixed point
set {0}. Therefore, G=Z, and d=0=k—1. Hence F has an invariant tubular
neighborhood in M by case (2).

(4) k=2 and n#2. The Lie group G acts orthogonally on R? with fixed point
set {0}. Therefore, the dimension d of a principal orbit is less than or equal to
one. If d=1, then we are done by case (2). If d=0, there are two cases to con-
sider: (a) G acts freely on R>— {0}, or (b) G does not act freely on R>—{0}. If G
acts freely on R?—{0}, then G=G(x) for all x€R?—{0}. Therefore, the
compact Lie group G must be finite. Furthermore, R%G=R? Thus N,/G=
Vi X (R¥G) =V, x R% Therefore, the orbit space M/G is again a manifold, and
the submanifold F is locally flat, and it is of codimension 2 in the orbit space
M/G. Then F has a normal microbundle in M/G provided n#2 according to
Kirby and Siebenmann [7]. We know that a microbundle is a fiber bundle by Kister
[8]. Let g : E — F be this normal bundle of Fin M/G. Thenp=q-=:  W(E)>F
is an invariant tubular neighborhood of F in M. We consider now the case when
G does not act freely on R?—{0}, that is, G=# Z, for any integer /. (In this case
the condition n#2 is not necessary.) Let x be any point in R*—{0} such that
G,#e. Then F(G,,R?)#{0}, and it is a submanifold of R2. Therefore,
F(G,, R*)=R!. Therefore, G(x) is a special exceptional orbit in R? and G,=Z,
and acts on R? by reflection across the hyperplane F(G,, R?) in R2. This implies
that the restricted action of G on S'C R? has orbit space homeomorphic to [0, 1],
i.e., SYG=1[0,1]. Since we may regard R? as the open cone of S!, C%(S",
R%>/G=C"([0,1])=R%. Therefore N,/G=V,x (R¥*G)=V,\xC°(0,1]). This
implies that M/G is a manifold with boundary d(M/G). We note that

dim(M/G)=dimM and dimF=dim(M/G)—2=dim(d(M/G))—1.

Thus F is a locally flat codimension one submanifold of d(M/G). Therefore, by
Brown [2], F has a collar E in ¢(M/G), i.e., E=FX[0,1]. Since ECI(M/G)
and d(M/G) has a collar in M/G, E has a collar Cin M/G, where C=E X [0,1].
Then the composite map

™

p:1-1(C) C=Ex[0,1]— +~E=Fx[0,1]—tsF

is an invariant tubular neighborhood of F in M.
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(5) k=3 and d=k—2. Since G acts orthogonally on R¥ with fixed point set
{0}, and d=k—2, G acts smoothly on S*~! without fixed point. We consider the
action of G on S* ! (a) Suppose every orbit is principal, then, by [1: p. 198], G
acts freely on S¥~! and G is either S! or S, or the normalizer N(S') of S!in S°.
Therefore d=dim G. Since the only group that acts freely on the even dimen-
sional spheres is Z, [1: p. 148], k—1 is not an even integer. Therefore £ —1 is an
odd integer and d=k —2 is an even integer. This implies that G#S! and G#=S?.
Furthermore, N(S')/S! is finite since S' is the maximal torus of S3 [1: p. 26].
This implies that dim N(S') is also one and G#N(S!). This leads to a contradic-
tion. (b) We know that not every orbit is principal by (a). We also know that
S¥=1G=10,1] by [1: p. 206]. Therefore R*/G=C?([0,1]), and

Ny/G=VxC%[0,1)).

Thus (U N, )y ea/G is a manifold with boundary, and F'is locally flat, and it is of
codimension one in d((UN,)/G). Thus, we can show that F has an invariant
tubular neighborhood in M by a similar proof given in (4)(b).

(6) k>4, d=k—3, n#2, and G is connected. In this case, G acts smoothly on
S*=1 without fixed point and d=k —3. Since G is also connected, there exists a
singular orbit on S¥~! [1: p. 216; or Conner]. Therefore, S*~Y/G is a closed
2-disk. Let B={x € M | G(x) is a singular orbit}. Thus B# &, and F G B. Further-
more, N\/G =V, x CY(D?) with (N\NB)/G=C%dD?). Therefore F is locally
flat and is of codimension two in B/G. Hence, F has an (open) tube g,: C; = Fin
B/G if n#2 by [7]. Since B/GC3(M/G), C; has acollar g,: C,=> C;x[0,1] in
M/G. Then the composite

T 81

=22 x [0, 1]—eC, =2 F

p=g g min (Cy)
is a tubular neighborhood of F in M. a

3. An example. Let M be a manifold and A a submanifold. An open (closed)
tube for A in M is a bundle p: E — A such that EC M is a neighborhood of 4, p
is a retraction, and the fibers are open (closed) k-cells, where k= dim M — dim A.
In the smooth category, every submanifold has a closed tube, and hence an open
tube. In the piecewise linear category, it is known that such-a tube exists if the co-
dimension k is sufficiently large. Using a framed non-trivial Haefliger knot,
Kirsch [5] found that there exists a piecewise linear submanifold S* in A7 having
no topological closed tube. The construction of the pair S*CM7 is as follows:
A Haefliger knot is an oriented smooth submanifold 73 C S% which is diffeomor-
phic to the three sphere S3. A Haefliger knot is trivial if it is diffeotopic to the
standard imbedding of S3C S%. A framed Haefliger knot is a pair (73, f), where
73 is a Haefliger knot and f: T3 xD3— S% is a framing of its normal bundle.
That is, f is a smooth imbedding such that f(x, 0) =x for all x € T3. It is known
that there exists a non-trivial Haefliger knot and every Haefliger knot can be
framed ([3], [4]). Let T3C S° be a non-trivial Haefliger knot and f be any fram-
ing of T3. Let M"=M"(T?, f) be the smooth 7-manifold obtained by attaching
the handle D*x D3 to D” by f': S3x D3 8§%=9D", where f’ corresponds to f
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via an orientation-preserving diffeomorphism of 73 and S3. Let S*CM’ be a
union C(T3)U (D*x [0}), where C(T?)C D is the cone on T° and D*x {0} is
the core of the handle D*x D3.

THEOREM (Hirsch [5]). Let T>C S® be a non-trivial Haefliger knot and let f
be any framing of T>. Then the 4-sphere S* in M (T3, f) has no topological
closed tube.

In this section we construct a locally smooth action of the circle group S! on a
manifold for which the existence of an invariant tubular neighborhood of the
fixed point set violates the above theorem of Hirsch. First, we observe the
following:

LEMMA 1. Let B be any subset of R" and E =B x D, where D§ denotes the
open unit disk in R*. Let U be any open neighborhood of BX {0} in E. Then
B X {0} has a trivial normal bundle in U and each fiber over {b X 0} is contained
in {b}x D¢ for all b€ B.

Proof. We assume that £ U. For any two points (x, ), (x’, t'YEECR"K
let d((x,¢), (x’,t")) denote the distance between (x, ¢) and (x’,¢’) in R"* We
define a map g: B—[0,1] by g(b)=min(1,d((b,0),E—U)}. Then g is a con-
tinuous positive real valued function on B and f(b) <1 for all b€ B. Then we
define a map h: BxD&— U by h(b, t)= (b, g(b)¢t). This induces the required
normal bundle of BXx {0]. 0O

We also observe that the imbedding S*C M7, in Hirsch’s theorem, is locally
flat.

LEMMA 2. The imbedding S*C M (T3, f) is locally flat.
Proof. Let x be the vertex of the cone C(T?), and
Vi=8%—{x}, V,=Int(C(T?).
Then S* is covered by {V;, ¥,} and V;=R*=V,. It is clear that

Ey=(C(f(T*x D§))— [x)U (D*x D) = (8 — {x}) x D§ —L+5%— {x}

is a trivial normal bundle of V; in M, where Dg’ also denotes the open unit disk
in R3. Since the submanifold 72 CS® is topologically unknotted [6: p. 201],
(C(T?),C(S%)=(C(T?),D") is homeomorphic to (D* D’). Therefore V,=
Int C(T?) has a trivial normal bundle E, in M. O

We denote any point (x,y) € R*x R?>=R* by x = (acosa, asin a), y=
(b cos B, b sin B) for some real numbers a, b, o and 8. Then we define an action
of the circle group S' on R* by 8- (x, y)=(8-x, 0-y), where

f-x=(acos(a+0),asin(a+0)) and 6-y=(bcos(8+8), bsin(3+8))

for any element § €S'. Then S acts orthogonally on R* and the unit sphere S? in
R%is invariant under the action. Therefore, we may consider the S!-action on S3.
Since S! acts freely on §3, every orbit in S3 is principal, and the orbit space S3/S!
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is a connected 2-manifold without boundary. Furthermore, the induced map
7, m(S%) > 7,(83/8') of the natural orbit map =:S>— S3/S! is surjective.
This implies that S3/S! is simply connected, and hence S3/S'=S2 The action
defined is the standard cone over the Hopf action. Therefore, this action of S!
and S3 is classified by the generator ¢ of Z=H?(S?;Z). Since the S'-action on
R*—{0}=S%xR is equivalent to the product of the S!-action on S? with the
trivial action on R, we see that R*—{0}/S'= (S3xR)/S'=S$?x R=R3—{0},
and see that this S'-action on R*—{0]} is also classified by the same element
cEZ=H*(R’-(0}; Z)=H?*(S%; Z).

Let N;, N, denote the product spaces ¥; x R* and V, x R*, respectively, where
¥, and V, is the open covering of S*C M7 which is defined in Lemma 2. Let the
action of S! on ;, i=1, 2, be equivalent to the trivial action on ¥; and the S!
action defined above on R* Therefore, the S! action on N;,—F(S!,N;)=
Vix (R*—1{0}) is also classified by the same element

c€EZ=H*((V;ix (R*—{0}))/S};, Z)=H*(V;x (R*—{0}); Z)
=H*(R*x (R*={0})); Z)=H*(S% Z).

Since N;/S'=V;x R3, we can identify the orbit space N;/S! with the trivial
normal bundle E; of ¥; in M7 (see Lemma 2), i.e., N;/S'=V;xR*=E,, i=1,2.
Therefore, we have (N;—F(S,N)))/S'=Vix (R*—~{0))=E;—V;, i=1,2. Let
q;: N;— E; be the natural orbit map. Since V;—V, and V,— V| =[x} are two dis-
joint closed subsets in M7, and M7 is a normal space, there exist disjoint open
subsets U; and U, in M’ such that V;—V,C U,CE,, V,—U,CU,CE,. We also
know that ¥;NV, is homeomorphic to S x R. By Lemma 1, ¥;—V, has a trivial
normal bundle E{= (V;—V,) xR in U, and ¥,— V¥, has a trivial normal bundle
E3=(V,—V;)xR? in (V,—U;)xR3, and V{NV, has a trivial normal bundle
E=(ViNV,)xR¥in ENE,.

REMARK. For i=1, 2, the S'-action on g, '(E — V;NV,) is classified by the ele-
ment c€Z=H?*(E—V,NV,;Z), which classifies the S'-action on S* since in
both instances the action comes from the restrictions of the Hopf constructions.

Now let N{=q{ ' (EUE}), N5=g; "(EUE}). We know that there is an equiva-
lence g ' (E—-ViNV,) = g5 '(E—V;NV,) by the above remark. Hence there is
an equivalence h:q; (E)—q; '(E) such that g;=q,h. Let X be the space
obtained from the disjoint union of Ni and N; identifying x with A(x) for each
x€qi (E), i.e., X=N{UNj;/x~h(x). Then S! acts effectively and locally
smoothly on X with the fixed point set F(S!, X)=V;UV,=8* We note that X
is an 8-manifold and S* is a submanifold of X. Furthermore, the orbit space
X/S'=E{UEUEj is a neighborhood of S*in M(T3,f). If F(S,X) has a
closed invariant tubular neighborhood in X, then S* would have a closed tube in
M induced by the orbit map. This contradicts the theorem of Hirsch. Thus we
have the following theorem:

THEOREM 2. There is an 8-manifold M on which the circle group S' acts
effectively and locally smoothly with the fixed point set S* and the fixed point set
has no invariant closed tubular neighborhood.
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Finally, we note that the above example is excluded in Theorem 1 for dimen-

sional reasons.

o0
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