BOUNDARY BEHAVIOR OF
PROPER HOLOMORPHIC MAPPINGS

E. Bedford, S. Bell, and D. Catlin

1. Introduction. It has recently been proved in [4] and in [6] that if
JS:D; = D, is a proper holomorphic mapping between smooth bounded pseudo-
convex domains in C”, and if the Bergman projection associated to D is globally
regular, then f extends smoothly to D;. The purpose of this note is to indicate
how this result extends to the more general setting where D, and D, are relatively
compact domains inside Stein manifolds.

If D is a relatively compact domain in a Stein manifold M, the space Lf,,o(D)
is defined to be the set of (n,0) forms w such that

lol?2=(=1)"| wna
D
is finite. The space L;",,O(D) is a Hilbert space with inner product given by
(w,7)=(~v—1 )”2S WAT.
D

The Bergman projection P associated to D is the orthogonal projection of
L%,O(D) onto H, o(D), the closed subspace of L;",_O(D) consisting of holomor-
phic (i.e., 8-closed) (7, 0) forms. We shall say that a smoothly bounded domain
D satisfies condition R if the Bergman projection associated to D maps C,; o (D)
into C,‘,“,’O(ﬁ). The main result of this paper can now be stated.

THEOREM 1. Suppose f: D, = D, is a proper holomorphic mapping between
relatively compact, smoothly bounded pseudoconvex domains D, and D, in
n-dimensional Stein manifolds M, and M,, respectively. If D, and D, satisfy
condition R, then f extends smoothly to D, .

REMARKS. A) A domain D is known to satisfy condition R, for example,
whenever its associated d-Neumann problem on (7, 0) forms is globally regular.
For a detailed discussion of the regularity properties of the 3-Neumann problem
and their relation to the Bergman projection, see J. J. Kohn’s papers [7, 8].

B) There is an apparently stronger version of Theorem 1 that can be proved.

THEOREM 2. Suppose f: D, = D, is a proper holomorphic mapping between
smoothly bounded pseudoconvex domains D, and D, that are relatively compact
inside Stein manifolds of dimension n. If D, satisfies condition R, then f extends
smoothly to D;.

We shall not prove Theorem 2 here. Our proof of Theorem 1 reveals the basic
changes that must be made in the arguments of [4] and [6] to adapt them to
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the case in which C” is replaced by a Stein manifold. Beyond this, a proof of
Theorem 2 would merely involve a straightforward transcription of the argu-
ments of [4] and [6] into invariant language. Furthermore, the following theorem
shows that Theorem 2 is actually no more general than Theorem 1.

THEOREM 3. Suppose f: D; = D, is a proper holomorphic mapping between
smoothly bounded pseudoconvex domains that are relatively compact inside
n-dimensional Stein manifolds. If D, satisfies condition R, then so does D,.

Theorem 3 is proved for the case in which D; and D, are contained in C” in
[3]. Since the modifications involved in extending the proof given in [3] to the
more general setting at hand are straightforward after the ideas used in the proof
of Theorem 1 are understood, we shall not prove Theorem 3 here.

2. Proof of Theorem 1. Suppose f: D; = D, is a proper holomorphic map-
ping between domains that satisfy the hypotheses of Theorem 1. Two key
lemmas are at the heart of the proof of Theorem 1.

LEMMA 1. If w is a holomorphic (n,0) form in C,fo(ﬁz), then f*w is in
Crio(Dy).

LEMMA 2. If w is a holomorphic (n,0) form in C,‘,’fo(ﬁz) that vanishes to at
most finite order at any boundary point of D,, then f*w vanishes to at most
finite order at any boundary point of D,.

The proofs of the lemmas will be given in §3. We now indicate how the lemmas
imply Theorem 1.

Let py be a boundary point of D, and let z;, 25, ..., Z, be holomorphic coordi-
nates near py. We shall prove that f extends smoothly to 6D, near p,. Lét {p; } be
a sequence of points in D; that converges to py. By passing to a subsequence, if
necessary, we can assume that {f(p;)} converges to a point qq in bD,. Let
g1,8,...,8n be n functions on D, that extend to be holomorphic in a neighbor-
hood of D, in M, and that form a coordinate chart near g,. Define a holomor-
phic function u near py via

udzy Ndz; N+ - - Ndz, = f*(dg, Ndgy N\ - - - Ndgy,).

Lemmas 1 and 2 imply that # extends smoothly to bD; near p, and that u
vanishes to finite order at py.

If «=(oy,05,...,a,) is a multi-index, define g*=11}-, g/. Lemma 1 im-
plies that the form f*(g*dg; A- - - Adg,) extends smoothly to 6D, . Hence, u and
u(g%-f) extend smoothly to bD; near p, for each «, and u vanishes to at most
finite order at py. Now, by the division theorem of [4], g;°f extends smoothly to
bD, near p, for each i. Hence, f extends smoothly to D, near p,. Since p, was
chosen arbitrarily, we conclude that f extends smoothly to all of bD,. The proof
of Theorem 1 has been reduced to proving the lemmas.

3. Proof of the lemmas. The proof of Lemma 1 depends on the transforma-
tion rule for the Bergman projections under proper holomorphic mappings. Let
P, and P, denote the Bergman projections associated to D, and D,, respectively.
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If wis an (n,0) form in L%,O(DZ), then P; (f*w) = f*(Pyw). This fact is proved
in [2] in the case that D; and D, are contained in C”. Since the argument
is purely local, the same proof can be applied to the more general setting of
Lemma 1.

If wis a holomorphic (7, 0) form in C,fo(Dz), then it is possible to construct
an (n,0) form ¢ in C,fo(ﬁz) that vanishes to infinite order on bD, such that
P, ¢ =w. To do this, we choose a Hermitian metric on M,, and we let 0* denote
the formal adjoint with respect to this metric of the operator,

8: Cp21,9(Dy) = Co(Dy).

Since the differential operator dd* is non-characteristic to bD,, there is an (n, 0)
form ¢ such that ¥ =0 and vy =0 on bD,, and such that w—a3d*y vanishes to
infinite order on bD,. Let ¢ = w—030*y. Since dd*y is orthogonal to H, ((D;)
via integration by parts, we see that P,¢ =w. It can be shown, exactly as in
[1, 2] that, because ¢ vanishes to infinite order on bD,, it follows that f*¢ is in
C,f,’f’o(D_l). Now the identity f*w=f*(Py¢)=P,(f*¢) reveals that f*w is in
C,‘,’f’o(Dl) because D, satisfies condition R. This completes the proof of
Lemma 1. 0O

Special Sobolev Norms. Suppose D is a relatively compact, smoothly bounded
domain in a Stein manifold M. Sobolev norms can be defined on forms in
L,z,,o (D) in the usual way in terms of a fixed partition of unity of the manifold M
subordinate to an open cover by coordinate charts. If s is a positive integer, we
let W*(D) denote the Sobolev s-space of (7,0) forms on D, {w,n)s the inner
product on W?*(D) arising from the fixed partition, and ||w||s the corresponding
norm. Sobolev’s lemma implies that the norms || || (s=1,2,3,...) can be used
to define the Fréchet topology of Cyo (D).

We shall also need two auxiliary norms on holomorphic (#,0) forms. If sis a
positive integer, we define the Sobolev negative s-norm of a holomorphic (7, 0)
form 7 to be

Inll—s=Sup|| wAd

¢ |I'D
where the supremum is taken over all (n,0) forms ¢ in Cyy(D) with ||¢|s=1
that are compactly supported in D. The special Sobolev s-norm of a holomor-
phic (n,0) form w is defined to be

lolls=sup{ || ond|:ne HuoD) fnlls=1}

There are two basic facts that make these auxiliary norms useful.

FACT 1. For each positive integer s, there is a constant ¢ =c (s, D) such that

<cllolslnl=s

S wA7
D

for all w and 5 in H,, o (D).
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FACT 2. If D satisfies condition R, then, for each positive integer s, there is a
positive integer N=N(s,D) and a constant C=C(s,D) such that |o|s<
Cllw| n for all w in H, o(D).

Fact 1is proved in [1] for D contained in C". The proof can easily be modified
to carry over to the more general setting at hand (see [5]). We shall prove only
Fact 2 here.

Proof of Fact 2. Suppose wis a form in H, o(D). Let Y be a relatively compact
open subset of D. The mapping # = (5, w)ws(y) is a continuous linear functional
on H, (D). Hence, there is a form 6 in H,, (D) such that (n, w)wsiy)={pn NG
for all 9 in H, (D). Now the Bergman projection P associated to D is a closed
linear mapping of C,’o(D) onfo the closed subspace of C;°o(D) consisting of
holomorphic (n,0) forms that are smooth up to the boundary. Hence, the closed
graph theorem implies that P is continuous in the Fréchet topology of C°o (D).
Therefore, there is a constant C and a positive integer N such that | Po || <
C| @ |ln. We can now finish the proof of Fact 2 by observing that

lollFrser) = < lwlln 6] -n-

SDw/\(;

Furthermore,

= Sup

|0|| -~ = Sup SDd)/\é SDP¢/\5j=Sup|(P¢,w)WS(y)|

< Sup||[Po|s||@ | wscyy < CSup||é|n @ |lwscry

where the supremum is taken over all ¢ in C,°o(D) with ||¢| 5 =1 that are com-
pactly supported in D. Hence, ||o| ws(y) < C||w[|5. Since the constants C and N
are independent of w and Y, we conclude that if ||w||y <o, then w is in W?*(D)
and |o|s < Cllofy.

We shall now show that Lemma 2 is a consequence of the following claim.
Remmert’s proper mapping theorem states that f is a branched cover of some
finite order m. Let F |, F,,...,F,, denote the inverses to f defined locally on D,
minus the image of the branch locus of f.

CLAIM. If 4 is a holomorphic function on D, in C* (D, ), then any symmetric
function of hoFy, hoF,,..., hoF,, extends to be a holomorphic function on D, in
C7(D,).

Let py be a point in D, and let { p;} be a sequence of points in D, converging
to pg such that the sequence {f(p;)} converges to some point gy in bD,. Let
21,22, - .., 2, define holomorphic coordinates near py and let wy,w,,...,w, de-
fine coordinates near gy. Let A(e) denote the polydisc of polyradius e about pg
in the z;,..., 2z, coordinates and let B(e) denote the ball of radius e about g, in
the w;, ..., w, coordinates. The claim can be used exactly as in [4] to show that
the image of A(e) N D, under f contains B(e™*'YN D, for small e > 0. Hence,

f*w/\fTw>§ wAG > Ce?

SA(e)ﬂDl B(em+1)ND,
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for some positive constants C and Q because w vanishes to finite order to gy.
This implies that f*w vanishes to at most finite order at p,.

Proof of the Claim. Because of Newton’s identities (see [2]), it suffices to
prove that L}, hoF} is in C®(D,) whenever # is a holomorphic function in
C*®(D,). Let s be a positive integer. Let g, be a boundary point of D, and let
be a holomorphic (#, 0) form on D, that extends to be holomorphic on a neigh-
borhood of D, and that is non-zero at q,. Let H = (L%, hoF,)Q. The Sobolev
norm || H |5 is dominated by a constant times ||H || where N =N(s,D,) is the
number given by Fact 2. If 5 is an (#,0) form in H, ¢(D,) with ||n| -5 =1, then

| mnal=|] nreanr|<cliralolrml o

D, D,

where Q is chosen large enough so that || f*n|_o <(constant)|n| _n. That
such a Q exists is proved in [2, 5]. Hence, we have shown that | H s <
(constant) || Af*Q | o. But Af*Q is a form in Cy°y(D; ) by Lemma 1. Hence, || H ||;
is finite for each s, and we conclude that (¥§=, A Fy)Qis in Cy o (D,) whenever
h is a holomorphic function in C®(D,). Since Q# 0 near gy, we deduce that
Y¥=1 hoFy extends smoothly to bD, near gy. This completes the proof of the

claim, and hence, Lemma 2 is established. O
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