RANDOM SERIES WHICH ARE BMO OR BLOCH

W. T. Sledd
1. INTRODUCTION

Anderson, Clunie, and Pommerenke [1] have proved that if

(1.1) > la,|*logn + 1) <
n=0
then the random series F_ (z) = zw_

(Here (w,) denotes the Steinhaus sequence.) As well, they have proved that if
M, = 0 and lim q, = 0, then there is a sequence {(a,) for which

a,0,z" is a.s. a Bloch function, F, € B.
0

> la.)*n,logn + 1) <o
n=0
but so that |, & B a.s.

In an unpublished manuscript, Pommerenke has shown that if 1.1) holds then
F is a.s. in the space of functions of vanishing mean oscillation, F, € VMOA.
Theorem 3.2 provides a different proof of this.

David Stegenga [8] has shown that there is a sequence (a,) for which
2 |a,|? < wobutsothatF, € BMOA for no choice of ». Theorem 3.5 is a modification

of his ideas and sharpens the results of [1]. Since BMOA C B [1, Sections 2.2,2.3]
it also extends Stegenga’s result.

Section 2 contains some preparatory material and descriptions of the spaces
involved. Section 3 contains the main results and Section 4 contains some closing
remarks.

I want to thank John Pesek and Joel Shapiro for the conversations we had
concerning these results.

2. PREPARATORY MATERIAL

Throughout, the unit disc will be denoted by A and its boundary by T. The
Lebesgue and Hardy spaces on T will be denoted, respectively, by L” and H?,
1 = p = . For facts concerning these spaces, see [2].

A function F, analytic in A, is said to be a Bloch function, F € B, if
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1
F’(z)=0( ) 12| < 1.
1 — |

Facts about § may be found in [1] and in the bibliography there.

A function F € H' is said to be one of bounded mean oscillation, F € BMOA,
if its boundary function, (also denoted by F) satisfies

1
IF (|l emo = sup — S |F — F;| dx < oo,
I ).

where I ranges over subintervals of T and F, = 1/|I| § ,Fdx. If

1

lim — | F— F,|dx=0
-0 {I| §,

then F is said to be of vanishing mean oscillation, F € VMOA.

The relevant facts concerning these spaces which will be needed here are the
following:

2A) The dual of H' is BMOA, and the functional norms are comparable to
1 2%
- X Fdx | + ||F| smo [3].

27 ),

2B) VMOA is the closure in BMO of the analytic functions on A with continuous
boundary values [7].

The Steinhaus variables are constructed by placing a uniform measure of mass
1 on T, and then forming the product measure P, on Q = T". The sequence of
projections from Q into the nth coordinates is called the Steinhaus sequence. The
Steinhaus variables are clearly independent. The Rademacher variables are con-
structed in a similar manner [4, p.4]. The results of this paper, inasmuch as
they rely on the Salem-Zygmund theorems [4, Chapter VI] hold equally well
for the Rademacher sequence, but the proofs will only be given for the Steinhaus
sequence.

If (a,) is a sequence of complex constants we formally write
F (z) = 2 a,w,2", o € Q.
n=0

The statement “F, € BMOA a.s.” means that there is aset E C 2 so that PLE =1
andso thatif o € E thereisa G € BMOA so that (G(n)) = (a,,). Other statements
of the same sort are to be taken in the same sense.

For facts about Sidon sets, see [5].
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Throughout, the letter C will denote an absolute constant, not always the same
at different occurrences.

3. THE MAIN RESULTS
Let K,, denote the mth Fejér kernel [10, Vol I, p. 89] and let

T = 2K2m+2 - K2m+l + sz—l - 2K2m, m = 1

m

T, = 1+ cosx.

Thus T, is a trapezoidal function on the integers, T (K) = 1 if |K| € [2™,2™*"],

T (K)=0if |[K| & [2™7%,2™"%] and 2 T (K) =1 for each K. Moreover,
m=0

|I7,.|l .» = 6 for each m.

PROPOSITION 38.1. If G € H' and if

sup > |T,* Gx)|* <
n=0

then G € BMOA.
If 2;0 IT, + G||% < o then G € VMOA.
Proof. By a theorem of Stein [9] F € H' if and only if
1 (2 /.= 1/2
IF=; SO (;) |T,,*F|2) dx < oo;

then I, < C||F|; = CI.

Note that only the supports of T, _,, T\,_,, T, T,,.,, T, intersect the support
of T,. Thus if F is a polynomial then

1 Z2x 1 2% o
—\ FGdx=— T «F |Gdx
2 S 2 S (2 )

T Jo 0 n=0

1 2w o
= 2—§ z (T,*F)T,_,*G+ ...+ T,,,* G)dx,
1)

0 n=0

so that
= CI;

@ 1/2
(2 |T,, * Gl“’)
n=0

It follows from 2A) that G € BMOA.

= C[[Fl -

2w ], I

1 27
— S FGdx
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The proof of the second part is quite similar. Let V, = E " T,., and write
m=0
H,= G — G+ V,. Then, as before,

o 1/2
= CIF(E I, *H,,uim)
m=0

oo

1/2
sanum( > ||T,,,*G||:) :

m=n—2

1 2%
— S FH , dx

2w J,

It follows that lim [|H,,|| gmo = O and hence from 2B) that G € VMOA.

THEOREM 3.2. If > |a,|’log(n+ 1) <wand F,G)= >,
F, € VMOA a.s.

Proof. According to a theorem of Salem and Zygmund [4, p. 61] there is
a constant C so that

1/2
P, (||P||Lm2 C(logNz |c,,|2) )s 1/N?

aN+2_4

N . .
whenever P(x) = 2 C,0,e™. Let P,(x) = z a,» e then there is a

n n n
n=0 n=9oN-1 n

a,0,2" then
o

constant C’ so that

Pn(uPNuL°° =C’ (2

Now (| Pynll.~) is a sequence of independent random variables, and so

2aN+2_ 3

1/2 ‘
la, |*log (n + 1)) )s 1/22%,

aN-1

2 3N+2_ 1 1/2
PQV(VN’"P:JN“L“ < C’( 2 |an|2log(n + 1)) )

23N-1
1
= H(l—- 26N)>O.

Thus P, (2 1Panllze < 00) > 0. But this is a “tail event” and so by the law of

0—11[4,p.6], > [Pyli-<as.

Similar arguments applied to (|| Pyy.,|lz~) and (| Psp .l 1») show that

D P <e  as.
n=0 '

and so, since || Ty * F, || .~ < 6|| Py|| .= it follows from Proposition 3.1 that F, € VMOA
a.s.

We now proceed to prove the partial converse to Theorem 3.2 that was announced
in the Introduction.
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- 2]

PROPOSITION 3.3. Ifa,=0andif F(2) = z a,z” € B then
o

sup 2 a, <o,
m

n=m

Proof. There is a constant C so that

E na,z"
n=1

Consequently (1 —r) Z na,r"=C 0<r<1. But then if 1-r=1/m it
n=1

(1 - |z =C lz] < 1.

follows that 2’2::” na,r" =< Cm and since there is a 8 >0 so that r" =38 if
m =< n < 2m the conclusion follows.
PROPOSITION 3.4. IfF € B, and if 1. is a measure on T, then F = p € f.
Proof.

[

F* ! =
|(F = )’ @)] "

=

1 2w
— F'(ze ®)d
5 S ( 1)

™ Jo

THEOREM 3.5. Ifv, =0 and lim v, = O then there exists a sequence (a,) for
which

oo

2 n.og(n + Dla, | < w

n=1
but so that 2 a,0,2" € B for no choice of (w,).
n=1

Proof. Let E, = (2% + 2%, K =1,...,N}. Then E, is a Sidon set with uniform
Sidon constant, i.e. there is an absolute constant C (independent of N) so that
for any numbers (e’®/) Y there is a measure u, so that

a) fy@Y+2¥)=e"xK=1,..,N
b) [kl = C.

Without loss of generality, we may assume that

¢) My =supp iy C [2771,27"%],
for if Uy(x) = 2" "*V,_,(x) (where Vj is as in the proof of Theorem 3.2) then
Uy * 1 satisfies a) and c) as well as b), with C replaced by 3C.

Let ng = sup m ;; then mx— 0 and so (n,) may be chosen so that
j=2

d D i<
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and so that
e) (My,) is a disjoint sequence of sets.

Write £, = m,, ., and let ay be so that

f) E Exox <o

but
g) (£3%ay) is unbounded.

Let

a;,=oag/ngy onk,
{’ =0 off UE,_ .

Then

2"p+1

> mklax|*log (K + 1) = D D nklaxl®log(K + 1)

27 41

cS g,,np(—af’—) n,=CSEal<o by

IA

n,

-3

But given (w,) = (er), let F(z) = 2
fin,(j) =€, j EE, .Thenp = £/°u, isameasure, byb), d), butifj € E,_
then it follows from e) that

a,»,2", and let P, satisfy a), b), ¢) with

n=0

[
o (@ :p1/8  —ip . P 8
b}: pv * F(}) = ajehp!gp/ e = -—-gpl/ ,
n,
27p+1

and b, = 0 off U E, by the definition of (a,). So > ;= a £1/%, which by
P 2'lp

g) is unbounded. Since b, = 0 then by Proposition 3.3 n * F & B and hence by
Proposition 3.4, F & B.

4. CLOSING REMARKS
Billard [4, p. 47] has proved that if
F (x) = E a,0,2" € H” a.s.
=0

then F, is a.s. a continuous function on T. Since H™ C BMOA one might ask
if it might not be the case that F_ is a.s. continuous when ¥, € BMOA a.s. That
this is not true may be seen as follows.
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PROPOSITION 4.1. There is a sequence (a,) so that F, € VMOA a.s. but
F_ € H~ for no choice of w. .

Proof. Paley and Zygmund [6, p. 350] have shown that if

1 n=2"
a,=9mlog (m+1)

0 otherwise

then F,, € H” for no choice of w. But zw la,|*log (n + 1) < =, so F, € VMOA
n=0

a.s.

The next result is in the same vein.

PROPOSITION 4.2. There is a sequence (a,) so that Em la,|?log(n + 1) =
n=0
+o but F, € BMOA for each w.
Proof. Let

{l/n K=2"
Arp =

0 otherwise

A theorem of Paley [2, p. 104] states that there is a constant C so that
D IF@M)?= C|F3n.
n=0

Then z: laxF(K)| = C||F||;: s0 by 2A) F, € BMOA for each choice of w.
=0

The result of Billard stated earlier raises another question. The spaces BMOA
and VMOA stand in a very similar relationship to that of H™ and the continuous

analytic functions on T [7]. Is it true that whenever F, € BMOA a.s. then it
follows that F, € VMOA a.s.?
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