ON TUBULAR NEIGHBORHOODS OF FIXED POINTS OF LOCALLY SMOOTH ACTIONS

T. Y. Dain and S. K. Kim

1. Introduction. G. E. Bredon, in his book [1], defines a locally smooth action of a compact Lie group on a topological space. Locally smooth actions of compact Lie groups on manifolds form a class of actions lying between that of topological actions and that of smooth actions.

An action of a compact Lie group G on a topological space M is said to be locally smooth if there exists a linear tube about each orbit. A linear tube is defined as follows: Let H be a closed subgroup of G and $G(x) = \{g \cdot x \mid g \in G\}$ be an orbit of type G/H, and let V be a Euclidean space on which H acts orthogonally. Then a linear tube about G(x) in M is a G-equivariant imbedding $\phi: G \times_H V \to M$ such that $\phi(G \times_H V)$ is an open neighborhood of G(x) in M, where $G \times_H V$ is the twisted product of G and V. The twisted product is defined to be the orbit space of the action H on $G \times V$ given by $h \cdot (g, v) = (g \cdot h^{-1}, h \cdot v)$ for $h \in H$, and $(g, v) \in G \times V$. If G acts locally smoothly on M, then M is a topological manifold and any connected component of the fixed point set $F(G, M) = \{x \in M \mid g \cdot x = x \}$ for all $g \in G$ is a topological submanifold of M. It is well known that there is a linear tube about each orbit of any smooth action. Thus a smooth action of a compact Lie group is locally smooth [1]. The following facts about locally smooth actions are shown in [1: pp. 179–185].

If a compact Lie group G acts locally smoothly on the m-manifold M with the orbit space M/G connected, then there exists a maximum orbit type G/H for G in M, i.e., H is conjugate to a subgroup of the isotropy group $G_x = \{g \in G \mid g \cdot x = x\}$ of G at each $x \in M$. The orbits of this type are called the principal orbits. The union $M_{(H)}$ of the orbits of maximum orbit type G/H is open and dense in M and its image $M_{(H)}/G$ in M/G is also connected. Let V be a linear slice at X ($X \in V \subset M$, $G_X(V) = V$). Then the orbit G(X) is principal if and only if G_X acts trivially on Y and $G \times_{G_X} V = (G/G_X) \times Y$. Let G(X) be an exceptional orbit (i.e., dim G(X)) = dim of a principal orbit, but they are not equivalent), and let Y be a linear slice at the point X. If $H \subset G_X$ is a principal isotropy group for G_X on Y, then Y is just the ineffective part of Y on Y. Therefore Y is a finite group acting effectively on the slice Y. If Y is a codimension one in Y, i.e., Y is a special exceptional orbit, then Y has order two and acts by reflection across the hyperplane Y of Y.

The purpose of this paper is to study an invariant tubular neighborhood of the fixed point set F(G, M) of a locally smooth action of a compact Lie group G on a manifold M. An open (or closed) invariant tubular neighborhood of F(G, M) in M is a normal bundle $p: E \rightarrow F(G, M)$ such that E is a G-invariant open (or closed) neighborhood of F(G, M) in M, and the action of G on each fiber is

Received July 6, 1982. Revision received December 1, 1982. Michigan Math. J. 30 (1983).

equivalent to an orthogonal action on the Euclidean k-space \mathbb{R}^k , where $k = \dim M - \dim F(G, M)$. We note that if a compact Lie group G acts smoothly on a manifold M and if F is any connected component of the fixed point set F(G, M), then there exists an open (and a closed) invariant tubular neighborhood of F in M [1]. However, F. Raymond found that if the action is only topological, then F does not necessarily have an invariant closed tubular neighborhood in M [9]. In case there is an invariant closed tubular neighborhood of the fixed point set in a manifold M, by deleting the interior of the tubular neighborhood we obtain an action on a manifold with boundary having no fixed points.

We prove that an invariant tubular neighborhood can be found for many cases when the codimension of F(G, M) in M is bigger by 1, 2 or 3 than the dimension of a principal orbit. We also find an example of a locally smooth action of a compact Lie group on a manifold for which the fixed point set does not have an invariant tubular neighborhood. We use the fact that the 4-sphere S^4 can be imbedded in a 7-manifold M^7 having no topological closed tube [5]. Finally, we thank F. Raymond for his suggestion of the tubular neighborhood problem to us.

2. Invariant tubular neighborhoods. We assume that a compact Lie group G acts effectively and locally smoothly on a topological m-manifold M with the fixed point set F(G, M). Let F be a connected component of F(G, M) of dimension n, and k be the codimension of F in M, i.e., k=m-n. Let d denote the dimension of a principal orbit of G on M, and $\pi: M \to M/G$ be the natural orbit map taking x into its orbit G(x) for each $x \in M$. By the definition of a locally smooth action, F is covered by $\{V_{\lambda}\}_{{\lambda} \in \Lambda}$, a collection of open subsets of F such that: (1) V_{λ} is homeomorphic to the Euclidean n-space \mathbb{R}^n for each $\lambda \in \Lambda$; (2) for each $\lambda \in \Lambda$, V_{λ} has a neighborhood N_{λ} in M, which is equivalent to $V_{\lambda} \times \mathbb{R}^k$ and V_{λ} is corresponding to $V_{\lambda} \times \{0\}$ under this equivalence, thus the submanifold F is locally flat in M; and (3) the action of G on $V_{\lambda} \times \mathbb{R}^k$ induced by this equivalence is the product of the trivial action on V_{λ} with an orthogonal action on \mathbb{R}^k . Therefore, there is an induced orthogonal action of G on \mathbb{R}^k with the fixed point set $F(G, \mathbb{R}^k) = \{0\}$ and the dimension of a principal orbit of G on \mathbb{R}^k equals the dimension of a principal orbit of G on \mathbb{R}^k equals the dimension of a principal orbit of G on \mathbb{R}^k equals the

THEOREM 1. Let a compact Lie group G act effectively and locally smoothly on a topological m-manifold M with the fixed point set F(G,M). Let F be a connected component of F(G,M) of dimension n, and k be the codimension of F in M. Let G denote the dimension of a principal orbit of G on G. Then G has an open or closed invariant tubular neighborhood in G provided that any one of the following conditions is satisfied:

- (1) n = 0.
- (2) d=k-1.
- (3) k=1.
- (4) $k=2 \text{ and } n \neq 2$.
- (5) $k \ge 3$ and d = k 2.
- (6) k>4 and d=k-3 and $n\neq 2$ and G is connected.

Proof. (1) n=0. By the definition of a locally smooth action, a single point set F has a neighborhood $N=\mathbb{R}^m$ such that the action of G on N is equivalent to an orthogonal action on \mathbb{R}^m . Then the projection $p: N \to F$ is trivially an invariant tubular neighborhood of F in M.

- (2) d=k-1. We know that for each $\lambda \in \Lambda$, the orbit space of G on N_{λ} is $N_{\lambda}/G \cong N_{\lambda} \times (\mathbb{R}^k/G)$. Since G acts orthogonally on \mathbb{R}^k with d=k-1, $\mathbb{R}^k/G = \mathbb{R}_+ = \{r \in \mathbb{R}, r \geqslant 0\}$. Therefore we have $N_{\lambda}/G \cong V_{\lambda} \times \mathbb{R}_+$. This implies that the orbit space M/G is a manifold with boundary F(G, M) and F is locally collared in M/G. Therefore F has a collar $C \cong F \times [0, 1]$ in M/G [2]. Let $i: F \times [0, 1] \to C$ be the homeomorphism. Then the map $p: \pi^{-1}(C) \to F$, given by $p(\pi^{-1}(x)) = f$ for all $x = i(f, r) \in C$, is an invariant tubular neighborhood of F in M.
- (3) k=1. In this case, the group G acts orthogonally on \mathbb{R}^1 with the fixed point set $\{0\}$. Therefore, $G \cong \mathbb{Z}_2$ and d=0=k-1. Hence F has an invariant tubular neighborhood in M by case (2).
- (4) k=2 and $n\neq 2$. The Lie group G acts orthogonally on \mathbb{R}^2 with fixed point set $\{0\}$. Therefore, the dimension d of a principal orbit is less than or equal to one. If d=1, then we are done by case (2). If d=0, there are two cases to consider: (a) G acts freely on $\mathbb{R}^2 - \{0\}$, or (b) G does not act freely on $\mathbb{R}^2 - \{0\}$. If G acts freely on $\mathbb{R}^2 - \{0\}$, then $G \cong G(x)$ for all $x \in \mathbb{R}^2 - \{0\}$. Therefore, the compact Lie group G must be finite. Furthermore, $\mathbb{R}^2/G \cong \mathbb{R}^2$. Thus $N_{\lambda}/G \cong$ $V_{\lambda} \times (\mathbf{R}^2/G) = V_{\lambda} \times \mathbf{R}^2$. Therefore, the orbit space M/G is again a manifold, and the submanifold F is locally flat, and it is of codimension 2 in the orbit space M/G. Then F has a normal microbundle in M/G provided $n \neq 2$ according to Kirby and Siebenmann [7]. We know that a microbundle is a fiber bundle by Kister [8]. Let $q: E \to F$ be this normal bundle of F in M/G. Then $p = q \cdot \pi : \pi^{-1}(E) \to F$ is an invariant tubular neighborhood of F in M. We consider now the case when G does not act freely on $\mathbb{R}^2 - \{0\}$, that is, $G \neq \mathbb{Z}_l$ for any integer l. (In this case the condition $n \neq 2$ is not necessary.) Let x be any point in $\mathbb{R}^2 - \{0\}$ such that $G_x \neq e$. Then $F(G_x, \mathbb{R}^2) \neq \{0\}$, and it is a submanifold of \mathbb{R}^2 . Therefore, $F(G_x, \mathbb{R}^2) \cong \mathbb{R}^1$. Therefore, G(x) is a special exceptional orbit in \mathbb{R}^2 and $G_x \cong \mathbb{Z}_2$ and acts on \mathbb{R}^2 by reflection across the hyperplane $F(G_x, \mathbb{R}^2)$ in \mathbb{R}^2 . This implies that the restricted action of G on $S^1 \subset \mathbb{R}^2$ has orbit space homeomorphic to [0, 1], i.e., $S^1/G \cong [0,1]$. Since we may regard \mathbb{R}^2 as the open cone of S^1 , $C^0(S^1)$, $\mathbb{R}^2/G \cong C^0([0,1]) \cong \mathbb{R}^2_+$. Therefore $N_{\lambda}/G \cong V_{\lambda} \times (\mathbb{R}^2/G) = V_{\lambda} \times C^0([0,1])$. This implies that M/G is a manifold with boundary $\partial(M/G)$. We note that

$$\dim(M/G) = \dim M$$
 and $\dim F = \dim(M/G) - 2 = \dim(\partial(M/G)) - 1$.

Thus F is a locally flat codimension one submanifold of $\partial(M/G)$. Therefore, by Brown [2], F has a collar E in $\partial(M/G)$, i.e., $E \cong F \times [0,1]$. Since $E \subset \partial(M/G)$ and $\partial(M/G)$ has a collar in M/G, E has a collar C in M/G, where $C \cong E \times [0,1]$. Then the composite map

$$p: \pi^{-1}(C) \xrightarrow{\pi} C \cong E \times [0,1] \xrightarrow{\pi_1} E \cong F \times [0,1] \xrightarrow{\pi_1} F$$

is an invariant tubular neighborhood of F in M.

(5) $k \ge 3$ and d = k - 2. Since G acts orthogonally on \mathbb{R}^k with fixed point set $\{0\}$, and d = k - 2, G acts smoothly on S^{k-1} without fixed point. We consider the action of G on S^{k-1} : (a) Suppose every orbit is principal, then, by [1: p. 198], G acts freely on S^{k-1} and G is either S^1 or S^3 , or the normalizer $N(S^1)$ of S^1 in S^3 . Therefore $d = \dim G$. Since the only group that acts freely on the even dimensional spheres is \mathbb{Z}_2 [1: p. 148], k-1 is not an even integer. Therefore k-1 is an odd integer and d = k - 2 is an even integer. This implies that $G \ne S^1$ and $G \ne S^3$. Furthermore, $N(S^1)/S^1$ is finite since S^1 is the maximal torus of S^3 [1: p. 26]. This implies that dim $N(S^1)$ is also one and $G \ne N(S^1)$. This leads to a contradiction. (b) We know that not every orbit is principal by (a). We also know that $S^{k-1}/G \cong [0,1]$ by [1: p. 206]. Therefore $\mathbb{R}^k/G \cong C^0([0,1])$, and

$$N_{\lambda}/G \cong V_{\lambda} \times C^0([0,1]).$$

Thus $(\bigcup N_{\lambda})_{\lambda \in \Lambda}/G$ is a manifold with boundary, and F is locally flat, and it is of codimension one in $\partial((\bigcup N_{\lambda})/G)$. Thus, we can show that F has an invariant tubular neighborhood in M by a similar proof given in (4)(b).

(6) k>4, d=k-3, $n\neq 2$, and G is connected. In this case, G acts smoothly on S^{k-1} without fixed point and d=k-3. Since G is also connected, there exists a singular orbit on S^{k-1} [1: p. 216; or Conner]. Therefore, S^{k-1}/G is a closed 2-disk. Let $B=\{x\in M\mid G(x) \text{ is a singular orbit}\}$. Thus $B\neq\emptyset$, and $F\subsetneq B$. Furthermore, $N_{\lambda}/G\cong V_{\lambda}\times C^{0}(D^{2})$ with $(N_{\lambda}\cap B)/G\cong C^{0}(\partial D^{2})$. Therefore F is locally flat and is of codimension two in B/G. Hence, F has an (open) tube $g_{1}\colon C_{1}\to F$ in B/G if $n\neq 2$ by [7]. Since $B/G\subset\partial(M/G)$, C_{1} has a collar $g_{2}\colon C_{2}\xrightarrow{\cong} C_{1}\times[0,1]$ in M/G. Then the composite

$$p = g_1 \cdot \pi_1 \cdot g_2 \cdot \pi : \pi^{-1}(C_2) \xrightarrow{\pi} C_2 \xrightarrow{g_2} C_1 \times [0, 1] \xrightarrow{\pi_1} C_1 \xrightarrow{g_1} F$$

is a tubular neighborhood of F in M.

3. An example. Let M be a manifold and A a submanifold. An open (closed) tube for A in M is a bundle $p: E \rightarrow A$ such that $E \subset M$ is a neighborhood of A, p is a retraction, and the fibers are open (closed) k-cells, where $k = \dim M - \dim A$. In the smooth category, every submanifold has a closed tube, and hence an open tube. In the piecewise linear category, it is known that such a tube exists if the codimension k is sufficiently large. Using a framed non-trivial Haefliger knot, Kirsch [5] found that there exists a piecewise linear submanifold S^4 in M^7 having no topological closed tube. The construction of the pair $S^4 \subset M^7$ is as follows: A Haefliger knot is an oriented smooth submanifold $T^3 \subset S^6$ which is diffeomorphic to the three sphere S^3 . A Haefliger knot is trivial if it is diffeotopic to the standard imbedding of $S^3 \subset S^6$. A framed Haefliger knot is a pair (T^3, f) , where T^3 is a Haefliger knot and $f: T^3 \times D^3 \rightarrow S^6$ is a framing of its normal bundle. That is, f is a smooth imbedding such that f(x,0)=x for all $x \in T^3$. It is known that there exists a non-trivial Haefliger knot and every Haefliger knot can be framed ([3], [4]). Let $T^3 \subset S^6$ be a non-trivial Haefliger knot and f be any framing of T^3 . Let $M^7 = M^7(T^3, f)$ be the smooth 7-manifold obtained by attaching the handle $D^4 \times D^3$ to D^7 by $f': S^3 \times D^3 \to S^6 = \partial D^7$, where f' corresponds to f via an orientation-preserving diffeomorphism of T^3 and S^3 . Let $S^4 \subset M^7$ be a union $C(T^3) \cup (D^4 \times \{0\})$, where $C(T^3) \subset D^7$ is the cone on T^3 and $D^4 \times \{0\}$ is the core of the handle $D^4 \times D^3$.

THEOREM (Hirsch [5]). Let $T^3 \subset S^6$ be a non-trivial Haefliger knot and let f be any framing of T^3 . Then the 4-sphere S^4 in $M^7(T^3, f)$ has no topological closed tube.

In this section we construct a locally smooth action of the circle group S^1 on a manifold for which the existence of an invariant tubular neighborhood of the fixed point set violates the above theorem of Hirsch. First, we observe the following:

LEMMA 1. Let B be any subset of \mathbb{R}^n and $E = B \times D_0^k$, where D_0^k denotes the open unit disk in \mathbb{R}^k . Let U be any open neighborhood of $B \times \{0\}$ in E. Then $B \times \{0\}$ has a trivial normal bundle in U and each fiber over $\{b \times 0\}$ is contained in $\{b\} \times D_0^k$ for all $b \in B$.

Proof. We assume that $E \neq U$. For any two points (x,t), $(x',t') \in E \subseteq \mathbb{R}^{n+k}$, let d((x,t),(x',t')) denote the distance between (x,t) and (x',t') in \mathbb{R}^{n+k} . We define a map $g: B \to [0,1]$ by $g(b) = \min\{1,d((b,0),E-U)\}$. Then g is a continuous positive real valued function on B and $f(b) \leq 1$ for all $b \in B$. Then we define a map $h: B \times D_0^k \to U$ by h(b,t) = (b,g(b)t). This induces the required normal bundle of $B \times \{0\}$.

We also observe that the imbedding $S^4 \subset M^7$, in Hirsch's theorem, is locally flat.

LEMMA 2. The imbedding $S^4 \subset M^7(T^3, f)$ is locally flat.

Proof. Let x be the vertex of the cone $C(T^3)$, and

$$V_1 = S^4 - \{x\}, \quad V_2 = \text{Int}(C(T^3)).$$

Then S^4 is covered by $\{V_1, V_2\}$ and $V_1 \cong \mathbb{R}^4 \cong V_2$. It is clear that

$$E_1 = (C(f(T^3 \times D_0^3)) - \{x\}) \cup (D^4 \times D_0^3) = (S^4 - \{x\}) \times D_0^3 \xrightarrow{\pi_1} S^4 - \{x\}$$

is a trivial normal bundle of V_1 in M^7 , where D_0^3 also denotes the open unit disk in \mathbb{R}^3 . Since the submanifold $T^3 \subset S^6$ is topologically unknotted [6: p. 201], $(C(T^3), C(S^6)) \cong (C(T^3), D^7)$ is homeomorphic to (D^4, D^7) . Therefore $V_2 = \operatorname{Int} C(T^3)$ has a trivial normal bundle E_2 in M^7 .

We denote any point $(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^4$ by $x = (a \cos \alpha, a \sin \alpha)$, $y = (b \cos \beta, b \sin \beta)$ for some real numbers a, b, α and β . Then we define an action of the circle group S^1 on \mathbb{R}^4 by $\theta \cdot (x, y) = (\theta \cdot x, \theta \cdot y)$, where

$$\theta \cdot x = (a\cos(\alpha + \theta), a\sin(\alpha + \theta))$$
 and $\theta \cdot y = (b\cos(\beta + \theta), b\sin(\beta + \theta))$

for any element $\theta \in S^1$. Then S^1 acts orthogonally on \mathbb{R}^4 and the unit sphere S^3 in \mathbb{R}^4 is invariant under the action. Therefore, we may consider the S^1 -action on S^3 . Since S^1 acts freely on S^3 , every orbit in S^3 is principal, and the orbit space S^3/S^1

is a connected 2-manifold without boundary. Furthermore, the induced map $\pi_*: \pi_1(S^3) \to \pi_1(S^3/S^1)$ of the natural orbit map $\pi: S^3 \to S^3/S^1$ is surjective. This implies that S^3/S^1 is simply connected, and hence $S^3/S^1 \cong S^2$. The action defined is the standard cone over the Hopf action. Therefore, this action of S^1 and S^3 is classified by the generator c of $\mathbf{Z} = H^2(S^2; \mathbf{Z})$. Since the S^1 -action on $\mathbf{R}^4 - \{0\} = S^3 \times \mathbf{R}$ is equivalent to the product of the S^1 -action on S^3 with the trivial action on \mathbf{R} , we see that $\mathbf{R}^4 - \{0\}/S^1 \cong (S^3 \times \mathbf{R})/S^1 \cong S^2 \times \mathbf{R} \cong \mathbf{R}^3 - \{0\}$, and see that this S^1 -action on $\mathbf{R}^4 - \{0\}$ is also classified by the same element $c \in \mathbf{Z} \cong H^2(\mathbf{R}^3 - \{0\}; \mathbf{Z}) \cong H^2(S^2; \mathbf{Z})$.

Let N_1, N_2 denote the product spaces $V_1 \times \mathbb{R}^4$ and $V_2 \times \mathbb{R}^4$, respectively, where V_1 and V_2 is the open covering of $S^4 \subset M^7$ which is defined in Lemma 2. Let the action of S^1 on N_i , i=1,2, be equivalent to the trivial action on V_i and the S^1 action defined above on \mathbb{R}^4 . Therefore, the S^1 action on $N_i - F(S^1, N_i) \cong V_i \times (\mathbb{R}^4 - \{0\})$ is also classified by the same element

$$c \in \mathbb{Z} \cong H^2((V_i \times (\mathbb{R}^4 - \{0\}))/S^1; \mathbb{Z}) \cong H^2(V_i \times (\mathbb{R}^3 - \{0\}); \mathbb{Z})$$

 $\cong H^2(\mathbb{R}^4 \times (\mathbb{R}^3 - \{0\}); \mathbb{Z}) \cong H^2(S^2; \mathbb{Z}).$

Since $N_i/S^1 \cong V_i \times \mathbb{R}^3$, we can identify the orbit space N_i/S^1 with the trivial normal bundle E_i of V_i in M^7 (see Lemma 2), i.e., $N_i/S^1 \cong V_i \times \mathbb{R}^3 = E_i$, i=1,2. Therefore, we have $(N_i - F(S^1, N_i))/S^1 \cong V_i \times (\mathbb{R}^3 - \{0\}) = E_i - V_i$, i=1,2. Let $q_i \colon N_i \to E_i$ be the natural orbit map. Since $V_1 - V_2$ and $V_2 - V_1 = \{x\}$ are two disjoint closed subsets in M^7 , and M^7 is a normal space, there exist disjoint open subsets U_1 and U_2 in M^7 such that $V_1 - V_2 \subset U_1 \subset E_1$, $V_2 - U_1 \subset U_2 \subset E_2$. We also know that $V_1 \cap V_2$ is homeomorphic to $S^3 \times \mathbb{R}$. By Lemma 1, $V_1 - V_2$ has a trivial normal bundle $E_1 \cong (V_1 - V_2) \times \mathbb{R}^3$ in U_1 , and $V_2 - V_1$ has a trivial normal bundle $E_2 \cong (V_2 - V_1) \times \mathbb{R}^3$ in $(V_2 - U_1) \times \mathbb{R}^3$, and $V_1 \cap V_2$ has a trivial normal bundle $E \cong (V_1 \cap V_2) \times \mathbb{R}^3$ in $E_1 \cap E_2$.

REMARK. For i=1, 2, the S^1 -action on $q_i^{-1}(E-V_1\cap V_2)$ is classified by the element $c\in \mathbb{Z}=H^2(E-V_1\cap V_2;\mathbb{Z})$, which classifies the S^1 -action on S^3 since in both instances the action comes from the restrictions of the Hopf constructions.

Now let $N_1' = q_1^{-1}(E \cup E_1')$, $N_2' = q_2^{-1}(E \cup E_2')$. We know that there is an equivalence $q_1^{-1}(E - V_1 \cap V_2) \rightarrow q_2^{-1}(E - V_1 \cap V_2)$ by the above remark. Hence there is an equivalence $h: q_1^{-1}(E) \rightarrow q_2^{-1}(E)$ such that $q_1 = q_2 h$. Let X be the space obtained from the disjoint union of N_1' and N_2' identifying x with h(x) for each $x \in q_1^{-1}(E)$, i.e., $X = N_1' \cup N_2'/x \sim h(x)$. Then S^1 acts effectively and locally smoothly on X with the fixed point set $F(S^1, X) = V_1 \cup V_2 = S^4$. We note that X is an 8-manifold and S^4 is a submanifold of X. Furthermore, the orbit space $X/S^1 = E_1' \cup E \cup E_2'$ is a neighborhood of S^4 in $M^7(T^3, f)$. If $F(S^1, X)$ has a closed invariant tubular neighborhood in X, then S^4 would have a closed tube in M^7 induced by the orbit map. This contradicts the theorem of Hirsch. Thus we have the following theorem:

THEOREM 2. There is an 8-manifold M on which the circle group S^1 acts effectively and locally smoothly with the fixed point set S^4 and the fixed point set has no invariant closed tubular neighborhood.

Finally, we note that the above example is excluded in Theorem 1 for dimensional reasons.

REFERENCES

- 1. G. E. Bredon, *Introduction to compact transformation groups*, Academic Press, New York, 1972.
- 2. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 3. A. Haefliger, *Knotted* (4k-1)-spheres in 6k-space, Ann. of Math. (2) 75 (1962), 452–466.
- 4. —, Differentiable embeddings of S^n in S^{n+q} for q>2, Ann. of Math. (2) 83 (1966), 402–436.
- 5. M. W. Hirsch, On tubular neighborhoods of piecewise linear and topological manifolds. Conference on the Topology of Manifolds (East Lansing, Mich., 1967), 63-80, Prindle, Weber & Schmidt, Boston, Mass., 1968.
- 6. J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969.
- 7. R. C. Kirby and L. C. Siebenmann, *Normal bundles for codimension 2 locally flat imbeddings*. Geometric topology (Park City, Utah, 1974), 310-324, Lecture Notes in Math., 438, Springer, Berlin, 1975.
- 8. J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190-199.
- 9. F. Raymond, *Topological actions do not necessarily have reasonable slices*. Proceedings of the Conference on Transformation Groups (New Orleans, La., 1967), 345, Springer, New York, 1968.

Department of Mathematics The University of Connecticut Storrs, Connecticut 06268