A TORUS THEOREM FOR REGULAR BRANCHED COVERS OF S?
Peter B. Shalen

A closed, orientable, smooth 3-manifold M is said to be a regular branched
cover of S° if there is a finite group G of orientation-preserving diffeomorphisms
of M such that the orbit space M/ G, regarded as a smooth manifold in the natural
way, is diffeomorphic to S°. The class of 3-manifolds which are regular branched
covers of S? includes, for instance, the closed, orientable 3-manifolds of Heegaard
genus <2. (This follows from the Birman-Hilden theorem [2]. In this case the
group G may be taken to have order 2.)

The proof of the Smith conjecture [1] makes certain hard questions about
general 3-manifolds accessible for the class of regular branched covers of S°. To
take a striking example, if the group G in the above definition is cyclic, then
it follows from the generalized Smith conjecture (see the Introduction to [1]) that
M cannot be simply connected unless it is diffeomorphic to S°. The main result
of this paper is that a strong analogue of the “torus theorem” is true for all
regular branched covers of S°.

Let us review the torus theorem in a language convenient for our purposes.
For the moment let M be a prime 3-manifold. (For the definition of this and
other standard terms in 3-dimensional topology, we refer the reader to [6].) By
an essential singular torus in M we mean a map f:T°— M that induces a
monomorphism of fundamental groups. We shall say that the torus conjecture
holds in M if for every essential singular torus f, f: T> — M is homotopic to a map
g:T? > M such that g(T?) C =, where £ C M is a compact Seifert fibered space
whose boundary components are all incompressible in M. The strongest standard
form of the torus theorem, which was proved by Johannson [7, p. 9]; and by
Jaco and Shalen [8, p. 55] and which refines results proved by Waldhausen [17]
for the bounded case and Feustel [4] in the closed case, asserts that the torus
conjecture holds in every Haken manifold, i.e. in every compact, orientable,
irreducible 3-manifold which contains an incompressible surface. In particular it
holds in every bounded, orientable, irreducible 3-manifold.

Now let M be any closed orientable 3-manifold. We shall say that the torus

conjecture holds in M if it holds in every prime factor of M. We may now state
our

MAIN THEOREM. The torus conjecture holds in every regular branched cover
of S2.

In Section 1 we interpret results recently proved by Scott, Meeks, Yau and
Simon [12], [13], [11], [10] in forms that are useful for our purposes. Scott’s
results turn out to imply that the torus conjecture holds in manifolds covered
by Haken manifolds; we state this in a stronger form, as Theorem 1.2. The Meeks-Yau

Received October 16, 1980.
Michigan Math. J. 28 (1981).

347



348 P. B. SHALEN

equivariant sphere theorem is used (Proposition 1.3) to reduce the study of all
regular branched covers of S® to the study of those having trivial second homotopy

group.

In Section 2 we apply the ideas in the proof of the Smith conjecture to obtain
an interesting property of the fundamental group of a regular branched cover
of S® (Theorem 2.1), to the effect that it has a good many subgroups of finite
index. In Section 3, we show (Theorem 3.1) that in an irreducible 3-manifold
whose fundamental group has this property, the torus conjecture holds. The proof
of 3.1 involves a tower argument, and depends on an-unpublished idea of Jaco’s.
The results described above are assembled at the end of Section 3 to prove the
Main Theorem. '

The standard reference on 3-dimensional topology is Hempel’s book [6], and
we shall take its contents for granted. However, we shall understand manifolds
to have C” structures, and in general submanifolds and maps between manifolds
will be understood to be smooth. (The only exception is in the proof of Theorem
3.1, in which we explicitly state that we are shifting to the PL category.) It follows
that we are really using the smooth analogues of the PL results stated in [6];
but these are all easy corollaries of the PL versions.

We suppress base points whenever it creates no ambiguity to do so. Unlabeled
homomorphisms are understood to be induced by inclusion maps.

I am very much indebted to William Jaco for the idea of a tower argument
of the general type used in the proof of Theorem 3.1. This idea is about eight
or ten years old, but to my knowledge it had not been written down before. I
also want to thank Jaco and Marc Culler for preliminary discussions of the contents
of this paper, and Peter Scott for promptly informing me of his result in [13].

1. BACKGROUND

We begin with a simple criterion for the torus conjecture to hold in a given
closed irreducible 3-manifold.

PROPOSITION 1.1. Let M be a closed orientable, irreducible 3-manifold. The
torus conjecture holds in M if and only if at least one of the following conditions
is satisfied:

(i) M is a Haken manifold;
(1) M is Seifert-fibered;
(iii) M contains no essential singular torus.

Proof. If (i) holds, then the torus conjecture holds in M; this is the standard
torus theorem stated in the introduction. If (ii) holds, the torus conjecture trivially
holds in M; we need only take X = M in the statement, since then X =@. If
(iii) holds, the torus conjecture holds vacuously.

Conversely, if the torus conjecture holds in M, and if (iii) does not hold, then
M contains a (compact) Seifert-fibered manifold £ whose boundary components
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are all incompressible in M. Thus if 9% # @, M contains an incompressible torus
and (i) holds; whereas if 92 = @, then = = M and so (ii) holds.

Our next result will follow from two recent results of G. P. Scott’s, a new
result due to Meeks, Yau, and Simon, and an older result of Waldhausen’s.

THEOREM 1.2. Let M be a closed, orientable, irreducible 3-manifold, and
suppose that some finite-sheeted covering space of M contains an incompressible
surface. Then the torus conjecture holds in M.

Proof. By Proposition 1.1, we need only show that, under the additional
assumption that M contains an essential singular torus, M is either a Seifert
fibered space or a Haken manifold. The main result of [12] asserts (in the closed
case) that if a closed, irreducible, orientable 3-manifold M contains an essential
singular torus, then either M contains an incompressible torus, or m,(#) has a
non-trivial center for some finite-sheeted covering space M of M. In the first case,
M is a Haken manifold. In the second case, we invoke the hypothesis that some
other finite-sheeted covering space of M, say M’, is a Haken manifold. Let A"
be a finite-sheeted covering space of M which covers both M and M’.

Since M’ contains an incompressible surface, so does M. It is proved in [10]
that any covering space of an orientable, irreducible 3-manifold is irreducible.
Thus M” is irreducible, and is therefore a Haken manifold. On the other hand,
w, (M) is infinite since M contains an essential singular torus; and since M is
irreducible it follows [6, Lemma 9.4] that (M) is torsion-free. Hence 1, (#"),
as well as m, (M), has non-trivial center. The main theorem of [16] asserts that
a Haken manifold whose fundamental group has non-trivial center is a Seifert
fibered space. Thus M” is Seifert-fibered. Finally, it is shown in [13] that any
compact, irreducible, orientable 3-manifold which has infinite fundamental group
and is covered by a Seifert fibered space is Seifert-fibered. Thus M is a Seifert
fibered space.

The final result of this section will be deduced from the Meeks-Yau equivariant
sphere theorem.

PROPOSITION 1.3. Let M be a regular branched cover of S°. Then M may
be expressed as a connected sum M, # ... # M,, where each M, is a regular branched
cover of S°, and for each i either w,(M,) = Z or m,(M,) = 0.

(If the Poincaré conjecture is true, it is easy to see that the M; may be taken
to be the prime factors of M.)

Proof of 1.3. If w,(M) = 0 or w,(M) = Z the assertion is trivial. If =, (M) # 0
and w (M) # Z, we shall show that M is a connected sum N, # ... # N,, where
each N; is a regular branched cover of S’ and at least two of the N, are
non-simply-connected. Then w, (M) = 7, (N,) * ... * w,(V,), and by a standard corol-
lary of Grushko’s theorem [9, p. 234, Example 6.1], each m,(N;) has a smaller
minimal number of generators than , (M). The proposition will therefore follow
by induction on the minimal number of generators of , (M).

By hypothesis there is a finite group G of orientation-preserving diffeomorphisms
of M such that M/ G =~ S°. According to the equivariant sphere theorem [11, Sections
7 and 8], if a finite group G acts on a 3-manifold M with m,(M) # 0, there is
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a finite, non-empty collection of disjoint, smoothly embedded 2-spheres S,, ..., S,
in M, such that no S; is homotopically trivial, and such that the set S, U ... U S,
is invariant under G.

We claim that the S; may be chosen so that for each g € G and each S; such
that gS; = S;, g|S; is an orientation-preserving diffeomorphism of S;. In fact, let
T be a tubular neighborhood of S; U ... U S, which is invariant under G. Then
dT is invariant under G and the components of 97" are 2-spheres. But g|7T is
an orientation-preserving diffeomorphism of 7 (since g preserves orientation on
M) and hence g preserves orientation on any component of a7 which is invariant
under g. Thus the claim is established by replacing S, ..., S, by the components
of aT.

Now set S=S, U...US,, let p:M—>M/G denote the orbit map, and set
S = p(S). Each component of S is the quotient of a 2-sphere by a group of
orientation-preserving diffeomorphisms, and is therefore a 2-sphere. Since
M/G = S?, each component of S° — S is the interior of a 3-sphere-with-holes.

Let C be any component of the manifold obtained by splitting M along S,
and let G, be the largest subgroup of G that leaves C invariant. Then C= C/G,
is a 3-sphere-with-holes. Hence if we let C* denote the manifold obtained from
C by attaching a 3-ball to each component of dC, the action of G, on C extends
to a smooth action of G, on C* for which the orbit space is a 3-sphere. (The
smoothness of the extended action depends on the fact that every finite group
action on S” is conjugate to a linear action, and hence extends to a smooth action
on the 3-ball.) This shows that C* is a regular branched covering of S°.

Now let C range over all components of the manifold obtained by splitting
M at S. We can describe M as the connected sum of the corresponding 3-manifolds
C*, together with a finite number of copies of S® X S'. The manifold S x S*
is easily seen to be a regular branched covering of S°. This gives the decomposition
N, # ... # N,; it remains only to check that at least two of the N, are non-simply-con-
nected.

Consider first the case in which every component S; of S separates M. In this
case there are at least two components C,, C, of M — S such that aC; is a single
sphere S, . Since by construction S; and S;, are homotopically non-trivial, C, and
C, are non-simply-connected. It follows that in this case two of the N, are
non-simply-connected. Now consider the case in which some S; fails to separate
M. In this case some N, is a copy of S ! x 82 If all the remaining N; were simply
connected, we should have m, (M) = Z; but we have assumed that this is not the
case.

2. FUNDAMENTAL GROUPS OF REGULAR BRANCHED COVERS

Recall that a group G is residually finite if the intersection of all finite-index
subgroups of G is the trivial subgroup. It is an unpublished result of W. Thurston’s
that the fundamental group of any Haken manifold is residually finite.

Definition. A group G is half-way residually finite if either (a) G is finite,
or (b) for every positive integer n, G has a subgroup of finite index =n.
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The proof of the following result is the goal of this section.

THEOREM 2.1. The fundamental group of any regular branched cover of S®
is half-way residually finite.

The heart of the proof of Theorem 2 is contained in the proof of Lemma 2.3
below, which closely follows the proof of the Smith conjecture [1]. The following
result is a preliminary to Lemmas 2.3 and 2.4. (The assumption of prime period
in 2.2 and 2.3 is only for convenience.)

LEMMA 2.2. Let M be a closed, orientable 3-manifold, and let h be an
orientation-preserving periodic diffeomorphism of M whose period is a prime and
whose fixed-point set is a smoothly embedded 1-sphere in M. Set M = M/ (h), and
let p: M — M denote the orbit map. Then p, :w, (M) — ,(M) is an epimorphism.

Proof. Let k denote the fixed-point set of 2 and set 2 = p (k). Since the period
L of h is prime, (&) acts without fixed points on M — k. Hence M — % is a regular
(unbranched) covering space of M — £ with covering projection p |M — & and cover-
ing group (h|M — k) = Z,. Hence N =im ((p|M — k), :w, (M — k) — =, (M — E)) is
normal in =, (M — k), and =, (M — k)/N =Z,. But it is easy to see that & has
a tubular neighborhood 7' in M, invariant under h, which may be identified with
D? X S* in such a way that A|T is a X 1, where o is a rotation of D? having
order I This implies that if p is a meridian of % in M, i.e. a simple closed curve
bounding a disc that meets % transversally in a single point, then [pn] € , (M — k)
determines a generator of =, (M — k)/N. Since , (M) is obtained from , (M — %)
by adding the relation [p] = 1, we may now conclude that

(pIM—FR)y:m, (M —k)— m, (M)

is surjective, and hence that p, : 7, (M) — , (M) is surjective.

The notation of the following lemma is chosen to be consistent with that of
[1], not with that of the rest of this paper.

LEMMA 2.3. Let M be a closed 3-manifold which is not a 3-sphere. Let h
be an orientation-preserving periodic diffeomorphism of M having prime period
l, and suppose that the fixed-point set of h is a smoothly embedded 1-sphere £ C M.
Suppose that (M — k) /(h) is an irreducible 3-manifold. Then w,(M) has a proper
subgroup of finite index.

Proof. Let M = M/ (h), let p: M — M denote the orbit map, and set & = p(%).
In the terminology of [5], we regard % as a knot (=1-component link) in M. By
the discussion in Section 2 of [5], % is a connected sum of prime knots %,, ..., 2,
in closed 3-manifolds M,, ..., M,. We shall prove the lemma by induction on r.
We first suppose that r = 1, i.e., that k is prime.

We may assume that H, (M) = 0, since otherwise , (/) admits a homomorphism
onto a finite cyclic group and the conclusion is immediate. By Lemma 2.2 with
M, M’ replaced by M, M, it follows that H,(M) =0 also. Let N be a tubular
neighborhood of £ in M. We distinguish three cases.

Case 1. There is a closed, orientable, incompressible surface in M — k which
is not isotopic to ON in M — k. In this case the hypotheses of Theorem 1 of [5]
are satisfied, and hence M contains either an orientable, incompressible surface
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of genus >0 or a non-separating 2-sphere. In the latter case, w, (M) admits a
homomorphism on to Z and our assumption H, (M) = 0 is contradicted. Now suppose
that M contains an orientable, incompressible surface of genus >0. Then some
prime factor M, of M is a Haken manifold. By the theorem of Thurston’s quoted
at the beginning of this section, m, (Mo) is residually finite. Moreover, M, cannot
be simply connected, and so u, (M,) has a proper subgroup of finite index. Since
m,(M,) is a free factor of =, (M), the latter group also has a proper subgroup
of finite index.

Case II. M — N is not Seifert-fibered, and every incompressible surfacein M — k
ts tsotopic to oN in M — k. Then we apply Proposition 5 of [14] to the compact
manifold M — N. This gives a diffeomorphism of M — k with H®/T', where T is
a torsion-free subgroup of PSL,(A), A C C is the ring of algebraic integers in
some number field, and I is discrete as a subgroup of PSL, (C). (It is understood
that PSL, (C) acts in the standard way on the hyperbolic 3-space H?, cf. [14, Section
2]. The proof of Proposition 1 of [14] shows that m, (#7) will have a non-trivial
representation in PSL,(A/.#), for some maximal ideal .# of A, provided that
(a) N is incompressible in M — &, and (b) w,(M — k) is not solvable. But the
negation of (a) would imply, with the irreducibility of M — &, that M — Nis a
solid torus, a contradiction since M — N is not Seifert-fibered. We get a similar
contradiction from the negation of (b) by the virtue of the result due to Evans
and Moser [3] that every compact irreducible 3-manifold having non-empty
boundary and solvable fundamental group is Seifert-fibered.

Thus w,(M) has'a non-trivial representation in PSL,(A/.#’) for some prime
ideal .# of A. We claim that the field A/.# is finite. Note that .# # 0, since
A cannot be a field, and recall that A is a finitely generated abelian group. Choose
x € #, x#0. Since .# is a prime ideal, the map from A to .# defined by a — xa
is injective; hence .# C A is a free abelian group having at least (and hence
exactly) the same rank as A. This proves the claim. It now follows that the kernel
of the nontrivial representation of =, (M) in PSL,(A/.#) is a proper subgroup
of finite index in =, ().

Case III. M — N is Seifert-fibered. Since H, (M) = 0, the proof of Proposition
2 of [14] shows that M — N must be Seifert-fibered over the disc; and that if
M — N has more than one singular fiber than , (#) has a non-trivial representation
in PSL,(A/.#), where A is the ring of integers in some number field and .#
is a maximal ideal of A. It then follows precisely as in Case II that , (#) has
a proper subgroup of finite index. There remains the possibility that M — N is
Seifert-fibered over a disc with one singular fiber. Then M — N is a solid torus,
and hence so is its finite-sheeted covering M — p ™' (N). But p " (N) is also a solid
torus, since it is a tubular neighborhood of %Z in M. Thus M is a union of two
solid tori with a common boundary, and is therefore either a lens space or a
copy of S? X S'. By hypothesis M is not a 3-sphere. Hence m, (#) is a non-trivial
cyclic group, and the conclusion of the lemma is immediate. This completes the
proof for r = 1.

Finally, suppose that r > 1. Then %k is a connected sum of knots %,, %, in
3-manifolds M,, M,, where &; (i = 1,2) is a connected sum of fewer than r prime
knots. There is a 2-sphere S C M meeting % transversally in two points, and dividing
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M into compact submanifolds A, and A,, such that M, is obtained from A; by
attaching a 3-ball B, to its boundary, and k; is the union of 2 N A; with an unknotted
arc in B,. It is clear that S = p~*(S) is a 2-sphere in M, separating M into the
compact submanifolds 4, = p~*(4,) ({ = 1,2), each invariant under A. If we construct
a closed manifold M, by attaching a ball B; to dA,, it is easy to extend h|A,
to a diffeomorphism %; of M, which is periodic with period /. By the induction
hypothesis, for each i(=1,2), either M, is a 3-sphere or 1, (M,) has a proper subgroup
of finite index. But M = M, # M,; hence one of the M, fails to be a 3-sphere,
and so 1, (M) = G, * G,, where at least one of the G; has a proper subgroup of
finite index. Hence so does 1, (/).

LEMMA 2.4. Let M be a closed, orientable 3-manifold such that w,(M) =0
but w, (M) # 1. Suppose that M admits a non-trivial orientation-preserving periodic

diffeomorphism with nonempty fixed-point set. Then w,(M) has a proper subgroup
of finite index.

Proof. we may assume that H,(M) =0, since otherwise w,(M) admits a
homomorphism on to a finite cyclic group. Thus M is a homology 3-sphere.

Let 2 be a non-trivial periodic diffeomorphism of M with fixed point & # @.
We may assume that the period ! of A is prime. The fixed-point set of an
orientation-preserving periodic diffeomorphism of a smooth manifold is always
a smooth submanifold of even codimension. Since k& is non-empty and # M, it
must be 1-dimensional. But a theorem of P. A. Smith’s [15, p. 366, Theorem
12.1] asserts that the fixed-point set of a periodic homeomorphism of a homology
sphere is a homology sphere. Hence % is a smoothly embedded 1-sphere in M.
Let M = M/ (h), and let p: M — M denote the orbit map. Since M is a homology
3-sphere, Lemma 2.2 implies that M is also a homology 3-sphere.

We claim that 7, (M — k) = 0. If this is not the case, then by the Sphere Theorem
there is a non-contractible embedded 2-sphere S C M — %. Since M is a homology
3-sphere, S bounds a compact, acyclic 3-manifold A C M — k. Since [ is prime,
(h) acts without fixed points on M — %; hence M — % is a regular covering space
of M — k. Let N =im((p|M — k), :w,(M — k) — w, (M — %)). Then N is normal and
w, (M — k)/N = Z,. Since A is acyclic and =, (# — %)/ N is abelian, we must have
im (m,(A) — =, (M — k)) C N; hence there are disjoint submanifolds A4,, ..., 4, of
M — Ek, each of which is projected homeomorphically onto A by p. If w,(4) # 1,
then both A, and M — A, D A, are non-simply-connected; hence the 2-sphere
S, = 34, is non-contractible in M, contradicting the hypothesis m, (#) = 0. On the
other hand, if m,(4) = 1, then S is contractible in M — %, and the choice of S
is contradicted. This proves our claim.

It now follows by Kneser’s theorem [6, Lemma 3.14], that M — % is the connected
sum of an irreducible 3-manifold with a homotopy 3-sphere. In other words, there
is a compact, contractible 3-manifold B C M — £k such that if M’ denotes the manifold
obtained from M by removing B and attaching a 3-ball along 0B, M’ — Eisirreducible.
Now let M’ denote the manifold obtained from M by replacing each component
of p~'(B) by a 3-ball. There is a diffeomorphism A’ of M’, having order ! and
fixed-point set &, such that (M’ — k)/h’ = M’ — k. Applying Lemma 2.3, with M’,
k, and k' in place of M, k& and h, we conclude that m, (M) =~ «,(M’) has a proper
subgroup of finite index.
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COROLLARY 2.5. Let M be a regular branched covering of S® with w, (M) # 1.
Then w,(M) has a proper subgroup of finite index.

Proof. By Proposition 1.3, w,(M) is a free product H, * ... * H,, where each
H; is either infinite cyclic or is the fundamental group of a regular branched
cover of S° with non-trivial second homotopy group. Since m, (M) % 1 we may
assume that H, # 1. It is enough to show that H, has a proper subgroup of finite
index. If H, = Z, this is obvious. How. suppose that H, = w,(M,), where M, is
a regular branched cover of S® and m,(M,) # 0. There is a finite group G of ori-
entation-preserving diffeomorphisms of M, such that M, /G = S, Since =, (M) # 1,
we have M # S° and hence G # 1. If G acted on M, without fixed points, we
would have G = w,(S®) = 1, a contradiction. Hence some non-trivial element of
G has non-empty fixed-point set, and our assertion:follows by applying Lemma
2.4 to M,.

Recall that a subgroup of a group G is said to be characteristic if it is invariant
under all automorphisms of G.

LEMMA 2.6. Let M be a regular branched cover of S°. Then any (unbranched)
covering space of M corresponding to a characteristic subgroup of finite index in
w, (M) is also a regular branched cover of S°.

Proof. Suppose that M/G = S®, where G is a finite group of diffeomorphisms
of M. Let m € M be a basepoint, let X C m, (M,p) be a characteristic subgroup
of finite index, and let (M,7) denote the corresponding based covering space. Let
p:M — M denote the covering projection, and let ¢: M — M/G denote the orbit
map. Let G denote the group of all diffeomorphisms g of M such that pg = gp
for some g € G. Since for a given g € G, gp: M — M has at most finitely many
lifts to the finite-sheeted covering space M, G is a finite group. Clearly gpg = gp
for every @ € G; i.e., G acts on each fiber of the map gp.

We claim that the action of G on each fiber of gp is transitive. Let @, 6 € M
be such that gp(a) = gp(b). Then some g € G maps a = p(@) onto b = p(b). Let
h:M— M be a diffeomorphism homotopic to g and such that A(m) = m. The
automorphism £ of w, (M,m) must leave the characteristic subgroup X invariant;
hence there is a diffeomorphism % of M such that pi = Ap. By the covering homotopy
property, the lift A:M— M of hp:M— M is homotopic to a lift g,:M— M of
gp:M— M. Clearly g, € G and g, (@) € p~" (b). But since X is in particular normal
in 1, (M), M is a regular covering, and so some covering transformation g, maps
&.(@) to b. But the covering transformations of M clearly belong to G. Hence
& = g,8, € G; and since g(@) = b, transitivity is established.

Thus gp maps M onto M/G = S°, and two points of M have the same image
under gp if and only if they lie in the same orbit of G. It follows that M/G =~ S°,
and hence that M is a regular branched cover of S°.

Proof of Theorem 2.1. Let M be a regular branched cover of S°. We must show
that if the indices of finite-index subgroups of =, (M) are bounded above, then
7, (M) is finite. Since w, (M) is finitely generated, it has only finitely many subgroups
of a given index n. (It has only finitely many representations in the symmetric
group on n letters.) Hence our boundedness assumption implies that w, (M) has
only finitely many subgroups of finite index; the intersection of all of them is
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a characteristic subgroup X of finite index in w, (M). Obviously X has no proper
subgroups of finite index.

By Lemma 2.6, X is the fundamental group of a regular branched cover M
of S°. If X were non-trivial, then by Corollary 2.5, X would have a proper subgroup
of finite index. Hence X = 1, and , (M) is finite, as required. ‘

3. TOWERS

We shall prove the following result; the proof of the Main Theorem stated
in the introduction will then be very easy.

THEOREM 3.1. Let M be a closed, orientable, irreducible 3-manifold whose
fundamental group is half-way residually finite. Then the torus conjecture holds
in M.

If K and L are finite simplicial complexes, K finite, and f: K — L is a simplicial
map, we define the complexity of f, denoted c(f), to be the number of unordered
pairs of (distinct) simplices o, o’ of K such that f(c) = f(¢’).

LEMMA 3.2. (Stallings). Let f: K— L be a simplicial map of complexes (K
finite). Let L be a non-trivial covering space of L (with the induced triangulation)
and f: K — L a lifting. If w,(f(K)) = w,(L) is surjective, then c(f) < c(f).

N Proof. If p:L— L denotes the covering projection then p is simplicial and
pf = f. From the definition of complexity it is clear that ¢(f) = ¢(f) and that
equality can hold only if p| f(K) is 1 — 1. But this implies that

(P F(E).: F(B)— f(K)

is an i§omorphism, and hence, by the surjectivity of w,(f(K))— m, (=L)L that
Py (L)— w,(L) is surjective; and this contradicts the hypothesis that L is a
non-trivial covering space.

LEMMA 3.3. Let G be a half-way residually finite group whose commutator
quotient is finite. Then every proper abelian subgroup of G is contained in a proper
subgroup of G which has finite index.

Proof. If G is finite the assertion is trivial. There remains the case in which
G has subgroups of arbitrarily large finite index. Then if N denotes the intersection
of all finite-index subgroups of G, N has infinite index in G. But N is clearly
normal, and so G/N is an infinite group; it is non-abelian since G is assumed
to have finite commutator quotient.

Let @ and b be elements of G/N such that [G,b] = aba ‘b ' # 1. Choose
representatives a and b of @ and b. Then [a,b] € G does not lie in N, and so
there is a subgroup H of finite index in G such that [a,b] & H. But any finite-index
subgroup H of a group G contains a normal subgroup H* of G which is also
of finite index in G. (We may define H* to be the kernel of the natural permutation
representation of G on the right cosets of Hin G.) Now G/H™ is clearly non-abelian,
but p(A) C G/H*, where p:G— G/H™ is the natural homorphism, is abelian.



356 P. B. SHALEN

Hence p(A) is a proper subgroup of the finite group G/H*, and so p~ ' (p(4))
is a proper subgroup of finite index in G. It obviously contains A.

LEMMA 3.4. A finite-index subgroup of a half-way residually finite group
is half-way residually finite.

Proof. Let H have finite index in G. If G is finite, so is H. Now suppose
that G has subgroups of arbitrarily large finite index. Then given n > 0, G has
a subgroup G, of index =n |G:H|; and H, = G, N H has finite index =n |G: H|
in G, and hence has finite index =#n in H.

Proof of Theorem 3.1. If there is no essential singular torus in M, then the
torus theorem automatically holds in M. If there is an essential singular torus
f in M, we shall show that some finite-sheeted (unbranched) covering space of

M contains an incompressible surface; the assertion will then follow from Theorem
1.2.

After modifying f by a homotopy, we may assume that it is simplicial with
respect to some triangulations of 77 and M. The rest of this proof is to be interpreted
in the PL category. If M is a finite-sheeted covering space of M, and f:T> — M
is a lifting of £, then fis simplicial with respect to the induced triangulation
of M, and thus has a well-defined complexity. Among all pairs (#, f), where M
is a finite-sheeted covering space of M and fis a’lifting of f to M, choose one
for which c¢(f) takes its smallest possible value; call this minimizing pair (3, f,).
We shall complete the proof by showing that M, contains an incompressible surface.

If H, (M,) is infinite, then M, contains an incompressible surface by [6, Lemma
6.6]. We may therefore assume that H, (M) is finite. On the other hand, m, (M)
is half—way residually finite by Lemma 3.4. Thus G = =, (M,) satisfies the hypoth-
esis of Lemma 3.3. The abelian subgroup Fox (5, (T?)) of w, (M,) is proper, since
otherwise we would have m, (M ) =Z X Z, and H, (M,) would be infinite. Hence by
3.3, fox(w,(T?)) is contained in a finite-index subgroup of m,(#,), i.e., f,
lifts to a map f,:T°— M,, where M, is finite-sheeted covering space of M,. If
1w, (fo (T?)) = =, (M,) were surjective, then by Lemma 3.2, f, would have smaller
complexity than f,, contradicting the minimality of c¢( f,). This shows that f,(T?)
does not carry m, (M,) (i.e., w,( f, (T*)) — =, (M,) is not surjective).

Thus if R is a regular neighborhood of f,(T?) in M,, R does not carry m, (M,).
Ifg: T? — M, is any map homotopic to f,, and Nis any compact, connected 3-manifold
such that g(T?) C N and such that N does not carry m,(#,), let ¢(IN) denote
the sum of the squares of the genera of the components of dN. Among all pairs
(g,N) with these properties, choose one for which g(N) is as small as possible;
call it (g,,N,). We claim that some component of dN, is an incompressible surface
in M,. This will show that M, is a Haken manifold and will therefore prove
the theorem.

First we show that not every component of dN, is a 2-sphere. Indeed, since
M, is irreducible, each 2-sphere in dN, bounds a ball B which either contains
N, or is disjoint from Nj,. If some B contains N,, then g,(7?) C B, a contradiction
since g, is an essential singular torus. If every component of 4N, bounds a ball
disjoint from N, then m, (N,) — , (M) is surjective, and again we have a contradic-
tion.
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Thus some component T' of dN, has positive genus. We shall show that any
such T is incompressible. If some T were compressible we could find a disc D C M,
with aD non-contractible in a component T’ of dN,, such that D N aN, =@ or
D C N,. In the first case, if N, is a regular neighborhood of N, U D, then N,
is a compact 3-manifold neighborhood of g,(T?), and =, (N,) — m,(M,) cannot be
surjective since ir,(N,) — , (M,) is not; but we have g(N,) < g(N,), since N,
is obtained from N, by replacing 7" by a surface of smaller genus or two surfaces
whose positive genera add up to the genus of 7”. This contradicts the minimality
of g(N,).

Now suppose that D C N,. Then using the fact that g, is an essential singular
torus, it is easy to homotope g, within N, to a map g, such that g,(T%) N D = Q.
(In fact, we may assume that g, : 7> — N, is tranversal to D; and then each component
of g5" (D) must bound a disc in 77 since g, : 7, (T*) = 7, (N,) is a monomorphism.
This makes it easy to replace g, by an essential singular torus g, such that
gh:T?— N, is transversal to D and g, ~'(D) has fewer components than gg ' (D).
By repeating this process we obtain the map g,.) Let H be a regular neighbor-
hood of D in N,, disjoint from g,(7T?), and let N, denote the component of
N, — H containing g, (T?). Then N, C N cannot carry , (M,); and as above one
sees that g(N,) < q(NN,). Again we have a contradiction to the minimality of g (N,).

Proof of the Main Theorem. Let M be a regular branched covering of S2.
By Proposition 1.3, we may write M = M, # ... # M,, where each M, is a regular
branched cover of S® and for each i either w,(M,) =2 or w,(M,) = 0. By the
Kneser-Milnor prime decomposition theorem [6, Theorem 3.21], each prime factor
of M is a prime factor of some M,. Hence by definition (see introduction) the
torus conjecture will hold in M if it holds in each M;; thus we may assume that
either =, (M) = Z or w, (M) = 0.

If w, (M) = Z, then each prime factor of M has cyclic fundamental group. Hence
there is no singular torus in any prime factor of M, and the torus conjecture
holds trivially. Now suppose that m,(3M) = 0. Then every 2-sphere in M bounds
a compact, simply-connected submanifold, and so M has at most one non-simply
connected prime factor. Again, in the simply-connected prime factors, the torus
conjecture holds trivially. If M has a non-simply-connected prime factor M, then
M, is homotopy equivalent to M. In particular =, (M,) = m, (M). On the other hand,
o (M,) = 7, (M) = 0, so that M,# S? X S, and hence M, is irreducible. But since
M is a regular branched covering of S, Theorem 2.1 implies that , (M,) = =, (M)
is half-way residually finite. By Theorem 3.1, the torus conjecture holds in M.
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