RANDOM SERIES WHICH ARE BMO OR BLOCH

W. T. Sledd

1. INTRODUCTION

Anderson, Clunie, and Pommerenke [1] have proved that if

(1.1)
$$\sum_{n=0}^{\infty} |a_n|^2 \log(n+1) < \infty$$

then the random series $F_{\omega}(z) = \sum_{n=0}^{\infty} a_n \omega_n z^n$ is a.s. a Bloch function, $F_{\omega} \in \beta$. (Here (ω_n) denotes the Steinhaus sequence.) As well, they have proved that if $\eta_n \geq 0$ and $\lim \eta_n = 0$, then there is a sequence (a_n) for which

$$\sum_{n=0}^{\infty} |a_n|^2 \eta_n \log (n+1) < \infty$$

but so that $F_{\omega} \notin \beta$ a.s.

In an unpublished manuscript, Pommerenke has shown that if 1.1) holds then F_{ω} is a.s. in the space of functions of vanishing mean oscillation, $F_{\omega} \in VMOA$. Theorem 3.2 provides a different proof of this.

David Stegenga [8] has shown that there is a sequence (a_n) for which $\sum |a_n|^2 < \infty$ but so that $F_{\omega} \in BMOA$ for no choice of ω . Theorem 3.5 is a modification of his ideas and sharpens the results of [1]. Since BMOA $\subset \beta$ [1, Sections 2.2,2.3] it also extends Stegenga's result.

Section 2 contains some preparatory material and descriptions of the spaces involved. Section 3 contains the main results and Section 4 contains some closing remarks.

I want to thank John Pesek and Joel Shapiro for the conversations we had concerning these results.

2. PREPARATORY MATERIAL

Throughout, the unit disc will be denoted by Δ and its boundary by T. The Lebesgue and Hardy spaces on T will be denoted, respectively, by L^p and H^p , $1 \le p \le \infty$. For facts concerning these spaces, see [2].

A function F, analytic in Δ , is said to be a Bloch function, $F \in \beta$, if

Received April 30, 1979. Revision received August 10, 1980.

Michigan Math. J. 28 (1981).

$$F'(z) = O\left(\frac{1}{1-|z|}\right) \qquad |z| < 1.$$

Facts about β may be found in [1] and in the bibliography there.

A function $F \in H^1$ is said to be one of bounded mean oscillation, $F \in BMOA$, if its boundary function, (also denoted by F) satisfies

$$||F||_{\text{BMO}} = \sup \frac{1}{|I|} \int_{I} |F - F_{I}| \, dx < \infty,$$

where I ranges over subintervals of T and $F_I = 1/|I| \int_I F dx$. If

$$\lim_{|I|\to 0}\frac{1}{|I|}\int_{I}|F-F_{I}|\,dx=0$$

then F is said to be of vanishing mean oscillation, $F \in VMOA$.

The relevant facts concerning these spaces which will be needed here are the following:

2A) The dual of H^1 is BMOA, and the functional norms are comparable to

$$\left| \frac{1}{2\pi} \int_0^{2\pi} F dx \right| + \|F\|_{\text{BMO}} \qquad [3].$$

2B) VMOA is the closure in BMO of the analytic functions on Δ with continuous boundary values [7].

The Steinhaus variables are constructed by placing a uniform measure of mass 1 on T, and then forming the product measure P_{Ω} on $\Omega = T^{N}$. The sequence of projections from Ω into the nth coordinates is called the Steinhaus sequence. The Steinhaus variables are clearly independent. The Rademacher variables are constructed in a similar manner [4, p.4]. The results of this paper, inasmuch as they rely on the Salem-Zygmund theorems [4, Chapter VI] hold equally well for the Rademacher sequence, but the proofs will only be given for the Steinhaus sequence.

If (a_n) is a sequence of complex constants we formally write

$$F_{\omega}(z) = \sum_{n=0}^{\infty} a_n \omega_n z^n, \quad \omega \in \Omega.$$

The statement " $F_{\omega} \in \operatorname{BMOA}$ a.s." means that there is a set $E \subset \Omega$ so that $P_{\Omega}E = 1$ and so that if $\omega \in E$ there is a $G \in \operatorname{BMOA}$ so that $(\hat{G}(n)) = (a_n \omega_n)$. Other statements of the same sort are to be taken in the same sense.

For facts about Sidon sets, see [5].

Throughout, the letter C will denote an absolute constant, not always the same at different occurrences.

3. THE MAIN RESULTS

Let K_m denote the mth Fejér kernel [10, Vol I, p. 89] and let

$$T_m = 2K_{2^{m+2}} - K_{2^{m+1}} + K_{2^{m-1}} - 2K_{2^m}, \qquad m \ge 1$$

$$T_0 = 1 + \cos x.$$

Thus \hat{T}_m is a trapezoidal function on the integers, $\hat{T}_m(K)=1$ if $|K|\in[2^m,2^{m+1}]$, $\hat{T}_m(K)=0$ if $|K|\notin[2^{m-1},2^{m+2}]$ and $\sum_{m=0}^{\infty}\hat{T}_m(K)=1$ for each K. Moreover, $\|T_m\|_{L^1}\leq 6$ for each m.

PROPOSITION 3.1. If $G \in H^1$ and if

$$\sup_{x} \sum_{n=0}^{\infty} |T_n * G(x)|^2 < \infty$$

then $G \in BMOA$.

If
$$\sum_{n=0}^{\infty} ||T_n \star G||_{L^{\infty}}^2 < \infty$$
 then $G \in VMOA$.

Proof. By a theorem of Stein [9] $F \in H^1$ if and only if

$$I_{F} = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} |T_{n} * F|^{2} \right)^{1/2} dx < \infty;$$

then $I_F \leq C ||F||_{H^1} \leq C I_F$.

Note that only the supports of \hat{T}_{n-2} , \hat{T}_{n-1} , \hat{T}_n , \hat{T}_{n+1} , \hat{T}_{n+2} intersect the support of \hat{T}_n . Thus if F is a polynomial then

$$\frac{1}{2\pi} \int_{0}^{2\pi} F \bar{G} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} T_{n} * F \right) \bar{G} dx
= \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{n=0}^{\infty} (T_{n} * F) (T_{n-2} * \bar{G} + \dots + T_{n+2} * \bar{G}) dx,$$

so that

$$\left| \frac{1}{2\pi} \int_0^{2\pi} F \bar{G} dx \right| \leq C I_F \left\| \left(\sum_{n=0}^{\infty} |T_n * G|^2 \right)^{1/2} \right\|_{L^{\infty}} \leq C \|F\|_{H^1}.$$

It follows from 2A) that $G \in BMOA$.

The proof of the second part is quite similar. Let $V_n = \sum_{m=0}^n T_m$, and write $H_n = G - G * V_n$. Then, as before,

$$\begin{split} \left| \frac{1}{2\pi} \int_{0}^{2\pi} F \bar{H}_{n} dx \, \right| &\leq C I_{F} \Biggl(\sum_{m=0}^{\infty} \| T_{m} * H_{n} \|_{L^{\infty}}^{2} \Biggr)^{1/2} \\ &\leq C \| F \|_{H^{1}} \Biggl(\sum_{m=n-2}^{\infty} \| T_{m} * G \|_{\infty}^{2} \Biggr)^{1/2}. \end{split}$$

It follows that $\lim_{n} ||H_n||_{BMO} = 0$ and hence from 2B) that $G \in VMOA$.

THEOREM 3.2. If $\sum_{n=0}^{\infty} |a_n|^2 \log (n+1) < \infty$ and $F_{\omega}(z) = \sum_{n=0}^{\infty} a_n \omega_n z^n$ then $F_{\omega} \in \text{VMOA a.s.}$

Proof. According to a theorem of Salem and Zygmund [4, p. 61] there is a constant C so that

$$P_{\Omega} \Biggl(\lVert P \rVert_{L^{\infty}} \geq C \Biggl(\log N \sum |C_n|^2 \Biggr)^{1/2} \Biggr) \leq 1/N^2$$

whenever $P(x) = \sum_{n=0}^{N} C_n \omega_n e^{inx}$. Let $P_N(x) = \sum_{n=2^{N-1}}^{2^{N+2}-1} a_n \omega_n e^{inx}$ then there is a constant C' so that

$$P_{\Omega}\left(\|P_N\|_{L^{\infty}} \ge C'\left(\sum_{2^{N-1}}^{2^{N+2}-1} |a_n|^2 \log (n+1)\right)^{1/2}\right) \le 1/2^{2N}.$$

Now $(\|P_{3N}\|_{L^{\infty}})$ is a sequence of independent random variables, and so

$$\begin{split} P_{\Omega}\left(\forall N, &\|P_{3N}\|_{L^{\infty}} < C'\left(\sum_{2^{3N-1}}^{2^{3N+2}-1}|a_{n}|^{2}\log(n+1)\right)^{1/2}\right) \\ & \geq \prod\left(1-\frac{1}{2^{6N}}\right) > 0. \end{split}$$

Thus $P_{\Omega}\left(\sum \|P_{3N}\|_{L^{\infty}}^{2} < \infty\right) > 0$. But this is a "tail event" and so by the law of 0-1 [4, p. 6], $\sum \|P_{3N}\|_{L^{\infty}}^{2} < \infty$ a.s.

Similar arguments applied to $(\|P_{3N+1}\|_{L^\infty})$ and $(\|P_{3N+2}\|_{L^\infty})$ show that

$$\sum_{n=0}^{\infty} \|P_n\|_{L^{\infty}}^2 < \infty \quad \text{a.s.}$$

and so, since $\|T_N*F_\omega\|_{L^\infty} \le 6\|P_N\|_{L^\infty}$ it follows from Proposition 3.1 that $F_\omega \in \text{VMOA}$ as

We now proceed to prove the partial converse to Theorem 3.2 that was announced in the Introduction.

PROPOSITION 3.3. If $a_n \ge 0$ and if $F(z) = \sum_{n=0}^{\infty} a_n z^n \in \beta$ then

$$\sup_{m}\sum_{n=m}^{2m}a_{n}<\infty.$$

Proof. There is a constant C so that

$$(1-|z|)\left|\sum_{n=1}^{\infty}na_nz^n\right|\leq C \qquad |z|<1.$$

Consequently $(1-r)\sum_{n=1}^{\infty}na_nr^n \le C$ 0 < r < 1. But then if 1-r=1/m it follows that $\sum_{n=m}^{2m} na_n r^n \le Cm$ and since there is a $\delta > 0$ so that $r^n \ge \delta$ if $m \le n \le 2m$ the conclusion follows.

PROPOSITION 3.4. If $F \in \beta$, and if μ is a measure on T, then $F * \mu \in \beta$. Proof.

$$|(F * \mu)'(z)| = \left| \frac{1}{2\pi} \int_0^{2\pi} F'(ze^{-i\theta}) d\mu \right| \le C \frac{\|\mu\|}{1 - |z|}$$

THEOREM 3.5. If $\eta_n \ge 0$ and $\lim_{n \to \infty} \eta_n = 0$ then there exists a sequence (a_n) for which

$$\sum_{n=1}^{\infty} \eta_n \log (n+1) |a_n|^2 < \infty$$

but so that $\sum_{n=1}^{\infty} a_n \omega_n z^n \in \beta$ for no choice of (ω_n) .

Proof. Let $E_N = \{2^N + 2^K; K = 1,...,N\}$. Then E_N is a Sidon set with uniform Sidon constant, i.e. there is an absolute constant C (independent of N) so that for any numbers $(e^{i\theta_j})_1^N$ there is a measure μ_N so that

a)
$$\hat{\mu}_N(2^N + 2^K) = e^{-i\theta_K}K = 1, ..., N$$

b) $\|\mu_{N}\| \leq C$.

Without loss of generality, we may assume that c) $M_N = \sup \hat{\mu}_N \subset [2^{N-1}, 2^{N+2}],$ for if $U_N(x) = e^{i3 \cdot 2^{N-1}x} V_{N-2}(x)$ (where V_N is as in the proof of Theorem 3.2) then $U_N \star \mu_N$ satisfies a) and c) as well as b), with C replaced by 3C.

Let $\eta_K^* = \sup_{i > 2K} \eta_i$; then $\eta_K^* \to 0$ and so (n_K) may be chosen so that

d)
$$\sum \eta_{n_K}^{*-1/8} < \infty$$

and so that

e) (M_{N_F}) is a disjoint sequence of sets.

Write $\xi_K = \eta_{n_K}^*$, and let α_K be so that

f)
$$\sum \xi_K \alpha_K^2 < \infty$$

but

g) $(\xi_K^{1/8} \alpha_K)$ is unbounded.

Let

$$\begin{cases} a_j = \alpha_K / n_K & \text{on } E_{n_K} \\ = 0 & \text{off } \cup E_{n_K}. \end{cases}$$

Then

$$\sum \eta_{K} |a_{K}|^{2} \log (K+1) = \sum \sum_{2^{n_{p+1}}}^{2^{n_{p+1}}} \eta_{K} |a_{K}|^{2} \log (K+1)$$

$$\leq C \sum \xi_{p} n_{p} \left(\frac{\alpha_{p}}{n_{p}}\right)^{2} n_{p} = C \sum \xi_{p} \alpha_{p}^{2} < \infty \quad \text{by f)}.$$

But given $(\omega_n)=(e^{i\varphi_n})$, let $F(z)=\sum_{n=0}^\infty a_n\omega_nz^n$, and let μ_{n_p} satisfy a), b), c) with $\hat{\mu}_{n_p}(j)=e^{-i\varphi_j},\ j\in E_{n_p}$. Then $\mu=\sum \xi_p^{1/8}\mu_{n_p}$ is a measure, by b), d), but if $j\in E_{n_p}$ then it follows from e) that

$$b_j = \mu * F(j) = a_j e^{i\varphi_j} \xi_p^{1/8} e^{-i\varphi_j} = \frac{\alpha_p}{n_p} \xi_p^{1/8},$$

and $b_j = 0$ off $\bigcup E_{n_p}$ by the definition of (a_j) . So $\sum_{2^{n_p}}^{2^{n_{p+1}}} b_j = \alpha_p \xi_p^{1/8}$, which by g) is unbounded. Since $b_j \ge 0$ then by Proposition 3.3 $\mu * F \notin \beta$ and hence by Proposition 3.4, $F \notin \beta$.

4. CLOSING REMARKS

Billard [4, p. 47] has proved that if

$$F_{\omega}(x) = \sum_{n=0}^{\infty} \alpha_n \omega_n z^n \in H^{\infty}$$
 a.s.

then F_{ω} is a.s. a continuous function on T. Since $H^{\infty} \subset BMOA$ one might ask if it might not be the case that F_{ω} is a.s. continuous when $F_{\omega} \in BMOA$ a.s. That this is not true may be seen as follows.

PROPOSITION 4.1. There is a sequence (a_n) so that $F_{\omega} \in VMOA$ a.s. but $F_{\omega} \in H^{\infty}$ for no choice of ω .

Proof. Paley and Zygmund [6, p. 350] have shown that if

$$a_n = \begin{cases} \frac{1}{m \log} & m = 2^m \\ 0 & \text{otherwise} \end{cases}$$

then $F_{\omega} \in H^{\infty}$ for no choice of ω . But $\sum_{n=0}^{\infty} |a_n|^2 \log (n+1) < \infty$, so $F_{\omega} \in \text{VMOA}$ a.s.

The next result is in the same vein.

PROPOSITION 4.2. There is a sequence (a_n) so that $\sum_{n=0}^{\infty} |a_n|^2 \log(n+1) = +\infty$ but $F_{\omega} \in \text{BMOA for each } \omega$.

Proof. Let

$$a_K = \begin{cases} 1/n & K = 2^n \\ 0 & \text{otherwise} \end{cases}$$

A theorem of Paley [2, p. 104] states that there is a constant C so that

$$\sum_{n=0}^{\infty} |\hat{F}(2^n)|^2 \leq C ||F||_{H^1}^2.$$

Then $\sum_{K=0}^{\infty} |a_K \hat{F}(K)| \leq C \|F\|_{H^1}$ so by 2A) $F_{\omega} \in \text{BMOA}$ for each choice of ω .

The result of Billard stated earlier raises another question. The spaces BMOA and VMOA stand in a very similar relationship to that of H^{∞} and the continuous analytic functions on T [7]. Is it true that whenever $F_{\omega} \in \text{BMOA}$ a.s. then it follows that $F_{\omega} \in \text{VMOA}$ a.s.?

REFERENCES

- J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions.
 J. Reine Angew. Math. 270 (1974), 12-37.
- 2. P. L. Duren, Theory of H^p-Spaces, Academic Press, New York, 1970.
- 3. C. Fefferman and E. M. Stein, H^p spaces of several variables. Acta Math. 129 (1972), 137-193.
- 4. J. P. Kahane, Some random series of functions, Heath Mathematical Monographs, 1968.
- 5. J. M. López and K. A. Ross, Sidon sets, Dekker, New York, 1975.
- 6. R. E. A. C. Paley and A. Zygmund, On some series of functions (1). Proc. Cambridge Phil. Soc. 26 (1930), 337-357.

- 7. D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405.
- 8. W. T. Sledd and D. A. Stegenga, An H¹ multiplier theorem. Submitted to Arkiv Math.
- 9. E. M. Stein, Classes H^p , multiplicateurs et fonctions de Littlewood-Paley. C. R. Acad. Sci. Paris Sér A-B 263 (1966), A716-A719, A780-A781.
- 10. A. Zygmund, *Trigonometric series*, 2nd edition, Vols I and II, Cambridge Univ. Press, 1958.

Department of Mathematics Michigan State University East Lansing, MI 48824