BOUNDARY BEHAVIOR OF PROPER HOLOMORPHIC MAPPINGS

E. Bedford, S. Bell, and D. Catlin

1. Introduction. It has recently been proved in [4] and in [6] that if $f: D_1 \to D_2$ is a proper holomorphic mapping between smooth bounded pseudoconvex domains in \mathbb{C}^n , and if the Bergman projection associated to D_1 is globally regular, then f extends smoothly to \bar{D}_1 . The purpose of this note is to indicate how this result extends to the more general setting where D_1 and D_2 are relatively compact domains inside Stein manifolds.

If D is a relatively compact domain in a Stein manifold M, the space $L_{n,0}^2(D)$ is defined to be the set of (n,0) forms ω such that

$$\|\omega\|^2 = (\sqrt{-1})^{n^2} \int_D \omega \wedge \bar{\omega}$$

is finite. The space $L^2_{n,0}(D)$ is a Hilbert space with inner product given by

$$(\omega,\eta)=(\sqrt{-1})^{n^2}\int_D\omega\wedge\bar{\eta}.$$

The Bergman projection P associated to D is the orthogonal projection of $L^2_{n,0}(D)$ onto $H_{n,0}(D)$, the closed subspace of $L^2_{n,0}(D)$ consisting of holomorphic (i.e., $\bar{\partial}$ -closed) (n,0) forms. We shall say that a smoothly bounded domain D satisfies condition R if the Bergman projection associated to D maps $C^{\infty}_{n,0}(\bar{D})$ into $C^{\infty}_{n,0}(\bar{D})$. The main result of this paper can now be stated.

THEOREM 1. Suppose $f: D_1 \to D_2$ is a proper holomorphic mapping between relatively compact, smoothly bounded pseudoconvex domains D_1 and D_2 in n-dimensional Stein manifolds M_1 and M_2 , respectively. If D_1 and D_2 satisfy condition R, then f extends smoothly to \bar{D}_1 .

REMARKS. A) A domain D is known to satisfy condition R, for example, whenever its associated $\bar{\partial}$ -Neumann problem on (n,0) forms is globally regular. For a detailed discussion of the regularity properties of the $\bar{\partial}$ -Neumann problem and their relation to the Bergman projection, see J. J. Kohn's papers [7, 8].

B) There is an apparently stronger version of Theorem 1 that can be proved.

THEOREM 2. Suppose $f: D_1 \to D_2$ is a proper holomorphic mapping between smoothly bounded pseudoconvex domains D_1 and D_2 that are relatively compact inside Stein manifolds of dimension n. If D_1 satisfies condition R, then f extends smoothly to \bar{D}_1 .

We shall not prove Theorem 2 here. Our proof of Theorem 1 reveals the basic changes that must be made in the arguments of [4] and [6] to adapt them to

Received September 3, 1982.

Michigan Math. J. 30 (1983).

the case in which \mathbb{C}^n is replaced by a Stein manifold. Beyond this, a proof of Theorem 2 would merely involve a straightforward transcription of the arguments of [4] and [6] into invariant language. Furthermore, the following theorem shows that Theorem 2 is actually no more general than Theorem 1.

THEOREM 3. Suppose $f: D_1 \to D_2$ is a proper holomorphic mapping between smoothly bounded pseudoconvex domains that are relatively compact inside n-dimensional Stein manifolds. If D_1 satisfies condition R, then so does D_2 .

Theorem 3 is proved for the case in which D_1 and D_2 are contained in \mathbb{C}^n in [3]. Since the modifications involved in extending the proof given in [3] to the more general setting at hand are straightforward after the ideas used in the proof of Theorem 1 are understood, we shall not prove Theorem 3 here.

2. Proof of Theorem 1. Suppose $f: D_1 \to D_2$ is a proper holomorphic mapping between domains that satisfy the hypotheses of Theorem 1. Two key lemmas are at the heart of the proof of Theorem 1.

LEMMA 1. If ω is a holomorphic (n,0) form in $C_{n,0}^{\infty}(\bar{D}_2)$, then $f^*\omega$ is in $C_{n,0}^{\infty}(\bar{D}_1)$.

LEMMA 2. If ω is a holomorphic (n,0) form in $C_{n,0}^{\infty}(\bar{D}_2)$ that vanishes to at most finite order at any boundary point of D_2 , then $f^*\omega$ vanishes to at most finite order at any boundary point of D_1 .

The proofs of the lemmas will be given in §3. We now indicate how the lemmas imply Theorem 1.

Let p_0 be a boundary point of D_1 and let z_1, z_2, \ldots, z_n be holomorphic coordinates near p_0 . We shall prove that f extends smoothly to bD_1 near p_0 . Let $\{p_i\}$ be a sequence of points in D_1 that converges to p_0 . By passing to a subsequence, if necessary, we can assume that $\{f(p_i)\}$ converges to a point q_0 in bD_2 . Let g_1, g_2, \ldots, g_n be n functions on D_2 that extend to be holomorphic in a neighborhood of D_2 in M_2 and that form a coordinate chart near q_0 . Define a holomorphic function u near p_0 via

$$u dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n = f^*(dg_1 \wedge dg_2 \wedge \cdots \wedge dg_n).$$

Lemmas 1 and 2 imply that u extends smoothly to bD_1 near p_0 and that u vanishes to finite order at p_0 .

If $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a multi-index, define $g^{\alpha} = \prod_{i=1}^n g_i^{\alpha_i}$. Lemma 1 implies that the form $f^*(g^{\alpha} dg_1 \wedge \dots \wedge dg_n)$ extends smoothly to bD_1 . Hence, u and $u(g^{\alpha} \circ f)$ extend smoothly to bD_1 near p_0 for each α , and u vanishes to at most finite order at p_0 . Now, by the division theorem of [4], $g_i \circ f$ extends smoothly to bD_1 near p_0 for each i. Hence, f extends smoothly to bD_1 near p_0 . Since p_0 was chosen arbitrarily, we conclude that f extends smoothly to all of bD_1 . The proof of Theorem 1 has been reduced to proving the lemmas.

3. Proof of the lemmas. The proof of Lemma 1 depends on the transformation rule for the Bergman projections under proper holomorphic mappings. Let P_1 and P_2 denote the Bergman projections associated to D_1 and D_2 , respectively.

If ω is an (n,0) form in $L_{n,0}^2(D_2)$, then $P_1(f^*\omega) = f^*(P_2\omega)$. This fact is proved in [2] in the case that D_1 and D_2 are contained in \mathbb{C}^n . Since the argument is purely local, the same proof can be applied to the more general setting of Lemma 1.

If ω is a holomorphic (n,0) form in $C_{n,0}^{\infty}(\bar{D}_2)$, then it is possible to construct an (n,0) form ϕ in $C_{n,0}^{\infty}(\bar{D}_2)$ that vanishes to infinite order on bD_2 such that $P_2\phi=\omega$. To do this, we choose a Hermitian metric on M_2 , and we let ∂^* denote the formal adjoint with respect to this metric of the operator,

$$\partial: C_{n-1,0}^{\infty}(\bar{D}_2) \to C_{n,0}^{\infty}(\bar{D}_2).$$

Since the differential operator $\partial \partial^*$ is non-characteristic to bD_2 , there is an (n,0) form ψ such that $\psi=0$ and $\nabla \psi=0$ on bD_2 , and such that $\omega-\partial \partial^*\psi$ vanishes to infinite order on bD_2 . Let $\phi=\omega-\partial \partial^*\psi$. Since $\partial \partial^*\psi$ is orthogonal to $H_{n,0}(D_2)$ via integration by parts, we see that $P_2\phi=\omega$. It can be shown, exactly as in [1,2] that, because ϕ vanishes to infinite order on bD_2 , it follows that $f^*\phi$ is in $C_{n,0}^{\infty}(\bar{D}_1)$. Now the identity $f^*\omega=f^*(P_2\phi)=P_1(f^*\phi)$ reveals that $f^*\omega$ is in $C_{n,0}^{\infty}(\bar{D}_1)$ because D_1 satisfies condition R. This completes the proof of Lemma 1.

Special Sobolev Norms. Suppose D is a relatively compact, smoothly bounded domain in a Stein manifold M. Sobolev norms can be defined on forms in $L^2_{n,0}(D)$ in the usual way in terms of a fixed partition of unity of the manifold M subordinate to an open cover by coordinate charts. If s is a positive integer, we let $W^s(D)$ denote the Sobolev s-space of (n,0) forms on D, $\langle \omega, \eta \rangle_s$ the inner product on $W^s(D)$ arising from the fixed partition, and $\|\omega\|_s$ the corresponding norm. Sobolev's lemma implies that the norms $\|\cdot\|_s$ $(s=1,2,3,\ldots)$ can be used to define the Fréchet topology of $C^\infty_{n,0}(\bar{D})$.

We shall also need two auxiliary norms on holomorphic (n, 0) forms. If s is a positive integer, we define the Sobolev negative s-norm of a holomorphic (n, 0) form η to be

$$\|\eta\|_{-s} = \sup_{\phi} \left| \int_{D} \eta \wedge \bar{\phi} \right|$$

where the supremum is taken over all (n,0) forms ϕ in $C_{n,0}^{\infty}(\bar{D})$ with $\|\phi\|_s = 1$ that are compactly supported in D. The special Sobolev s-norm of a holomorphic (n,0) form ω is defined to be

$$||\!|\!|\omega|\!|\!|\!|_s = \operatorname{Sup}\left\{\left|\int_D \omega \wedge \bar{\eta}\right| : \eta \in H_{n,0}(D); |\!|\!|\eta|\!|\!|_{-s} = 1\right\}.$$

There are two basic facts that make these auxiliary norms useful.

FACT 1. For each positive integer s, there is a constant c = c(s, D) such that

$$\left| \int_{D} \omega \wedge \bar{\eta} \right| \leq c \|\omega\|_{s} \|\eta\|_{-s}$$

for all ω and η in $H_{n,0}(D)$.

FACT 2. If D satisfies condition R, then, for each positive integer s, there is a positive integer N = N(s, D) and a constant C = C(s, D) such that $\|\omega\|_s \le C \|\omega\|_N$ for all ω in $H_{n,0}(D)$.

Fact 1 is proved in [1] for D contained in \mathbb{C}^n . The proof can easily be modified to carry over to the more general setting at hand (see [5]). We shall prove only Fact 2 here.

Proof of Fact 2. Suppose ω is a form in $H_{n,0}(D)$. Let Y be a relatively compact open subset of D. The mapping $\eta \mapsto \langle \eta, \omega \rangle_{W^s(Y)}$ is a continuous linear functional on $H_{n,0}(D)$. Hence, there is a form θ in $H_{n,0}(D)$ such that $\langle \eta, \omega \rangle_{W^s(Y)} = \int_D \eta \wedge \bar{\theta}$ for all η in $H_{n,0}(D)$. Now the Bergman projection P associated to D is a closed linear mapping of $C_{n,0}^{\infty}(\bar{D})$ onto the closed subspace of $C_{n,0}^{\infty}(\bar{D})$ consisting of holomorphic (n,0) forms that are smooth up to the boundary. Hence, the closed graph theorem implies that P is continuous in the Fréchet topology of $C_{n,0}^{\infty}(\bar{D})$. Therefore, there is a constant C and a positive integer N such that $\|P\phi\|_{s} \leq C\|\phi\|_{N}$. We can now finish the proof of Fact 2 by observing that

$$\|\omega\|_{W^{s}(Y)}^{2} = \left|\int_{D} \omega \wedge \bar{\theta}\right| \leq \|\omega\|_{N} \|\theta\|_{-N}.$$

Furthermore,

$$\|\theta\|_{-N} = \sup \left| \int_{D} \phi \wedge \bar{\theta} \right| = \sup \left| \int_{D} P \phi \wedge \bar{\theta} \right| = \sup \left| \langle P \phi, \omega \rangle_{W^{s}(Y)} \right|$$

$$\leq \sup \|P \phi\|_{s} \|\omega\|_{W^{s}(Y)} \leq C \sup \|\phi\|_{N} \|\omega\|_{W^{s}(Y)}$$

where the supremum is taken over all ϕ in $C_{n,0}^{\infty}(\bar{D})$ with $\|\phi\|_{N} = 1$ that are compactly supported in D. Hence, $\|\omega\|_{W^{s}(Y)} \leq C \|\omega\|_{N}$. Since the constants C and N are independent of ω and Y, we conclude that if $\|\omega\|_{N} < \infty$, then ω is in $W^{s}(D)$ and $\|\omega\|_{s} \leq C \|\omega\|_{N}$.

We shall now show that Lemma 2 is a consequence of the following claim. Remmert's proper mapping theorem states that f is a branched cover of some finite order m. Let F_1, F_2, \ldots, F_m denote the inverses to f defined *locally* on D_2 minus the image of the branch locus of f.

CLAIM. If h is a holomorphic function on D_1 in $C^{\infty}(\bar{D}_1)$, then any symmetric function of $h \circ F_1, h \circ F_2, \ldots, h \circ F_m$ extends to be a holomorphic function on D_2 in $C^{\infty}(\bar{D}_2)$.

Let p_0 be a point in bD_1 and let $\{p_i\}$ be a sequence of points in D_1 converging to p_0 such that the sequence $\{f(p_i)\}$ converges to some point q_0 in bD_2 . Let z_1, z_2, \ldots, z_n define holomorphic coordinates near p_0 and let w_1, w_2, \ldots, w_n define coordinates near q_0 . Let $\Delta(\epsilon)$ denote the polydisc of polyradius ϵ about p_0 in the z_1, \ldots, z_n coordinates and let $B(\epsilon)$ denote the ball of radius ϵ about q_0 in the w_1, \ldots, w_n coordinates. The claim can be used exactly as in [4] to show that the image of $\Delta(\epsilon) \cap D_1$ under f contains $B(\epsilon^{m+1}) \cap D_2$ for small $\epsilon > 0$. Hence,

$$\int_{\Delta(\epsilon)\cap D_1} f^*\omega \wedge \overline{f^*\omega} \geq \int_{B(\epsilon^{m+1})\cap D_2} \omega \wedge \bar{\omega} \geq C\epsilon^Q$$

for some positive constants C and Q because ω vanishes to finite order to q_0 . This implies that $f^*\omega$ vanishes to at most finite order at p_0 .

Proof of the Claim. Because of Newton's identities (see [2]), it suffices to prove that $\sum_{k=1}^m h \circ F_k$ is in $C^{\infty}(\bar{D}_2)$ whenever h is a holomorphic function in $C^{\infty}(\bar{D}_1)$. Let s be a positive integer. Let q_0 be a boundary point of D_2 and let Ω be a holomorphic (n,0) form on D_2 that extends to be holomorphic on a neighborhood of \bar{D}_2 and that is non-zero at q_0 . Let $H = (\sum_{k=1}^m h \circ F_k)\Omega$. The Sobolev norm $\|H\|_s$ is dominated by a constant times $\|H\|_N$ where $N = N(s, D_2)$ is the number given by Fact 2. If η is an (n,0) form in $H_{n,0}(D_2)$ with $\|\eta\|_{-N} = 1$, then

$$\left| \int_{D_2} H \wedge \bar{\eta} \right| = \left| \int_{D_1} h f^* \Omega \wedge \overline{f^* \eta} \right| \leqslant c \|h f^* \Omega\|_Q \|f^* \eta\|_{-Q}$$

where Q is chosen large enough so that $||f^*\eta||_{-Q} \leq (\text{constant}) ||\eta||_{-N}$. That such a Q exists is proved in [2, 5]. Hence, we have shown that $||H||_s \leq (\text{constant}) ||hf^*\Omega||_Q$. But $hf^*\Omega$ is a form in $C_{n,0}^{\infty}(\bar{D}_1)$ by Lemma 1. Hence, $||H||_s$ is finite for each s, and we conclude that $(\sum_{k=1}^m h \circ F_k) \Omega$ is in $C_{n,0}^{\infty}(\bar{D}_2)$ whenever h is a holomorphic function in $C^{\infty}(\bar{D}_1)$. Since $\Omega \neq 0$ near q_0 , we deduce that $\sum_{k=1}^m h \circ F_k$ extends smoothly to bD_2 near q_0 . This completes the proof of the claim, and hence, Lemma 2 is established.

REFERENCES

- 1. S. Bell, *Biholomorphic mappings and the* $\bar{\partial}$ -problem, Ann. of Math. (2) 114 (1981), 103–133.
- 2. ——, *Proper holomorphic mappings and the Bergman projection*, Duke Math. J. 48 (1981), 167–175.
- 3. ——, Proper holomorphic mappings between non-pseudoconvex domains, Amer. Math. J. (in press, 1982).
- 4. S. Bell and D. Catlin, *Boundary regularity of proper holomorphic mappings*, Duke Math. J. 49 (1982), 385-396.
- 5. K. Diederich and J. E. Fornaess, A remark on a paper by S. R. Bell, Manuscripta Math. 34 (1981), 31-44.
- 6. ——, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363–384.
- 7. J. J. Kohn, Boundary regularity of $\bar{\partial}$, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N.J., 1979), pp. 243-260, Ann. of Math. Studies, 100, Princeton Univ. Press, Princeton, N.J., 1981.
- 8. ——, Subellipticity of the $\bar{\partial}$ -Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. 142 (1979), 79–122.

E. Bedford Mathematics Department Indiana University Bloomington, Indiana 47405

S. Bell, D. Catlin
Mathematics Department
Princeton University
Princeton, New Jersey 08544