Z, SURGERY THEORY

Karl Heinz Dovermann

0. NOTATION AND RESULTS

We want to give a Z, surgery theory in a particularly interesting special case,
namely allowing fixed point sets up to the middle dimension. This is an extension
of Ted Petrie’s surgery theory [20] for involutions, whose gap hypothesis would
assume for a Z, manifold X and each component X° of X*2 that dim X°* < 1/2 dim X.
We shall point out later on in which sense our obstructions differ essentially
from the obstructions in Petrie’s set-up and the known surgery theory.

The understanding of surgery obstruction theory is a major step in classifying
G-manifolds up to diffeomorphism. Some authors [12], [14], [15] have attacked
this classification problem using surgery methods in the set-up of the classical
work of Kervaire and Milnor [13]. P. Loffler [15] has also obtained results in
transformation groups applying obstruction theory to (much less general) surgery
problems of the type studied here. Other authors have approached the classification
of semilinear actions on homotopy spheres via the study of knot invariants {22],
[23] and [24]. In [24], the reader can find a more complete list of references
for this problem. We shall study classification problems in a much more general
set-up in a later paper by constructing a long exact sequence [8]. Surgery obstruction
theory as treated here is a key tool in computing the obstruction group. In thls
paper we use T. Petrie’s G-surgery theory as developed in [18], [19].

One of the crucial problems is doing surgery while leaving a submanifold (here
the fixed point set) unchanged. To show that we can do this, we apply the
Atiyah-Singer signature theorem in section 2, and in section 4 we use direct
computations.

The algebra we use here reflects our geometric situation. We introduce and
compute new Wall groups for the group Z,, which, in a strong sense, are in-between
the classical Wall groups {25] and the Witt groups [1]. I should point out that
a less general treatment of section 2 appeared in [6].

Notation. All manifolds will be smooth oriented compact Z,-manifolds, thus
the fact is included that the components of the fixed point set are oriented (for
an orientable manifold with Z, action, it does not follow that the fixed point
set is orientable [3]). All maps will be equivariant. Let X and Y be Z, manifolds
and f: X — Y. Then f is a pseudoequivalence if f is a homotopy equivalence and
equivariant.

Definition 0.1. f:X — Y is an h-normal map if f is of degree 1 and we have
a given Z, bundle v over Y together with a given trivialization C: .7 X ® ¢ f*n ®e.
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e is a trivial Z, bundle and if 6X and dY are not empty, we assume that
df:0X— dY is a pseudo equivalence. In our notation, we shall usually suppress

m and C. Furthermore, we assume that w,(Y,) is abelian for every component
Y, of Y*z.
For A-normal maps we want to answer the Z, surgery problem: When can

we do Z, surgery on (X, f) to obtain (X', f’) such that f’ is a pseudo equivalence?
If such an (X', f’) exists, we say that the surgery problem is solvable.

The process of G surgery is described in [19] and we shall give the details
for G = Z, in section 1. In our theorems we shall assume that there exists exactly
one component X° of X?2 such that dim X°* = 1/2 dim X. Let us assume for the
introduction that X°® = X“2. In section 2 we give a complete answer for the Z,
surgery problem in the 4n-dimensional situation. Here is a simplified version,
which has been given already in [6]:

Let f:X— Y be an h normal map, dim Y = 4n, n = 3 and dim Y?2 = 2n. Let
Y be simply connected and d = deg(f*2:X?%2— Y?2). Then the surgery problem
is solvable if and only if

(@) oz,(f) =0,
(ii) sign(Z,,X) — sign(Z,,Y) =0,
(iii) (d® — 1) sign(T,Y) = 0.
Here o, (f) is the obstruction to converting f*2: X*2— Y?2 by surgery into
a Z, homology equivalence as required by Smith theory, and T is the generator
of Z,. If we assume that dim Y°* < 1/2 dim Y and Z, acts orientation preserving,

then it is known that the surgery problem is solvable if and only if obstructions
(i) and (ii) vanish [20].

Assume for a moment that dim Y = 2m and dim Y° =< m. If Y*2is not connected
then suppose the inequality dim Y®= m holds for each component Y* of Y*2.
Furthermore assume:

Condition P. f*2:X?*2— Y?2 induces a Z, homology equivalence and
K.(f2) = Ker(f,: H(XZ)— H(Y,Z)) =0 for i<m.

Denote Z[Z,] by A. Then K = K, (f,Z) is a free A-module, as [21] implies
that K is a projective A-module and K,(A) = 0. Assuming one component of the
fixed point set has dimension m impliesthat 7'[Y] = (—1)" [Y], where [ ] denotes
the fundamental class. This gives rise to a homomorphism

w:2Z,— {£1} by T+~ (1™

We obtain a conjugation ~:A — A defined by a + bT ~ a + (—1)™bT.

Definition. A(—1)™ quasi Hermitian form (K,\,p,T) is a free A-module with
Z, structure given by the involution 7, together with a map A\: K X K— Z such
that

(i) for x € K fixed, y = A(x,y) is a Z homomorphism,
(i) Ax,y) = (—=1)"N(3,%) = (—1D)"NTx,Ty)x,y€ K)
Furthermore, we have a map w: K — Z/{1 — (—1)™1} such that
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(iii) Ax,x) = p(x) + (=)™ p(x) (x € K)

(iv) plx+y) = pnlx) + p(y) + Axy)  (y) € K

) nla-x)=a®n(x) (x€ K,a €2)
(vi) p(Tx) = plx) (x € K)

If we assume condition P, then K, (f,Z) together with the intersection and
self-intersection numbers and T induced by the involution give rise to a (—1)™
quasi Hermitian form. Furthermore, A\: K — Hom, (K,Z) is a A-module isomor-
phism. Here (T'¢)(y) = (—1)" (7). Following Wall [27] we define furthermore
X(x,y) = Mx,y)1 + A (x,Ty)T € A.Then A\ : K— Hom, (K,A)is a A-module isomor-
phism. If \(x,Tx) = 0(2) for x € K (for example if dim Y° <1/2 dim Y) we also
havethe formi: K— A/{x — (~1)x",x € A}and (K \,ji)defines a (—1)™ Hermitian
form which represents an element in L, (A,»). The important—and sometimes
helpful—fact in our situation is that A(x,7x) need not be even. The type of \(-,T )
[17] is not even an invariant of the surgery problem. The type of a bilinear
form (,) tells whether (x,x) is even for all x or not. Changing the type will
be essential in the solution of the 4n + 2 dimensional case. This is done as follows:

Example 0.2.

X Y

X =Y =_8? and T(x,y,2) = (x,y,-2) so the drawn equator is fixed under the action
of Z,. Doing surgery in the above picture on two copies of S°® X D* which are
interchanged by the involution (one is marked @, the other O) changes the type
of A(-,7):K X K— Z. In the beginning, K is trivial; after the surgery step
K = A @ A and there exists x such that \ (x,7%) = 1. This picture naturally general-
izes to higher dimensions. As above, use Y with a fixed point component in the
middle dimension and do surgery on the boundary of a fiber of the normal bundle
of this fixed point component (slightly changed by an isotopy such that it does
not intersect its image under the involution).

Definition 0.3. (K,A,p,T) ~ 0 if there exists a A free submodule N C K such
that | y.y =0, |y =0, and N has a basis extending to a basis of K, defining
thereby a basis of K/N, and K/N — Hom, (N,A) induced by X is an isomorphism.
Then N is called a subkernel.

Direct sum, together with this equivalence relation, gives rise to new Wall

groups W, (A) for m even and W,(A) for m odd. In Theorems 2.3 and 4.3 we
compute that

Wo(A)=ZDZ and W,(A)=2Z2,92Z,
Furthermore, we give invariants which determine the equivalence class of (K,A,w.,T).

It should be pointed out that our computation of W,(A) requires stabilization.
Let us assume Condition P and (K,\,n,T) ~ 0. This does not imply that x € N
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can be represented by a sphere which does not intersect the fixed point set, and
which we can use to kill x (and T%). In the 4n-dimensional case, the condition
(d®> — 1) sign (T\Y) = 0 enables us to find N such that x € N does not intersect
the fixed point set. In the 4n + 2 dimensional case we prove that we can always
find N not intersecting the fixed point set, but this is an essential use of stabilization,
as in example 0.2. This is of particular interest because of the following.

LEMMA 0.4. Assume f:X*"— Y®" is an h map and satisfies Condition P.
Furthermore, (K\,1,T) ~ O with subkernel N. For every component o € w,(X"2)
with fundamental class [a] we have A\([a],N) = 0. Then we can solve the surgery
problem.

The proof is obvious, but we shall supply the proof at the end of section 1.

Let us assume that we can do surgery on f:X*"— Y?" to obtain f/ : X' > Y
and that f’ satisfies Condition P. Then we define
r(f) =rk,K,(f',Z)(mod 2), (well-defined by 3.1);
0 if A(xTx)=0(mod2) forall x€ K, (f',Z)
{ 1 otherwise

t(f') =

Let i:(X’)%*2— X’ be the inclusion and recall that we have a canonical splitting
H"(X'Z,)=H"(Y'2Z2,)® K" (f',Z,). Then

. .k _
0 if i gmpzy=0

1 otherwise.

I(f’)={

Let o = O0denote that the surgery problem is solvable. Then the following diagram
gives all the relations:

0.5

NG 7,

bo11)

Ny
N g
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1) by 3.1 2) by 4. and 6.
3) by example 3.3. iii 4) by Lemma 3.4
5) by example 3.3. iii 6) by 9. and 12.
7) by 4. and 9. 8) by example 0.2
9) by 3.4.1) [2] 10) by 3.4. iii
11) by example 0.2 12) then (K,\,.) represents an element
in L,,, (A,»)

10) follows in case we have at most one component of the fixed point set in
the middle dimension.

It should be pointed out that I and ¢ are not surgery invariants.

A simplified version of our main theorem in the 4n + 2 dimensional case—again
assuming Y?2 is connected, dim Y?2 = 2n + 1, and n = 2—is: The surgery problem
[: X"+ 5 Y*"*? is solvable if and only if

@ oz,(f) =0,
@ r(f) =0,
(iii) ¢(f) = 0.

Here c(f) is the Arf invariant of f after forgetting the Z, action and r(f)
is defined only if ¢,,(f) = 0. 0,,(f) is again the obstruction to converting %
into a mod 2 homology equivalence.

Here is an application. Assume that f’: X’ — Y*"*? satisfies Condition P and
t(f’) = 0. Then the Z, Arf invariant ¢, (f’) is defined (this is the invariant which
determines the class of (K, ,,(f,Z)\,i) in L, ., (A,—1)). We shall show that
¢, is not a Z, surgery invariant (see 4.13). This example uses surgery steps which
are not admissible in the setting of [4]. The bordism given by surgery is not
isovariant. This gives an essential difference in the G-surgery theory of [4] and
[19].

One of the purposes of this research has been to investigate the necessity
of the gap hypothesis in Ted Petrie’s G-surgery theory. The answer is the following.
Our approach holds only for G = Z, since the proofs are based on specific properties
of Z,. Already for Z, and with the least possible weakening of the gap hypothesis,
there do occur new surgery obstructions. Thus I believe that it is not possible
to weaken the gap hypothesis in general. Even the assumptions that X*2 and
Y?2 are homotopy spheres and deg f%2 = 1 have not been very useful to the study
of the surgery problem [14]. Only very strong assumptions such as the isovariance
of f are successful. Thus I consider the gap hypothesis unavoidable if we want
to investigate a wide class of normal maps.

I wish to thank Ted Petrie for suggesting this problem to me and for many
long discussions which helped me solve this problem, and Valdis Vijums for some
helpful suggestions.

1. Z, SURGERY AND o_(f)

Let f: X* — Y” be an A normal map of k-dimensional manifolds. Then we want
to describe the admitted Z, surgery steps. f induces a map f: 7, (X?2) = 7, (Y?2).
Let B € 7o(Y?2) and a = f 1 (B) C m, (X72).
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1.1. Surgery of Type a: The attaching map for a handle of type «a is a diagram.
Here ¢ and ¢ are imbeddings, d(a) = dimension of |a|, the underlying space of
a, s(a) is the slice representation of o, and S and D are the unit sphere and
disk.

Di+1 X Dd(a)—-i

18]

v

fl|a!

Si X Dd(a)-—i > |(X|
\L v

D' X D* 7 X D(s(a)) ————> Y

v . \ /
i d(a)—i
S*X D X D (s(a)) > X

Surgery on the fixed point set means surgery of type a for some a. It is shown
in [19] that any attaching map for a handle to |«| (this is the top square) extends
to an attaching map for a handle of type «. In particular, we point out that
our bundle data imply the normal data Petrie needs. In [19] it is assumed that
we have a given Z, bundle n over |B| and a given isomorphism b:v(|a|,X) — (f.) ",
where f, = f|,.,:|a| = |B]. The isomorphism is needed only after restricting the
bundle to the sphere S° on which we are doing surgery. Our candidate for v
is (£];5))z, which is the orthogonal complement of (£| g )*2 in £|,5,. C induces a
stable isomorphism b:v(|a|,X)— (f,)*n. As Z, operates trivially on |a| and
KO, (|a|) = KO(|a|) ® R(Z,), KO denoting real K-theory and R denoting the real
representation ring, we can neglect the Z, action for n and v(|a|,X). We consider
only those surgery steps where i =1/2d(a) <1/4k. As

w;(SO(k — d(a)) = w,(SO(k — d(a) + 1)),

every stable isomorphism & :v(|a|,X)|si— (f.)*n|si can be assumed to be of the
form & X Id: (v(|a|,X) @ e)|g5i—> ((f.) "M D €)| si- We can use this b for our surgery
step.

1.2. Surgery in the Free Part. The attaching map for a handle is a diagram

z,xSxD 5 x
J L
Z,XD"'x D' 5 Y

where Z, operates as translation on Z, and ¢ is an imbedding.
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Let f:X— Y be an A normal map. f is an h-map if f:m,(X??) > m,(Y??) is
a bijection. As f is of degree 1 it follows that f is surjective [2]. If a, € w,(X?)
and f(a,) = B, assume d(a,) = d(B). By 0O-dimensional surgery we can connect
the components in (f) ' (B) for B € =, (Y?2). Thus we can convert every h-normal
map into an hA-map. Then we abbreviate m = m,(X*?) = w,(Y?2). |B| denotes the
underlying space of the component 8, d(B) = dim (|B|), and =, (|B|) comes with
an orientation homomorphism w:w, (|B]) = {1} which we assume to be trivial.

So suppose f:,(X?2) — m,(Y?2) is a bijection and £,:|a|— |B| is the map
induced by f, here g = f(a). We assume that dim |a| = dim |B], so it follows from
[2] that deg f, = d; is odd. We are also given a bundle n* and a stable vector
bundle isomorphism C*:Z|a|— fim". Abbreviate the map f, with these data by £, .

LEMMA 1.3. There exists an obstruction o,(f) in a group L(B) satisfying the
following properties:

a) o,(f) depends only on the normal cobordism class of f,,.

b) oz(f)=0 if an only if f, is normally cobordant to a mod 2 homology equivalence.
c¢) The group L(B) depends only on w,(|B|), dy, and dim |B]|.

In this context we use only the weaker statement:

There is a well-defined obstruction for converting f, by surgery into a mod
2 homology equivalence. This obstruction is denoted by o, (f).

It is easy to observe: If 3|B| = @, =, (|B|) = 0 and deg £, = 1 we have:

dim B is odd
og(f)=0 if <{ dimp=4k and sign(|a|) —sign(|B]) =0
dimB=4k+2 and c(f)=0

Here is the idea for the proof of Lemma 1.3. The geometric construction of
the Wall groups in section 9 [26] defines the set L(B). Naturally we have to
use an appropriate generalization as in [19]. It is not too difficult to show that
L(B) is a group (compare [7]). Then Lemma 1.3 is an automatic consequence.

Proof of Lemma 0.4. Let{e,,...,e, } bea A-basis for N. Then e, can be represented
by an imbedded sphere S; C X (with trivial normal bundle) and Te, is represented
by 7S;. We can assume by the usual cancellation arguments for intersection points
[16] that S; N TS, = @ and if i #j we can assume that S; N S, = @. To obtain
this we.first achieve that S; N |aj = @ and then we separate the spheres in the
free part. By usual surgery theory, it follows that we can use S; and 7T'S; to do
Z, surgery in the free part and kill K.

2. THE 4n-DIMENSIONAL SURGERY PROBLEM

Let X and Y be 4n-dimensional Z, manifolds and f: X — Y an A-normal map.
Let Y be 1-connected. Abbreviate w,(Y?2) = w. Assume there is one component
Bo € w with d(B,) =2n, and for B € w, B #B,, assume 6 <d(B) < 2n. Let
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ao = F 1 (B,), and d = degree (fliag:: oo |— |Bol).\ By [2], d is odd. Then we can
state

THEOREM 2.1. The surgery problem f: X — Y is solvable if and only if
@) oz(f)=0€L(B),BEm,

(i1) sign (Z,,Y) — sign (Z,,X) = 0,

(iii) (d® — 1) sign (T,Y) = 0.

Remarks. o,(f) is the obstruction to converting f.:|a| — |B| by surgery of

type a into a Z, homology equivalence (section 1). « = f ~* (B) and £, is the restriction
of f.

Before we can prove this theorem we have to develop some more theory. But
first let us give a relation between the invariants in the framed set-up. It is
not clear to the author whether or not this relation holds in general.

LEMMA 2.2. Iff* /7Y =X then 2.1(ii) implies 2.1(iii).

Proof. Let [a,] and [B,] denote the fundamental class of o, and B,, probably
after making |a,| connected. Then we compute in terms of Hirzebruch L classes:

sign (T,X) = (L(F |ao | (oo [, X)), [o0])

= (L(Z [Bol:v(Bo [, YD,(£.)« [Bo])
= d sign (T,Y)

(d®> — 1) sign (T,Y) = (d + 1)(d — 1) sign (T\Y)
= (d + 1)(sign (T, X) — sign (T,Y))
=0

Let us do the algebra first: As in [26] it is easy to see that W,(A) is a group.
THEOREM 2.3. W, (A)=Z® Z

The class of (K,\,pn,T) is given by the multisignature of X. The only relations
for the invariants are sign A(-,*) = 0(8) and sign A(-,-) = sign A(-,7T"*) (mod 2).

For the proof of this theorem we need two more lemmas. Define the group
WG(Z,,2) as in [9]. Compared with the definition of W,(A) we consider forms
over torsion free modules and A(x,x) need not be even. Furthermore, a form is
equivalent to zero if it splits [17], [9] or is metabolic in the sense of [5]. p
is not defined in this case. There is a split exact sequence [1]

0> WG(Z,,2) > WG(Z,,Z[1/2])—> W(Z,)— 0.
As in [27] we obtain maps ¢,:Z[Z,] > Z., Z, operates on Z, by *Id, and
al + bT - a + b. This induces forms A, : K, X K, — Z_. After tensoring with

Z[1/2] these forms are unimodular (the determinant of the matrix with respect
to some basis is a unit) and we obtain an isomorphism

0: WG(Z,,Z [1/2])— WG(L,Z[1/2]) ® WG(1,Z[1/2]),
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(K,)\’T) g ([K+ :X+’Id)] ) [(K— ’x —’_Id)] )'
0-wag(1,2)-» WG(,2[1/2])—>» W(Z,)—> 0

is split exact [1], WG (1,2) = Z, and W(Z,) = Z, [17]. Together this implies (already
in [5]):
LEMMA 24. WG(Z,Z)=2®2®Z,.

Now define WG (Z,,2) to be those elements in WG (Z,,Z) which are represented
by (K,\,T), where K is a free A-module.

Lemma 2.5. WG"(Z,,2) =2 ® Z, the forms are classified by the multisigna-
ture, and the only relation is sign A\, = sign X_ (mod 2).

Proof. We obtain a commutative diagram:

0—> WG(Z,,2) > WG(Z,,Z[1/2])

"] -

WG@1,2) ® WG(1,2) —> WG(1,Z[1/2]) ® WG(1,2[1/2])

Yy is defined as ¢ without tensoring with Z[1/2], but we can define it only for
free objects in WG(Z2,,Z) because otherwise (Ki,xi) are not unimodular. ¢ is
injective. This shows that WG f'(Zz,Z) C Z®Z. It is well known that these forms
are classified by the multisignature. It is easy to write down examples for all
required signatures. sign X\, =sign A\_(mod 2) asrk K, =rk K_.

We have a projection map p: W,(A) » WG (Z,,2). The image are forms with
A (x,x) even. Thus we obtain only forms with sign A(-,-) = 0 (mod 8).

Proof of Theorem 2.3. It is an easy exercise to give enough forms realizing
all required signatures. Thus it is sufficient to show that p is injective. Consider
aform (K,\,u,T) representing an element in W, (A) andp(K,\,T") ~ 0in WG"(Z,,,2).
Then we have to show that (K,\,u,T') ~ 0 in W, (A).

If A (x,Tx) = 0(2) for all x € K, then [i is defined (as in the introduction). (K, i)
defines an element in L, (A,1) and the classification by the multisignature is given
in [26], [27]. This provides us with a free A-module N which is a subkernel.

Now assume there exists x € K such that A (x,7x) = 1 (mod 2). We have the
exact sequence

0—- N— K— Hom(N,Z)— O,

where N is torsion free. The point is to show that it is split exact.

Assume N = N, ® N_ where Z, operates by +Id on N_. If N contains a free
submodule N, we can split off the sequence

0—- N,— K,— Hom(N,,Z)— 0 (see 4.4 and [17])

and (Ko M| goxxystt] x0Tl x,) ~ 0 in Wy(A). Now write A=2Z2-1+2Z-T. As K is
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a free A-module, write K = K + TK in the same fashion. As A-modules

N = Hom(N,2) and K®Q=(N®N)®AQ.

Thus rk N, = rk N_. Let {e],...,e*} be a basis of N,. Then we define é; € K
by the equation e; = & + Te;". {€;,e; } are linearly independent. Otherwise we
have an f € K and f could be chosen as the basis element €; and ;. Then
f generates a free summand N,. This was excluded. {€;,¢; } is a Z-basis of K
and a A-basis for K, as otherwise K/{&;,&; } and K/N would contain torsion.

By assumption
Me/,e/) =0=>2(\ (&7 ,8) + NMe;,Te]) =0

As \(€] ,2;) = 0(2) we obtain \(€;,7€;") = 0(2). In the same way, \(e; ,e;) =0
implies that A(e;,7T¢;)=0(2). Thus A (x,Tx) =0(2) for all x € K which is a
contradiction. Thus N, = N_ = 0 and N is A-free.

Proof of Theorem 2.1. Obviously, 2.1(i-iii) are invariants. Assume the surgery
problem is solvable. Then 2.1(i) is immediate from section 1 and (ii) is folklore.
To show (iii) look at the diagram (having the problem solved)

f.=
H,, (X,Z) > H,, (Y,Z)
T (Fag)s T '
H2n(|a0|’z) H,, (|Bo],2)
L
Y4 > Z

i, is induced by the inclusion. Compute sign(7,:) in terms of the intersection
number of the fixed point set with itself [11]}. Then we get

sign(T,X) — sign(7,Y) = Me,ol,[ae]) =M ([Bo1,[Bo])
= Md [Bo],d[Bo]) —A([Bo1:[B6])
= (d® — 1) sign (T,Y).

By (ii), (d% — 1) sign (T,Y) = 0.

Now assume 2.1 (i-iii). By (i) and section 1 we can assume that f satisfies condition
P. By (ii), (K, ( f,Z),\,n.,T) ~ 0in W, (A).Let {e,,...,e, } be a A-basis of a subkernel.
Using appropriate linear combinations we can assume that A(e;, p,i, [as]) =0
for i = 2, where p, is the projection H,,(X,Z) - K,,(f,Z). By section 1 we can
kill {e,,...,e,} by surgery in the free part (and their duals). Now we are left
with K,, = A® A and a subkernel generated by a single element e. Choose
h € K such that X(e,h) = (1,0), and let e* = A — 1/2(\(h,h)e —yTe), where
N,Th) = 2y + a, a = Oor 1. According to the basis {e,Te,e*,Te* },\ has the matrix
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o = O O
= O O O
K © © =+
S K/ = ©

Consider the natural isomorphism ( f,,p,): H,,(X,Z2)—> H,,(Y,Z) ® K, (fZ). Then
iy [ao] =dis[Bo] +ale+ Te) +B(e* + Te*), a,BEZ.
Computing the signature by [11] we get
0 = sign(T,X) — sign(T\Y) = (d® — 1) sign (T,Y) + 2B8(2a + ap).

Thus, B(2a + aB) = 0. To show that we can solve the surgery problem we have
to show by 0.4 only that we can find a subkernel N’ generated by e’ and
Ae’,py [2y]) = 0.If a = 0 then « or B is zero. So choose ¢’ to be e* ore. If a =1
then B =0 or 2a + B = 0. In the first case, choose again e’ =e. If 2a +B =0
choose e’ = e — e* — Te”.

Remark. For every pseudoequivalence f: X — Y we obtain
(d? — 1) sign (T,Y) = 0,

if there is at most one component in the fixed point set and all other components
havelower dimensions. This gives a restriction d = +1 if sign(7,Y) # 0. An example
is Y= CP?" with Y?2=CP"II CP""'. Degree theory would only tell us that d
is odd [2].

3. INVARIANTS AND NONINVARIANTS FOR Z, SURGERY

Let us point out some more results giving insight into the geometry of involutions.
In this section we assume dim X = dim Y =2m. Let f:X— Y by an A-normal
map, and d(B) = m for B € w. Assume that we can do surgery on (X, f) to obtain
(X', f") where f’ satisfies Condition P. Then r(f) = rk, K, (f’,Z) mod 2.

LEMMA 3.1. r(f) € Z, is well defined.

Proof. Assume f”:X” — Y has the same properties as f. Let F:N— Y X I
be the cobordism connecting f’, and f”, which is given by equivariant surgery.
dN =X’ U X”. Do surgery in the interior of N below the middle dimension in
the free part to make F highly connected. As in [26] we get the exact sequence

0- K, ., (NON)—> K,,(aN)— K,.(N)—> 0.

K,ON)=K,_ (fY®K,(f")and K, ,,(N,0N) = K, (N) as A-modules. Thus

'K, (BN)®Q = (K,,,,(N,aN) ® K, (N)) ®Q.
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Applying the Krull-Schmidt theorem, we see that 4|rk, K,,(dN). Thus
rk, K, (f')=rk, K, (f")(mod 2)
Here is a simple application of this lemma. Let X = S™ X 8™ with T(x,y) = (y,x)
and Y = 8" with T(x,,...;%5,41) = (—X1,ee0s—%,s X415 %2msq), and f given as

follows. Let p € X*2 and D®" a small Z, invariant disk with center p. Collapse
X — D®™ to a point. This gives a map

f
X 4

f: X — Y with all our assumed properties, including Condition P. But

\
h<

H,(X)=K,(f)=A.

Thus r(f) = 1. This implies that we cannot solve the surgery problem. (If
m=0(2), then also sign(7,X)=2). The invariant r always vanishes if
dim X*2 < 1/2 dim X.

One would hope to find some more invariants giving necessary conditions to
solve the surgery problem. Here we want to treat two such candidates. Let f: X — Y
and assume that f satisfies Condition P. Then we defined #(f) and I(f) in sec-
tion 0.

LEMMA 3.2. r(f)=1=(f) =1.

Proof. Ift(f) = 0, then (K,\,n,T) defines an element in L, , (A,»). This implies
that rk, K = 0(2).

In the introduction we gave an example where the converse does not hold.
Let x € K, (f,2), respectively, € K,,(f,Z,) and i:X”2— X. Remember that
we have a natural decomposition

H™(X,Z,) = K"(fZ,)®H"(Y,Z,) [26].

We want to investigate the relation between \(x,7x) mod 2 and i* X € H™(X?*2,Z,)
where X denotes the dual of x. The motivation is given by Lemma 1.11 [3] (see

Lemma 3.3(1)). If we do not have a component « € w such that d(a) =m we
do not have to investigate anything.

LEMMA 3.3.

Q) I(f)=0=>t(f)=0.

(ii) Ifthereisonly onecomponenta € wwithd (o) = m,thent(f) =0=>1(f) =0.
(ii1) If there are a, o’ € w, d(a) =d(a’') = m and o # o', then

t(f)=0I(f)=0.

Proof. i) is an immediate consequence of Corollary 1.11 [3]. ii). Leta E =
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and d(a) = m. Let [a] € H,,(X*?,Z) denote the fundamental class of |a|. Then
i*(¥)=0€ H"(X?*,Z,) if and only if [«]’ =0€ K,_(f,Z,), where [a]’ is the
image of [a] under the composed map

H,(X*3,2)—> H,(X,2)—> K, (fZ)> K, (fZ,).

Thus it suffices to show that A(x,i, [a]) = 0 (mod 2) for all x € K, ,(f,Z). Represent
x by an imbedded sphere, again denoted by x, and assume x /A Tx and x N [B].
Tx denotes the imbedding of S™ we used to represent x composed with the involution

T. If x and Tx intersect outside of |a|, then they intersect in pairs of points {p,q},
p # q. Thus A (x,Tx) = A(x,i, [a])(mod 2). Thus ¢(f) = 0implies I(f) = 0.

To show iii), we construct a concrete counterexample. Consider any Z, manifold
Y?", m = 5 and let « contain at least two components 8, and B, such that

d(B,) =d(B,) =m, and i, [B;1=0¢€ Hm(Y,Z)'.

Such a Y exists. Use, for example, two spheres S>” with an m-dimensional sphere
fixed under the involution. Then do free surgery in dimensions zero and one to
obtain Y with the above properties. Consider the pseudoequivalence and A-map
Id:Y— Y. Now 'do surgery as follows: Let p,€[B;, i=0,1, and

D7 = De(B., V)],

D the closed unit disk, S7 ™' the boundary sphere of D", After a small isotopy we
assume that TS7 ™' N S7*~' # @. Connect S, and S, by a tube V (take S = S, # S,).

IBOI |BI|

/\

/)
|4

Then we obtain an imbedded S™ 'C Y and 7SN S=@. Now we do free
surgery on SU TS C Z, X 8™~ ' X D™™*', Denote the result of this surgery by X,
and we have a map f: X — Y which satisfies condition P. Then K, (f,Z) = A @ A,
generated by e and e* over A, e represented by 1 X 0 X S™C Z, X D™ X 8™ and
e* represented by (D,U VU D,)U1XD™X* = a point in S™. To compute
intersection numbers, we assume D, TD,and D, N TD, =~ D, N TD,. Then we
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obtain A(e*,Te*) = a = 0(2). (Actually, we can get a = 0 or a # 0.) This geometry
tells us that \ has the following form for the basis {e,Te,e*,Te* }.

0 0 1 0
0 0 0 *1
*1 0 0

0 F1 +a 0

(£ if m =1 (mod 2))

Furthermore, A (e*,[B;]) =1(2) and i*(e*)# 0 € H™(X*2,Z,).

LEMMA 3.4. There exists an example of an h-map f: X — Y such that I(f) =0
but the surgery problem is not solvable.

Proof. Consider the solved surgery problem Id: Y**— Y** satisfying all re-
quired assumptions, as 7, (Y) = 0, etc. Consider a further problem %:X,— S*",
with sign X, # 0. Let ¢ € ¥ — Y*2and p € S*". Use p and ¢ to form the connected
sum of Z, X S** and Y and denote the result by Y. Do the same construction
using ¢’ =q € Y and p’ = A~ (p) € X,. Denote the result by f:X— Y. There
are appropriate bundle data for f and Y is 1-connected. Thus fis an A-map. f|xZ,

is the identity. Then sign(1,X) — sign(1,Y) = 2 sign X, # 0, and the surgery prob-
lem is not solvable. Assuming A& to be highly connected obviously implies that
K, (fZ)=2,X H,,(X,,2) and I(f) = 0.

4. THE 4n + 2 DIMENSIONAL SURGERY PROBLEM

Suppose we are given the A-normal map f: X***?— Y***? and d(B) =2n + 1
for B € w, and we have exactly one component (3, such that d(B,) = 2n + 1.

THEOREM 4.1. The above surgery problem is solvable if and only if
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(i) ox(f) =0 forall B € .
(ii) r(f) =0,
(iii) e(f) = 0.

The obstructions o4(f) € L(B) again denote the obstructions to converting
fotl F'(B)|— |B| into a mod 2 homology equivalence. r(f) is defined if the
obstructions in i) vanish (see section 3), and c(f) is the usual Arf invariant for
the surgery problem after forgetting the Z,, action.

Proof. 1t is obvious that i)-iii) are surgery invariants and that they vanish
for a pseudoequivalence. Thus they are necessary. Let us show that they are
sufficient. i) implies that we can do surgery on the fixed point set and obtain
a Z, homology equivalence for f*2:X*2— Y?*2. Now we do surgery in the free
part below the middle dimension, which is always possible, and achieve condition
P.Then K, ,,,(f,2) is a A-free module and it defines, together with the intersection
form A, the self-intersection form p., and the involution 7" a quasi skew Hermitian
form (K,\,1.,T') representing an element in W,(A). Again we want to satisfy the
assumptions of Lemma 0.4. We state this as a lemma (which we prove after some
preparation) and then 4.1 is proven.

LEMMA 4.2, Letf:X — Y be an h-map satisfying condition P, the assumptions
of 4.1 and 4.1 ii) and iii). Then we can do surgery in the free part on (X, f)

andobtain (X', f") such that (K,, ., (f’,Z),\,n.,T) satisfies the assumptions of Lemma
0.4.

Now we proceed as follows. In Theorem 4.3 we compute W,(A). This shows
that 4.1 ii) and iii) imply that [(K,,,,(f,Z)\n,T)] =0 in W,(A). We have to
stabilize to exhibit a subkernel, but this stabilization occurs geometrically, Lemma
4.8. After some more (if needed) stabilization we show that (K,\,n,T) is the direct
sum of copies of (K,\,ii,T) such that each K is of A-rank 2, has a subkernel,
and there exists x € K such that A\ (x,7%) = 1(mod 2). This is Lemma 4.9. Then
we exhibit a subkernel in K which does not intersect the fixed point set, i.e.,

(K,\,p,T) satisfies the assumptions of Lemma 0.4. This is Lemma 4.10 and Lemma
4.2 is a corollary of this fact.

We defined W,(A) in the introduction and it is a trivial check that W, (A)
is a group. Furthermore, (K,\,n,T) © (K,\,n,T) ~ 0; for if {e,,...,e, }is a A-basis
of K, then we get the basis e} + Te",...,e, + T¢), for an appropriate NC K ® K.
The symbols ’ and ” indicate the first and second copy of K. Thus W,(A) contains
only 2-torsion.

THEOREM 4.3. ¢:W,(A) — Z,® Z, given by

¢ [(K\A\1,T)] = (rk, K (mod 2),c(K,\, )
is an isomorphism.
Proof. ¢ is obviously a homomorphism. We show
a) ¢ is well defined,
b) ¢ is surjective,

c) ¢ is injective.
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a) If (K,\,p.,T") ~ 0, then by definition c¢(K,\,n) = 0. As
K = N @ Hom(N,2) and N = Hom(N, 2),

it follows that rk, K = 0(2).

1
-1 o)
Then Te is dual to e and c(K,\ 1) = (n(e))>. Setting p(e) = 0 respectively = 1 gives
forms with invariants (1,0) respectively (1,1). We obtain forms of arbitrary invariants
as linear combinations of these two forms.

b) Let K = A with the Z-basis {e,Te} and \ corresponds to the matrix

c) is the difficult part and we first state an orthogonal decomposition lemma
([17, 1.3.1) and do some technical preparation.

LEMMA 4.4. Let (K,\p.,T) be a quasi skew Hermitian form (q.s.H. form) and
(M\,,T) be a subform. Then

(KN, T) = M\ p,T) @ (M A, T),

where M* = {x € K|\ (x,M) = 0}.
The proof is elementary and we remark only that M* is again A-free (K,(A) = 0)
and p. splits as A does.

We shall need the following q.s.H forms (K \,,n;,T%), i =0, 1:K, is freely
generated over A by {e;,e’}, w(e;) =n(e}) =i and with respect to the Z-basis
{e;,Te,,e/,Te}}, \ corresponds to the matrix

0 1 0

0 O 0 -1
-1 0 0
0 1 0

Then by the above remark (KA, ,u.;,T;) defines a form (K ;X ,,ii;)and ¢, (K, ,i,;) = i.
Furthermore,

(Ko’)\o»onaTo) @ (Kos)\oalLOxTo) = (K,,\ ’p'l’Tl) D (K Ay, Th).

LEMMA 4.5. Every q.s.H. form (K,\,p.,T) splits stably as a direct sum of q.s.H.
forms of A-rank at most 2. If a summand (K \;,u;,T;) is of A-rank 2, we can
assume that \(x,Tx) is even for all x € K,. At most we have to stabilize with
two copies of (Kg,Agshho,T0)-

Proof. Assume there exists x € K such that A (x,7x) = 1(mod 2). Then there
exists a A-basis {h,,...,h,} for K and A (h,,Th,) = 2k + 1, k € Z. Then there exists
¥ € K such that Nk, ,y) = —k,N(Th;,y) =\(h;,y) = O0for 1=i,j=<rand i# 1.Let
h=~h,+y+ Ty. Then A (h,Th) = 1, and & generates a free A-module H of A-rank 1.
HN| grcersi | 1:T%) is a q.s.H. form. Using 4.4 we can split this form off and
obtain a form of strictly lower rank, which we denote again by (K,\,p.,T"). After
a finite number of steps we can assume that A (x,7%) = 0 (mod 2) for all K. Now
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(K,\,p.,T) defines a form (K,\,i). If ¢, (K,\,ji) = O it follows by [27] that we can
decompose (K,X,ii), respectively (K,\,u,T), in hyperbolic planes. If ¢, (KX ,i) =1
we add two copies of (K,,A;,n,,7,). Then (K\,n,T)® (K, ,p,,T,) splits in
hyperbolic planes. Together with a further copy of (K, \,,,,7;) we have a splitting
of (K\p,T)® two copies of (K,,Ag,l0,T,). It is trivial to point out that
(Koohgto,To) ~ 0in W, (A).

Remark 4.6. In particular, each of the direct summands (K\,x,T) in our
decomposition, with rk, K = 2 and \(x,Tx) = O(mod 2) for all x € K, has a A-basis
{e,e*} where e* is dual to e. Computing the determinant of A we show that we
can assume that N(e,Te) = 0. Furthermore, by the E. Schmidt orthogonalization
we can assume that A(e*,Te*) = 0. This shows c¢(K,\,pn) = O.

We shall need a similar stabilization in the proof of the injectivity of ¢. Let
(Ky,Az,15,T,) be the following q.s.H. form. K, is generated by e, (over A); with

respect to e, and Te,, \ corresponds to the matrix 1 ), and p(e) = w(Te) = 0.

-1 0
This is the q.s.H form with invariants ¢ = 0 and r = 1 in the proof of 4.3b.

LEMMA 4.7. (Ko Nyt 0,Th) @ (Ko g, To) = (Kyyhg s, T) where K, has a
basis {e;,Te,,e;,Tes} such that ule;) = ple;) = 0, and with respect to this basis
\; has the matrix form

0 1 0

0 0o -1

-1 0 o -1
0 1 1 0

(K3,A3,5,T5) ~ 0. (This defines (K;,A;,1,,7%).)

Proof. Let e’, respectively e”, denote e in the first, respectively second, copy
of K,, and e, = e’ + Te”, and e; = Te’. e, generates a subkernel (trivial check).

Proof of c. (Theorem 4.3, ¢ is injective): Let (K,\,n,T) be a q.s.H. form and
rk, K =0 (mod 2) and ¢(K,\,.) = 0. Then we show that (K\,n,T') ~ 0. By Lemma
4.5, we decompose (K,\,n,T) (probably the stabilized form which is again denoted
in the same way):

(EAT) = @D G A 5T @ @ H N WETH)

i=1 i=1

t
@ @ (Fi,)\f’l-l'iF’Tf y

i=1

where

>

»
Q
I

;= 2N TPx)=0(2) forallx€ G, (type G)
i = 1 C(Hi:)\iHle' fl) =0 (type H)
rk F, = 1,c(F A Ful) =1 (type F)

=

>
A
I
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Let (G,\,,T) be a form of type G. Then G has a basis {e,Te,e*,Te*}, e* dual
to e, and A(e,Te) =\(e*,Te*) =0. If n(e) =0, then obviously (G\,u,T) ~ 0. If
p(e) = 1 we consider (G\,1.,T) ® (K, ,\5,105,T5), K, as in 4.7. Let G’ be generated
by {e + e, + Te,,Te + e, + Te,,e*,Te*},giving the form (G’,\',n’,T'), which is a
q.s.H. form equivalent to zero in W,. Here {e + e, + Te,Te + e, + Te,} generates
an appropriate subkernel. Thus stabilization with (K,,A;,u5,7;) reduces the number
of copies of forms of type G by 1. The complement is a pair of forms of type
H. Thus we can assume that r = 0, respectively, the sum of the G/s is equivalent
to zero.

As c¢(K,\p) = 0 it follows that s is even, and thus ¢ is even. The followmg
remark completes the proof. Let (K’ \',n*,T") be q.s. H forms,

i={} e(K'\N,n")=cK"\,n") and rk, K =rk, K" =1.

Then their direct sum is equivalent to zero. This is seen as follows. Let e’ be a
basis element of K°. If A(e/,Te’) = \(e”,Te”) choose e =¢’ + Te"; if N\ (e’,Te’) =

—\(e",Te"), choose e = e’ + e”. Then e generates a subkernel NC K’ @ K”. This
completes the proof of Theorem 4.3.

LEMMA 4.8. Stabilizing with a) one copy of (Ky,Aq,10,1,) (see 4.5) or b) with
one copy of (K,\;,13,T;) (see 4.7) arises geometrically.

Proof of a). This is just as in ([26], Lemma 5.5) where we use connected sum
with Z, X 8%**' x §%+1,

b) is exactly the stabilization given in 0.2.

Till now we stably split (K,\,n,T) into a direct sum of forms (KL, T), either
forms of type G with a basis {e,Te,e*,Te*} where {e,Te} generates a subkernel
and \(e*,Te*) = 0(2), or pairs of forms of type H or F. What we will need is

LEMMA 4.9. Every qs.H form (K\pT) with rk,K=0 (mod 2) and
c(K,\,p) = O splits stably as a direct sum of q.s.H. forms of A-rank 2. For each
direct summand (EX,5,T), we can assume that K has a subkernel N generated

by a basis element e, and N(e*,Te*™) = 1. We need at most to stabilize with forms
(Ka’}\a g, T3) and (Ko:)\o:”'o :To)-

Proof. By the above remark, we are concerned only with the forms (X,\,i,T)
of type G as above. Consider (K,\,i,T) ® (K,,\,,1,,T,) and the subform based
on the module K’ generated by {e,Te,e* + e,,Te* + Te,} ; {e,Te,e *,Te* }is the basis
of K and {e,,Te,} the basis of K,. e* + e, is again dual to e and

Ae* + e,,Te* + Te,} = 1.

Then (K, \,i1.,T) @ 2(K,,\,,15,T,) is isomorphic to (K’ N1, T7) @ 2(K,, Ay ,105,T5),
and each of the summands has the required properties.

LEMMA 4.10. Let (K\,T) be a q.s.H. form of A-rank 2. Suppose {e,e*} is a
basis of K, e* A-dual to e, such that \(e,Te) = 0,\(e*,Te*)=1,pn(e) =pn(e*) =0
Let 7= (2m + 1)(e + Te) + 2k(e* + Te*). Then we can find a new basis {e,e*}
of K such that \(€,Z) = 0, \(€,T¢) = 0 and pn(¢) = 0.
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Proof. We can assume that (2m + 1,k) = 1. Secondly we have only to find
& and a dual €*, where \(¢,T¢) = 0 and (&) = 0. Then by 4.4, {e,2*} is a basis
for K. Choose & = (2m + 1 — k)e + kTe + 2ke™. Then it is trivial to check that
AE,Té) =0, pn(é¢) =0 and A(€,Z) = 0. For € we have to find a dual e”. So let
é*=ae+ a’'Te+ be* + b’ Te*. We must show that we can find a, a’, b and b’
such that

a) 1=NEe*)=b2m + 1)+ k(b — b — 2a),
B) 0=\(Teée*)=b"(2m + 1) + k(b—b' — 2a’).

Choose b’ =k and b=k — (2m + 1) + 2a’. Then « is satisfied. Then B) can be
rewritten as
1-@2m+ 1)

) > =a 2m +1—Fk) — ak.

There exists a solution a, a’ for B) as (2m + 1 — k) and % are relatively prime.

Proof of Lemma 4.2. The assumptions of 4.1 and 4.1 ii) and iii) imply that
Ky 1 (£ 2N, T) ~ 0 in W,(A) (4.3). By Lemmas 4.8 and 4.9, we can assume
that we can do surgery in the free part on (X,f) to obtain (X’,f’) such that
f’ again satisfies the assumptions of 4.2 and (K,, ,,,(f",Z),\,n,T) splits as a sum
of q.s.H. forms (K,X,i,T) each of them satisfying the assumptions of 4.10. Let
z denote the image of the fundamental class of |a,| in the surgery kernel. That
is, z=p,([a,]), where p,:H,, , (lay],2)—> H,, (X", Z) > K,,,,(f,Z) is the
composition of the map induced by the inclusion |a,|— X’ and the projection
on a direct summand. Let Z be the projection of z to K. As in 3.3.i), A (e,Te) = 0(2)
implies A(e,z) = 0(2) and A (e*,Te*) = 1(2) implies that A (e*,z) = 1(2), and let {e,e™}
be the basis of K as in 4.10. This easily implies that Z has the properties in
4.10. Thus, by Lemma 4.10, we can assume that the subkernel N generated by
e can be chosen such that A(e,zZ) = 0. Then the collection of e for all K in our
decomposition of K,,,,(f’,Z) generates N satisfying all requirements of 4.2.

Example 4.13. We want to give an example of an A-map f: Xint2_, yn+2?
with the following properties.

X22 = Y22 — S2n+1

f satisfies condition P and ¢(f) = 0 (i.e., A(x,Tx) = 0(2) for allx € K, ,(f,2),
Thus (K, ., (f,Z),\,1.) defines an element in L, , ,(Z,—) which is ¢, (KA ,pn) = 1.
But we can still do surgery to change f to a homotopy equivalence.

If we have an example with the above properties, then obviously the surgery
obstruction is zero (Theorem 4.1).

Construction. Let f,:8*"**— S§***? be the identity and suppose S*"*' c S***?
is the fixed point set. Now use a known example f;: X, — S***® with Arf invariant
1 (no action). Take the connected sum of these three maps as indicated to obtain
f:X — Y. This map has all the required properties. In particular, it is an easy
check to see that c¢,(K,,.,(fZ)\,i)=1. Stated algebraically, this means
L,,.,(A,—)— W,(A) is the trivial map. An algebraic proof of this fact is obtained
from 4.3(c).
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