ON THE EXTENSION OF HOLOMORPHIC FUNCTIONS WITH
GROWTH CONDITIONS ACROSS ANALYTIC SUBVARIETIES

Joseph A. Cima and Ian R. Graham
1. INTRODUCTION AND STATEMENT OF RESULTS

1.1 In this paper we prove two extension theorems for holomorphic functions
in the H? classes, one for the unit ball B" C C”, and one for the unit polydisk
U” C C". We also prove an extension theorem for functions in the Nevanlinna
class on B”. The theorems on the ball can be formulated in the context of an
arbitrary bounded domain in C" with smooth boundary, as indicated in the course
of the proofs. The results are as follows:

THEOREM A. Let V be an analytic subvariety of B". Let f be a holomorphic
function on B™ — V such that for some p >0, |f|° has a harmonic majorant u
defined on B™ — V. Then f extends to a holomorphic function f on B" which belongs
to the class H” (B").

THEOREM B. Let V be an analytic subvariety of U". Let f be a holomorphic
function on U" — V such that for some p >0, |f|” has an n-harmonic majorant
u defined on U™ — V. Then f extends to a holomorphic function f on U™ which
belongs to the class H” (U").

THEOREM C. Let V be an analytic subvariety of B". Let f be a holomorphic
function on B” — V such that log™ | f| has a pluriharmonic majorant v on B" — V.

Then f extends to a meromorphic function f on B" which belongs to the Nevanlinna
class N(B").

1.2 In the case of the first two theorems, the methods involve extending the
majorant u to a superharmonic (respectively n-superharmonic) function Z on B"
(respectively U"), and applying the Riesz decomposition theorem for superharmonic
functions to obtain a growth estimate for #. This in turn implies that f has a
meromorphic extension to B" (respectively U"). The argument is completed by
showing that a meromorphic function which is not holomorphic cannot have a
harmonic majorant. The fact that the extended function £ belongs to the appropriate
H? class is a consequence of a property of the integral means of a superharmonic
(respectively n-superharmonic) function.

Theorem C uses one-variable methods and the Weierstrass preparation theorem.

1.3 Theorems A, B, and C generalize results of Parreau in one variable [7,
Theorem 20] which in fact are formulated in the context of an open Riemann
surface and (in place of the zero set of a holomorphic function) a compact subset
of logarithmic capacity 0. As far as we know, however, our results in the one-variable
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case have not previously been stated when the zero set (a discrete set of points
in U) is not compact, i.e., not finite. The first result in several variables of the
type considered here is due to Cima [2], who showed that if V is a subvariety
of U" which is bounded away from the distinguished boundary (a Rudin variety),
and if f is a holomorphic function on U"” — V such that | f] has a majorant of
the form u = Re (g) with g holomorphic on U” — V, then f extends to a holomorphic
function f € H'(U™). The method applies without change to the case of plurihar-
monic majorants. In [1], P. S. Chee gave a proof of Theorem B for H” functions
on the polydisk with the restriction that V satisfy a condition considered by
Zarantanello [10]. Our results do not require any restrictions on the analytic
subvariety V.

1.4 Of course there are many other types of extension results in several complex
variables. There are also other techniques for proving the existence of harmonic
majorants, of which one of the most interesting is a result of Gauthier and
Hengartner [4] and Gauthier and Goldstein [3]. These authors show that a sufficient
condition for a subharmonic function on (say) the ball to have a harmonic majorant
is the existence of such a majorant in a neighborhood of each boundary point.

2. ON VARIOUS GROWTH CONDITIONS AND CLASSES OF MAJORANTS

2.1 Definition. Let fbe holomorphicon the unit ball B"in C” andlet 0 < p < oo,
We say that f € H?(B") if

1/p
IIfIL,=O§ggl{S |f(r§)lpdc(§)} <o,

do denotes normalized Lebesgue measure on dB".

2.2 Definition. Let f be holomorphic on the unit polydisk U"™ in C" and let
0 < p <, We say that f € H”(U") if

Flyeestn <

1/p
" f"p = 0< Sup { S | f(rlgla"')rngn)lpdm (&)} < oo,
U™

Here & = (&,,...,£,), 0, U" denotes the distinguished boundary of U”, and dm(§)
denotes normalized Lebesgue measure on 9, U".

2.3 Definition. Let f be holomorphic on B”. We say that f belongs to the
Nevanlinna class N(B") if

(2.3.1) ‘ I Fllo = sup. S log™ | f(ré)|do (§) < .

aBn
Asusual log™ (f) = max (0,log (#)) for ¢ > 0. A meromorphic function which satisfies
(2.3.1) will also be said to belong to the Nevanlinna class.

2.4 Definition. Let f be holomorphic on B". We say that f belongs to the
Bloch space #Z(B") if
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| £llo= sup |V F@|L — ) <o

2.5 A function f € H”(B") has admissible boundary values a.e. on dB" [9,
Theorem 10] and

X | f(re) — f®I°Pdo(®) -0 asr—1".
aBn

Using this and the fact that | f|” is subharmonic (in fact plurisubharmonic) it
is not hard to show that f € H?(B") < | f| has a harmonic majorant on B". It
is also true that f € N(B") < log™ | f| has a harmonic majorant on B”.

Similarly if f € H?(U") then the radial limit lim f(r£) exists for almost all
r—1—
£ € d,U" and

S [ fre) —fEFdn(®—>0 asr—1".
2o Un

Using the fact that | f|” is n-subharmonic, i.e., subharmonic in each variable
separately [8, p. 39], it again follows that f € H?(U") < | f|° has an n-harmonic
majorant on U™,

2.6 The following lemma, the proof of which is immediate, gives the relations
among the various classes of majorants which one might wish to consider in several
complex variables:

LEMMA. Of the following conditions on a real-valued continuous function
u as an open set D of C", we have (1) = (2) = (3) = (4) but not conversely:

(1) u is the real part of a holomorphic function g on D;
(2) u is plurtharmonic, i.e., harmonic in all complex directions;
(3) u is n-harmonic, i.e., harmonic in each variable separately;
(4) u is harmonic.

(On a simply-connected domain we have (1) < (2).)

2.7 It is natural to consider harmonic majorants in formulating extension
theorems for H” functions on the ball, while on the polydisk n-harmonic functions
are the natural class of majorants. The assumption that u be pluriharmonic permits
the application of one-variable results via the Weierstrass preparation theorem,
cf., [2]. The assumption (1) coupled with the obvious fact that a majorant must
be nonnegative actually suffices to extend the function g across any analytic
subvariety in view of

2.8 PROPOSITION. LetD be a domain in C" and let V be an analytic subvariety
of D. Suppose that g is holomorphic on D — V and Re g = 0. Then g has a holomorphic
extension g to D.

Proof. Let T(\) =(\ —1)/(\ + 1) where A € C. Since T maps the right half
plane onto the unit disk the function T'og is bounded holomorphic function. It
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extends across V by the Riemann removable singularities theorem. The extension
of T'o g does not assume the value +1 = T'(c0) for otherwise Tog = 1, a contradiction.
Hence g = T 'oTog has a holomorphic extension across V.

2.9 COROLLARY. Suppose V is an analytic subvariety of B™ and f is holomor-
phicon B" — V.,

Q) If|fP=u= Rg (g) where g is holomorphic on B" — V then f has a holomor-
phic extension f € H” (B").

(2) If log" |f] =u=Re (8) where g is holomorphic on B" — V then f has a
holomorphic extension f € N(B™).

Proof. Since g has a holomorphic extension & to B” it follows that in both
cases (1) and (2) the function £ is locally bounded near V. Hence f has a holomorphic
extension f to B” by the Riemann removable singularities theorem. In case (1)
f € H?(B™) since I f [? has the harmonic majorant & = Re (g), while in case (2)
f € N(B™) since log* | f| has the harmonic majorant # = Re (2).

2.10 Theorem 1 in [2] is also a consequence of Proposition 2.8, but as noted
the proof in that paper applies without change to the case of pluriharmonic majorants.
Such majorants may have logarithmic singularities along analytic subvarieties.
In section 7 we shall prove the following

PROPOSITION. Let h be a holomorphic function on B" and let Z(h) denote
its zero set. Suppose that u is pluriharmonic on B" — Z(h) and u= 0. Then
if z, € Z(h), there is a neighborhood Y of z, and a constant ¢ > 0 such that
u(z) = —clogd(z,Z(h) forz € Y — Z(h).

3. SUPERHARMONIC AND n-SUPERHARMONIC FUNCTIONS

3.1 Our extension theorem for H” functions on the ball depends partially on
known results for superharmonic functions. A convenient source for this theory
is [6]. We recall some known facts concerning superharmonic functions and indicate
how analogous results for n-superharmonic functions may be established. These
results are needed for the proof of our extension theorem for H” functions on
the polydisk. In some cases it suffices to refer to [8] where properties of n-subhar-
monic functions are given. '

3.2 Definition. Let Dbe an open subset of R*. An extended real-valued function
u:D— R U {} is superharmonic if

(1) u is not identically +c on any component of D;

(2) u is lower semi-continuous;

(3) u is super-mean-valued, i.e., whenever the closed ball B(x,r) is contained
in D, then, letting M (u,x,r) denote the average value of u on aB(x,r), we
have

(8.2.1) u(x) = M(u,x,r)

The following properties of superharmonic functions are established in [6,
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Chapter 4]: First, it is sufficient that (3.2.1) should hold for all r satisfying
0 <r <ry(x). The average M(u,x,r) is finite for all r and, for fixed x, is a nonin-
creasing function of r. If u is superharmonic on D and x € D then

(3.2.2) u(x) = lim inf u(y).

y—ox y#EX

3.3 Definition. A set X C R*is a polar set if there is an open set D containing
X and a function uz superharmonic on D such that u = +o on X.

An analytic subvariety of a domain in C” is always a polar set. The basic
result about polar sets we shall need is the following:

3.4 THEOREM [6, Theorem 7.7]). If X is a relatively closed polar subset of
an open set D C R* and if u is superharmonic on D — X and locally bounded
below on D then u has a unique superharmonic extension to D.

For the purposes of obtaining an analogous theorem for n-superharmonic
functions (Theorem 3.11), we derive the following lemma. This lemma can also
be used in the proof of Theorem 3.4, replacing a procedure indicated in [6, Theorem
7.7].

3.5 LEMMA. SupposeX is a relatively closed polar subset of an open set D C R*.
Let v be a superharmonic function on D such that v= +w on X. Let u be a
superharmonic function on D — X which is locally bounded below on D and define

the extension & of u on D by i@i(x) =lim inf u(y). Then if x € X there exists
y—x yeED-X

a sequence of points {x;};_; C D — X such that

lim x; = x, lim u (x;) = & (x), and v(x) <o
J—>

J—o
for all j.-

Proof. If u is superharmonic in a neighborhood of y then the super-mean-value
property u(y)= M(u,y,r) implies that the set {q € R*:u(y)= um)} N B(y,r)
has positive measure for all » > 0. Choose a sequence {y;};., C D — X such that
lim y; = x and lim u (y;) = @i (x). The given function z is known to be superhar-

J—o J—roo
monic in some ball B; centered at y; for each j. Since the function v cannot be
infinite on a set of positive measure, we may by the first sentence of the proof

choose x; € B; such that u(x)= u(y) and v(x;) <. If follow that limx =x

J—oo

since the radius of B; tends to 0 as j— . We obtain lim u(x;) = #i(x) in view
J'—)(’)

of the definition of #(x) and the inequality u (x)) = u(y).

The basic representation theorem for superharmonic functions is due to F.
Riesz.

3.6 RIESZ DECOMPOSITION THEOREM [6, Theorem 6.18] Let D be an
open subset of R* having a Green’s function G, and let u be superharmonic on
D. There is a unique measure p on D such that if W is an open subset with
compact closure in D then u = Gy .|y, + vy, Where G, denotes the Green’s function
of W, Gyuplwk) = §4 Gy (x,y)dpn (y) is the Green’s potential of ply, and vy, is
the greatest harmonic minorantof uon W.If in addition u = 0 on Dthenu = Gpp. + v
where v is the greatest harmonic minorant of u on D. The measure p. assigns
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finite mass to any compact subset of D and is supported on the complement in
D of the largest open subset on which u is harmonic.

Turning now to the case of n-superharmonic functions, we make the following

3.7 Definition. Let D be an open subset of C”. An extended real-valued function
u:D— R U {o} is n-superharmonic if

(1) u is not identically +o on any component of D;
(2) u is lower semi-continuous;

(3) for fixed a, ..., a,_,, a;,,, ..., @, € C the function u(a,,...,a,_,2,,0,.1,-..,a,)
is either +o or superharmonic on each component of its domain of definition,
k=1,...,n.

Thus an n-superharmonic function has the super-mean-value property in each
variable separately. If the polydisk U"(z; ry,...,r,) with center z and radii r,, ..., r,
is contained in D then the average value of u on the distinguished boundary
0, U"(23ry,...,1,) 18

3.7.1) M(u; z;ry,...,1r,) = S u(z, +ré,,...,2, + r,g,)dm().
aoUn

3.8 LEMMA. If U”"(zry,....,r,) C D then M(u;z;ry,...,r,) is finite and
M(u;2;ry,...,r,) < u(2). For fixed z, M (u;z2;r,,...,r,)is a function which is non-in-
creasing in each of the variables r,, ..., r,. That is, if

U"(2;8,,...,8,) C D and O0<r;=s, j=1,..,n

then M (u; z; r,,...,r,) = M(u; 2; s,,...,8,).

Proof. The corresponding results for n-subharmonic functions are proved in
[8, p. 40]. Since a function u is n-superharmonic if and only if —u is n-subharmonic
we simply apply the results of [8].

3.9 Remarks. An n-superharmonic function is easily seen to be superharmonic.
It seems reasonable to conjecture that property (3) in Definition 3.7 may be replaced
by (3’) whenever U"(z;r,,...,r,) C D we have u(2) = M (u; z;r,,...,r,). A function
satisfying properties (1) and (2) of Definition 3.7 as well as property (3’) might
be called super-n-harmonic, so that our conjecture can be phrased as follows: a
super-n-harmonic function is n-superharmonic. (The converse follows from Lemma

3.8.)

3.10 Definition. A set X C C" is a polar set for n-superharmonic functions
if there is an open set D containing X and a function z which is n-superharmonic
on D such that u = +o on X.

We need to know that the analogue of Theorem 3.4 holds for n-superharmonic
functions.

3.11 THEOREM If X is a relatively closed polar subset for n-superharmonic
functions in an open set D C C” and if u is n-superharmonic on D — X and locally
bounded below on D then u has a unique n-superharmonic extension to D.
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Proof. We proceed as in [6, Theorem 7.7], defining the extension & of u by

(x) =lim inf u(y) for x € D. We use Lemma 3.5 to show that if v is a
y—x yeD-X

superharmonic function which assumes the value +o on X and if x € X then
there exists a sequence of points {x;} C D — X such that

lim x; = x, lim u(x) = @ (x), and v(x) <o

J—oo Jo®

for all j. The rest of the proof is the same as in [6, Theorem 7.7] except that
we must check the super-mean-value property of & in each variable separately.
This involves an obvious modification of the argument there.

4. THE NON-EXISTENCE OF A HARMONIC MAJORANT OF
|2,]7* ON B” — {z, — 0}.

Let Z= {z € C": 2, = 0} and let B, denote the ball in C” of centre 0 and radius
r. (Thus B, = B".)

In this section we prove

4.1 THEOREM. Let 0 <p <o. The function f(2) = |2,|"® has no harmonic
majorant on B" — Z.

This theorem is an important step in the proof of Theorem A which is carried
out in the next section. Theorem 4.1 is a consequence of

4.2 PROPOSITION. There exists a positive constant B = 3(p) such that if u
is a harmonic majorant of |z,|™ on B, — Z, then for z € B, ,, — Z,

(4.2.1) u(@) =47 °rf |z,|7?*P,

Furthermore B(p) is an iﬁcreasing function of p.

4.3 Proof of Theorem 4.1 Using Proposition 4.2. Proposition 4.2 implies that
given g > 0, there exists € > 0 such that u(2) = const. |2,|7? on B, — Z. But this
gives a contradiction as soon as ¢ = 2, for |z,| " is not integrable on spheres transverse
to Z, whereas u is integrable on such spheres. (¥ has a superharmonic extension
i on B" by Theorem 3.4, and a superharmonic function is integrable over any
sphere.)

Proposition 4.2 is proved by means of a sequence of lemmas which are based
on a consideration of the averages of |z,|™ on spheres which are tangent to Z.

Let 2, denote the sphere of centre (,0,...,0) and radius r. Let M(p,r) denote
the average value of |z,|™ on 3, a finite quantity for0 <p < n.

44 LEMMA. (1) M(p,r) = M(p,1)r ” = const. r™”
(2) M(p,1) > 1 and is an increasing function of p, 0 <p < n.

Proof. (1) We first translate the centre of the sphere 3, to the origin and
then make a change of scale. Letting do, denote normalized Lebesgue measure
on dB,, we have
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Il

o, (rw
M(p,r) S |r—2,"do,(2) = S |r —rw,| " —— - do, (w)
2B, oB,

=r? S 11 —w,|"do,(w) =r"M(p,1).
aB,

j
(do,(rw)/do,(w) = 1 since the measures are normalized.)

(2) Since

S |1 —2]"do,(2) > S |1 —2,|]"do,(2) = M(p,1)
aB,

aB,

it is sufficient to show that §{,; |1 — 2,|7" do,.(2) = ¢ > 1 independently of r in
order to establish that M(p,1) > 1. Write ¢ (2) = |1 — 2,|™". By Green’s formula

(4.4.1) 1=¢(0)= S ¢(2)do,(2) —c, S GB,, (0,2) Ad(2)dz

3B, B,

where ¢, is a f)ositive constant, Gy_denotes the Green’s function for the ball B,,
and d\ denotes Lebesgue measure. We have Ad = 0 and it is not hard to see
that the last term in (4.4.1) is bounded away from 0 independently of r. Hence
the first term is = ¢ > 1.

To show that M(p,1) is an increasing function of p it suffices to apply Holder’s
inequality. Thusifp<g<nand P=gq/p, Q@ = P/(P — 1),

1/P 1/Q
S l2,| P do, (2) = ( S |z, "" dol(z)) ( S 1°do, (z))
> I X

) 1/P
= ( S |2, day, (z)) = S |z,] 77 do, (2).
3] %

The last inequality follows since M (g,1) > 1. This completes the proof of Lemma
4.4,

For the next lemma we define a family of subsets of B" inductively. Euclidean
distance is denoted by d, so that d(z,Z) = |z,].

4.5 Definition. Let E,= {z € B"| d(2,Z) < d(2,0B™)}. For k=2,3,... let .
E,= {z€ E*|d(2,Z) < d(2,6E,_,)}. (See Figure 1.)

4.6 LEMMA. Suppose u is harmonic and u(2) = |2, forz € B” — Z. Then
u(2) = M(p,1)* |z,| " for z € E, — Z.

Proof. The proof is by induction. For any point z € E, — Z the sphere of radius
|z;| and centre z is contained in B”". Since u has a superharmonic extension &
to B” which has the super-mean-value property, it follows that u(z) = M (p,|z,]).
By Lemma 4.4 this latter quantity is M(p,1) |z,| ™. (A rotation of the z, coordinate
preserves the harmonicity of u so we may replace z, by |z,].)
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|Z, |

Figure 1

For the inductive step assume u(2) = M ( p,l)" Y| ? for zEE,_,—Z. If
z € E, the sphere of centre z and radius |z,| lies in E,_,. The harmonic function
u(z) M(p,1)"*** majorizes |z,| ™ in E,_, — Z, so by Lemma 4.4,

u(2M(p,1)™*" = M(p,1) |z,|*.

(Again we may replace 2, by |z;| in order to apply Lemma 4.4.) Hence
u(z) = (M(p,1))* |2,| ™ for z € E, — Z.

4.7 LEMMA. If the coordinates of the point z = (z,,...,2,) satisfy
|2,) + ... + |2, <1/4  and 2%V =|z|<27*

then z € E,_,.

Proof. The set 9E, intersects the 2z, axis in the circle |z,| = 27*. Hence if
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Figure 2

27% = |z,| < 27%*7V then (2,,0,...,0) € E,_,. It is clear that the set E,_, is convex,
hence it contains the convex hull of (Z N B") U (E,_, N 2,-axis). From this the
assertion of the lemma follows. (See Figure 2.)

4.8 LEMMA. Suppose u(z) = M(p,1)* ™ |2,|” when 27%**P < |z,| <27* and
|2,° + ... + |2,|® < 1/4. Choose B such that 2° = M (p,1). Then u(z) = 47 |z,|~**®
when z € B, ,, — Z.

Proof. For 27%**Y < |z,| < 27* we have
(4.8.1) 47°|2,| |2, | ™ = 47P2%F VB2, |7 = 2% [P = (M(p,1))* |2y 7

Hence if © majorizes the term on the right of (4.8.1) then it majorizes the term
on the left.

4.9 End of Proof of Proposition 4.2. If u(z)=|z|” on B,—Z then
v(w) = u(rw) = |rw,|™ on B, — Z. Of course v is harmonic. Hence by Lemma
4.8, r’v(w) = 47%|w,|"**® when w € B, ,, — Z. Equivalently,

rPu() =47° |z, /r|7""®

when z € B,,, — Z. This reduces to u(z) =47°r®|z|"**® when z€ B,,, — Z
Since M(p,1) > 1 we have B > 0. Also since M(p,1) is an increasing function of
p, so is B(p).

Professor Norberto Kerzman has indicated another proof that |z,|~' has no
harmonic majorant on B, — Z. The proof does not cover the case of |z,| ™ for p < 1.
One considers a smooth cylinder in B, — Z which meets the surface Z on a side.
By using the representation of the purported harmonic majorant in terms of its
Poisson integral over the boundary of the cylinder one obtains a contradiction.

5. PROOF OF THEOREM A

5.1 THEOREM A. LetV be an analytic subvariety of B™. Let f be a holomorphic
function on B™ — V such that for some p> 0, | f|° has a harmonic majorant u
defined on B” — V. Then f extends to a holomorphic function f on B™ which belongs
to H?(B™).

5.2 It suffices to prove Theorem A under the hypothesis that V is the zero
set of single holomorphic function 2 on V. We write V= Z(h). To obtain the
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extension f, we first show that fhas a meromorphic extension to B”, and subsequently
that this meromorphic extension is actually holomorphic. To show that f € H?(B™)
we consider the averages of the superharmonic extension # of the majorant u
on spheres centered at 0.

5.3 PROPOSITION. Letf be holomorphic on B™ — Z(h) where h is holomorphic
on B". Suppose that for some p >0, | f|” has a harmonic majorant u on B" — V.
Then f extends to a meromorphic function f on B".

Proof. 1t suffices to show that f has a meromorphic extension to a neighborhood
of each point z, € Z(h). Now the majorant u is a harmonic function on the
complement of a relatively closed polar set, and u is bounded below by 0. By
[6, Theorem 7.7] u has a unique superharmonic extension & to B". We apply
the Riesz decomposition theorem (Theorem 3.6) to &i. We conclude that there exists
a unique measure p. on B” which is supported on Z(h) and assigns finite mass
to any compact subset of B”, such that if Wis an open set with closure contained
in B" and Green’s function Gy, then @t = Gy n|yy + vy on WL vy, is the greatest
harmonic minorant of Z on W.

Now given z, € Z(h) choose the open set W to be a neighborhood of z,. Since
Gw(z,w) = ||z — w||"***? in any compact subset of W and p is supported on Z(h)
we conclude that there is a neighborhood Y of z, such thatu (z) < const. d (2,2 (h))>*?
when z € Y — Z(h). We also have an estimate |h(z)| = const. d(z2,Z (h)) on Y since
Y c B". We shrink the open set Y if necessary so that |h(z)] <1 on Y. Then
with p as in the statement of the Proposition, we may choose a positive integer
k such that |k (2)|*” = const. d (2,Z(h))*" ?on Y. It follows that |(k (2))* f)J° = const.
on Y — Z(h). By the Riemann removable singularities theorem we can write hf=g
where g is holomorphic on Y. Hence f= gh™® on Y so that f has a meromorphic
extension to Y.

5.4 To show that the meromorphic extension of f is actually holomorphic we
need to show that we are now essentially in the situation in which Theorem
4.1 applies. Let 2, € Z(h) be a smooth point of Z(A). By removing common factors
from g and A if necessary and then avoiding points where both g and 2 vanish
we may assume g(z,) # 0. Let P be a neighborhood of z, such that Z(k) N P is
smooth and connected, and |g(z)| is bounded below on P. Then |R(2)]™™ has a
harmonic majorant which we shall call u (a constant times the original u) on
P — Z(h). We shall show that this is a contradiction.

Theorem 4.1 cannot be applied directly, for the local change of co-ordinates
which flattens Z(h) need not preserve harmonic functions. We shall re-examine
some of the steps in the proof of Theorem 4.1 in order to demonstrate that |2 (2)| ™
can have no harmonic majorant for any p > 0. We may rotate and translate
co-ordinates, perform changes of scale, and multiply functions by constants. By
considering the restriction of A to a small ball centered at z, and then changing
scale so that this ball has radius 1 we can achieve a situation in which the following
proposition applies:

5.5 PROPOSITION. Let p > 0. There exists € = e(p) > 0 such that if h is a
holomorphic function in a neighborhood of B, such that h(0) =0,

VA(O) = (1,0,....0), and [Vh(z) — (1,0,....0)| <e
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on B" then |k|™” has no harmonic majorant on B" — Z(h). We may take e(p)
to be an increasing function of p.

Proof. Because of the assumption on VA the following is true uniformly for
points 2z, € Z(h) N B™: there exists r, = r,(e) such that if the coordinates are
subjected to a unitary transformation to ensure that z, = 0 defines the complex
tangent space to Z(h) at z,, then

|k (2)]

(56.5.1) l1—e<
szl

+e

for all points z € B — {z,}, where B is any ball which is (1) tangent to Z (k) at
2y; (2) of radius le_ss than ry; (3) contained together with its closure in B”. Such
a ball B satisfies BN Z(h) = {2,}.

If u= |h|™ on B" — Z(h) and u is harmonic then on any of the balls B (in
fact on B — {z,}), we have u(z) = (1 + €)? |z,| ? using a variable co-ordinate system
with origin at z, as already indicated. Recalling Lemma 4.4, it follows that if
2 is the center of one of the balls B, then

(5.5.2) u@=QA+e&"M(p1)|z,|"=1+ € M(p1)1 — € |h(2)]".
(The second inequality uses (5.5.1).) We now choose € such that
(5.5.3) 1+e"(1—-e¢”M(p1)=dM(p,1))

where ¢: [0,0) - [1,0) is a strictly increasing function such that ¢ (1) = 1, but
which increases slowly enough that € is an increasing function of p.

The proof of Proposition 5.5 will be completed in Lemmas 5.6 and 5.7 which
are analogues of Lemmas 4.6 and 4.8 respectively. For Lemma 5.6 we define
the sets E, = E,(h) as in Lemma 4.6 except that we replace Z = Z(z,) by Z(h).
It is clear that the sets E, (k) are convex if € is sufficiently small.

5.6 LEMMA. Suppose u is harmonic and u(z) = |h(z)|™ on B" — Z(h) where
h satisfies the hypotheses of Proposition 5.5. Then u(z) = (b (M (p,1)))* %™ | (2)| ™
for z € E,(h) — Z(h) and k = k,. Here k, = k,(€) is the smallest integer such that
each point in E, (h) is the center of one of the balls B which occur in the proof
of Propostition 5.5.

One can formulate a geometrical result for the set E, (k) similar to Lemma
4.7 and this together with Lemma 5.6 leads to

5.7 PROPOSITION. There exists a positive constant y = vy{(p,e) such that if
h is a holomorphic function on B, — Z (h) which satisfies the hypothesis of Proposition
5.5 with B" replaced by B,, and if u is a harmonic majorant of |h(2)|” on B, — Z(h),
then, for z € B,,, — Z(h), u(z) = const. r’ |R(2)|~*". For fixed ¢, v is an increasing
function of p. -

5.8 The proof of Proposition 5.5 is completed by arguing as in Section 4.3.
Hence we now know that the meromorphic extension f of f given by Proposition
5.8 is actually holomorphic.
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5.9 Proof that f € H?(B"). If & denotes the superharmonic extension of u
to B” then

(5.9.1) S If(r&)l”dc(&)sg &(rdo(®)

aB”

The right-hand side of (5.9.1) is a finite nonincreasing function of » for 0 <r < 1.
Hence the left hand side of (5.9.1) which is a nondecreasing function of r is uniformly
bounded for 0 < r < 1. This completes the proof of Theorem A.

5.10 The case of arbitrary bounded domains with smooth boundary.

Let D C C" be a bounded domain with 9’2 boundary. Let ¢ be a real-valued
C? function defined in a neighborhood of D such that & =0 on aD, d¢ # 0 on
oD, $<0in D and $ >0 on D€ Let D.={z€E D: () < —¢€},0<e<¢, We
define

H? (D) = {f holomorphic on D| sup S | FE)° do (&) < o}
e<e¢ aD,
i

where do, denotes normalized Lebesgue measure on aD,. The definition is indepen-
dent of ¢ [9]. Suppose V is a subvariety of D, f is holomorphiconD — V, |f|’=u
where u is harmonic on D — V. To extend f holomorphically to D we apply the
foregoing results locally, for any point z, € V is contained in a ball which lies
in D. To show that the extension f € H” (D) we need to know that the superharmonic
extension # of u is uniformly integrable on dD_, 0 < € < ¢,. This is easily shown,
for if 2z, € D is such that @(z,) < o, then for all € such that z, € D, we have
U(z0) = §,p, P, (20,€) 2(§)do (§) where P, denotes the Poisson kernel on D.. For e
sufficiently small we have P, (z,,£) = ¢ where c is independent of § € 4D, and of
€, hence ii(z,) = ¢ Swﬁ u(t)dao(§).

6. PROOF OF THEOREM B

6.1 THEOREM B. Let V be an analytic subvariety of U". Let f be a holomorphic
function on U™ — V such that for some p > 0, | f|” has an n-harmonic majorant
u defined on U" — V. Then f extends to a holomorphic function f on U" which
belongs to the class H” (U™).

Proof. We first extend f to f and then show that f € H?(U"). The extension
of f is a local question, i.e., it suffices to show that each point z, € V is contained
in a ball B(z,) such that f has a holomorphic extension to B(z,). But this follows
from Theorem A, in fact we can take B(z,) to be any ball contained in U” and
containing z,.

To show that f € H?(U"), we use Theorem 3.11 to extend the majorant u
to an n-superharmonic function & on U”. Now if0 <r; <1, j=1, ..., n, then

(6.1.1) X |f(r,§1,...,r,,§n)|'°dm<§)sS By EyyeeeilyEy) dME).
aoUn

agUn



254 JOSEPH A. CIMA and IAN R. GRAHAM

The right-hand side of (6.1.1) is finite and gives a non-increasing function of
eachofry, ..., r, by Lemma 3.8. Since the left-hand side of (6.1.1) is a non-decreasing
function of each of r,, ..., r, it must be uniformly bounded.

7. PROOF OF THEOREM C

7.1 THEOREM C. LetV be an analytic subvariety of B”. Let f be a holomorphic
function on B™ — V such thatlog™ | f| has a pluriharmonic majorant u on B™* — V.
Then f extends to a meromorphic function f on B™ which belongs to the Nevanlinna
class N(B").

Theorem C will follow easily from

7.2 PROPOSITION. Let h be a holomorphic function on B™ and let Z(h) denote
its zero set. Suppose that u is a pluriharmonic function on B® — Z(h) and u= 0.
Then if z, € Z(h), there is a neighborhood Y of z, and a constant ¢ > 0 such
that u(z) < —clog d(z,Z,(h)) for z € Y — Z(h).

Proof. By the Weierstrass preparation theorem there is a nonsingular linear
change of co-ordinates in C" such that A becomes regular of order % in z, at
z,- That is, we may write h (z) = ¢ (2)g () where ¢ is holomorphic and nonvanishing
in a neighborhood of z, and ¢q is a Weierstrass polynomial of degree % in z, — (2,),,.
It follows that there exist two positive numbers p, and p, such that if
2¥ = (2y,..,2, ) € U (22;pys..,p,) then there are precisely % points
2L (2%), ..., 2% (z*) which satisfy |27, (%) — (2,),| <p,and k(z*,27,(z*)) = 0,7 =1, ..., k.
We may also assume that h(z%,z,) # 0 if

2" € U™ (2, pys--D1) and |2, — (25),.| = P2-

We now consider u(z*,z,) with z* fixed. u(z*,z,) extends to a superharmonic
function on the disk U((z,),,p,) C C which we denote by & (z*,2,). We apply the
Riesz decomposition theorem (Theorem 3.6) to & (z*,z,), writing

(7.1.1) a(z*2,) =G, +uv,,

where G denotes the Green’s function on U ((z,),,,p,) and j.,, consists of point masses
m,(z*) located at the points 22 (z*), j=1, ...,k The function v,, is the greatest
harmonic minorant of iZ(z*,z,) on U((2,),.p.). Since the Green’s potential of a finite
sum of point masses clearly tends to 0 at dU((2,),.0,), v,. is simply the Poisson

integral of the boundary values of &(z*,-) on aU((z,), p,). Hence v,, depends
continuously on z*, or, more precisely, the function (z%,2,) > v,. (2,) is continuous

on U"(zo;pl,---,pppz)-

We now choose a number p; < p, which has the same properties as p,, i.e.,
if z* € U™ ' (23,py,....p,) then the & points z.(z*), ..., 2% (2*) satisfy

IZ{z(Z*) — (20),] < ps.

We may also assume that the % points in question are bounded away from the
circle U ((2,),,,p5) uniformly in z*. Of course h(z*,z,)# 0 if
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2* € U (28 P1se P1) and |2, = (20),.| = P

Now {57 &(2*,(2,), + pse”)d is a continuous function of z* € U™ (25 Py,--.,P1)
andsois {27 v,.((2,), + pse*)d6.Hence the same is true of {5" G,. ((2,), + pse’)do.

k
But this can only be true if the sum E mj(z*) is bounded above on
j=1

U (23;py...p,) say by the constant c. Since

Gp,.(z,) = —2 m;(z*) log |z, — 27,(z*)]

on U((z,),.,p,) it is clear that Gp.,, (z,) = —c log min |z, — 27,(z*)|. By changing the
constant ¢ we obtain a similar majorization for #(z*,z,) and hence

u(z) = —clog (d(z,Z(h)).

7.3 Proof of Theorem C. We may assume that V is the zero set of a single
function A. It suffices to show that fhas a meromorphic extension to a neighborhood
of any point z, € Z(h).

Since |4 (2)| = const. d(z,Z(h)) in a neighborhood of z, it follows from Proposition
7.2 that u(z) = —clog |h(z)| (¢ may have a different value) in a nieghborhood
of z,, We may assume that ¢ is an integer. We have log™ | f(2)| + clog |h(2)] =0
which implies log™ | f(2)(h (2))°] =0 for z € Y — Z(h), Y some neighborhood of z,.
From this it follows that f(z)(A (2))° is bounded in Y — Z (), hence has a holomorphic
extension to Y which we call g. Thus f = g/h° on Y which gives the desired
meromorphic extension of fto Y.

Let f denote the meromorphic extension of f to B”. To show that f belongs
to the Nevanlinna class we argue as in Theorems A and B: Extend the majorant
u to a superharmonic function # on B". Then

(7.3.1) S log *| F(re)|do(®) = g &(re)do(®).

aB™

Since the left-hand side of (7.3.1) is a non-decreasing function of r and the right-hand
side is a nonincreasing function of r, the left-hand side is bounded independently
of r.

7.4 Remarks. (1) An open question is whether the majorant z in Theorem
C can be taken to be harmonic.

(2) This theorem can also be formulated for an arbitrary bounded domain in
C" with smooth boundary. Referring to Section 5.10, one defines

ND) = {fholomorphic on Dlosup S log *| f(&)|do (8) < °°}
aD,

<e<e(
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