HOMOMORPHISMS OF C* ALGEBRAS TO FINITE
AW* ALGEBRAS

David Handelman

All C* algebras and their homomorphisms are unital, and all ideals are two-sided
unless otherwise qualified.

A ring R is directly finite if xy = 1 implies yx = 1 for all x,y in R. The ring
R is stably finite if all rings of n X n matrices with entries from R (denoted M, R)
are directly finite. For C* algebras, what is known as finiteness (xx* = 1 implies
x*x = 1), is equivalent to direct finiteness [16; Theorem 27].

Stably finite rings admit a Grothendieck group (X,) which has a natural ordering,
and this in turn can lead to a great deal of structural information about the
ring. For C* algebras, the study of K, is becoming popular, especially for AF
algebras.

I would particularly like to acknowledge the aid of Joachim Cuntz in the form
of letters, helping me to understand his K; and connected concepts. Conversations
with Kenneth Goodearl were also of considerable value, in clarifying the proof
of the existence of dimension-like functions on C* algebras (Section 1).

Let A be a, C* algebra; following [4], [5], we define a (Cuntz’s) dimension
function as a map D:A — [0,1] satisfying:

(i) DA) =1

(ii) D(a + b) < D(a) + D(b)
(ii’) D(a + b) =D(a) + D(b) ifab=ab* =a*b=ba =0
(iii) D(ab) = Inf {D(a),D(d)}

@iv) If {a,} converges to @ in norm, and if there exist x,,y, in A so that

for all n, a, = x,by, for some b, then D(a) = D(b).

Consequences of these properties include the following:

(v) D(a) = D((a*a)*’*) = D(a*a) = D(a")
(vi) 0 = a = b implies D(a) = D(b)

One can show that (v) and (vi) follow from (i) through (iv), essentially as in
[56]; one observes (for example, for (vi)) that 0 = @ < b implies the closure of the
right ideal generated by b contains that of a. There thus exists a sequence {x,}
in A with {bx,} converging to a; apply (iv).

If D:A — [0,1] satisfies (i) through (iii) (including (ii’), and is lower semicontin-
uous, then (iv) (and hence (v) and (vi)) follow.
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We do not require that D(a) =0 imply a = 0; indeed, if I is a closed ideal
of A, and A /I admits a dimension function, then there is one induced on A which
contains I in its kernel. Observe that the kernel of a dimension function is a
two-sided *-ideal: (ii), (iii), (v). '

Our main result (2.4) asserts that every stably finite C* algebra admits a
*-homomorphism to a finite AW™ factor, and thus possesses a lower semicontinuous
dimension function on all matrix rings. This is established by forming what amounts
to an ["-product of the given C* algebra, and showing with the aid of Cuntz’s
dimension functions that this maps onto a finite AW™ algebra.

Any trace, 1, induces a lower semicontinuous dimension function D, on all
rings of matrices [5]. If it could be shown that a finite AW™ factor is W™ (as
has been conjectured by Kaplansky), then the main result would yield:

Every stably finite C * algebra would admit a trace.

The result, that finite AW™ factors are W*, has been announced by Breuer-de
la Harpe [3], but doubts have been cast on the proof, and there is evidence suggesting
there is a counterexample.

Using the results of this article, a subsequent paper (co-authored with B.
Blackadar) will contain the result, that almost every lower semicontinuous dimen-
sion function is induced by a *-homomorphism to a finite AW™ factor. In addition,
extendibility of dimension functions to matrix rings and quotients will be discussed,
along with various weakenings in the definition of lower semicontinuous dimension
function.

SECTION 1

In this section, we generalize a result of Cuntz [5; 4.7]; this asserts that a
simple stably finite C * algebra possesses a dimension function on all matrix rings.
Here, we establish a slight extension (by Cuntz’s techniques), that the assumption
of simplicity is unnecessary.

These remarks are based on [5], to which we refer the reader for many details,
and the object is to discuss properties of dimension functions and prove an existence
theorem, extending Cuntz’s result for simple C* algebras. Given a C* algebra
A, form F® A, where F is the algebra of finite rank operators on a separable
Hilbert space. Define an equivalence relation on the elements of ¥ ® A as follows:

x < y if there exist x, converging in norm to x, and corresponding «,,b, such
that x, = a,y5,. Declare x = yif x< yand y < x.This = is an equivalence relation.

Let K, (A) be the abelian group with generators [x], the equivalence classes
under =, and relations [x] + [y] — [x + y] whenever x is orthogonal to y. This
is easily seen to be compatible with the equivalence relation, and all elements

of K (A) are of the form [x] — [y]

Asin [5], K (A) admits the relation defined by [a] — [b] = [c] — [d] if there
exist x, as well as a,=a, b,=0b, ¢, =¢, and d=d, in F® 4, so that {a,,d,,x}
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and {b,,c,,x} are sets of orthogonal elements and a, + d, + x < b, + ¢, + x. Let
H denote the set of elements that are =[0] in the relation. Then

HD {[al:a € F® A},

so H— H=K}(A); as in [5], H + H C H; however, it is not generally true that
H N —H = {[0]}. Thus H defines only a preordering on the group K; (A).

Let e, denote the rank n projection in F coming from the n by n identity
matrix. Consider the element e; ® 1; since n[e, ® 1] = [e, ® 1], and since F consists
of finite rank operators, it is clear that for all x in K (4), there exists an integer
n such that [x] =< n[e, ® 1]. (It suffices to establish this for elements of the form
[a]). Hence [e, ® 1] is an order unit for the pre-ordered group.

We next wish to show that n[e, ® 1] € —H for all positive integers n. Suppose
not; that is, for some n, there exists a in ¥ ® A such that [e, ® 1] + [a] = [0];
equivalently ([5; Section 4]) there exists a, = a, as well as x with {e, ® 1,x,a,}
orthogonal so that (¢, ® 1) + x + a, = x.

Define functions {s,,} as in Lemma 4.1 of [5],
S,r)=sup{sE€NU {0}:e,®1=<e,, ®r}

(since r is already an element of F® A, e, ® r is to be interpreted as r repeated
down the diagonal mn times. In that lemma, it was assumed that A was simple,
but in fact simplicity is not required to show

(@) d < fimplies s,,(d) =< s,,(f);
(b) if d, f are orthogonal, then s,,(d + f) = s5,,(d) + s, (f).

Next, we see that stable finiteness of A guarantees that all values of s, are
finite; a proof is included, as it is omitted from [5]. Say e, ® r fits inside a
t by t matrix over A. It will be shown that ¢,,, ® 1 < ¢,, ® r is impossible. Let

E=e¢,,®1. If {x;} converges to E, and x;< e,, ® r, then for suitably large i,
there exist p, g so that px;q = E (since E is a projection), whence E = v(e,, ® ru

(for some v,u). Since e,, ® r fits inside the top ¢ by ¢ square, we may suppose
E = EvE(e,, ® r)EuE; by direct finiteness of E(F® A)E =M, A,

E = E(e,, ® r)'EuEVE = (e,, ® r)EuEUVE.

But ¢,, ® ris annihilated on the left by a subprojection of E (as e,, ® ris essentially
a t by t matrix), a contradiction.

Applying (a), (b), and the finiteness of the s,, to the equation, we deduce for
all m,

Sp(x) = s, (x) + s,,(a) + s,,(e;, ® 1);

thus s,, (e, ® 1) = 0. This is obviously impossible, and so n[e, ® 1] & —H.

By [10; 18.2], the pair (K, (4),[e; ® 1]) admits a state, that is, there exists
a group homomorphism
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[:K;(A),H,[e, ®1] > RR",1.

Define functions on M, A =M, ® A C F® A; D,(x) = f([x])/n. Then each D, is
a Cuntz’s dimension function: Obvious are properties (i), (ii’), (iii), (iv), and (ii)
follows from [5; Lemma 3.1].

Hence we have established:

PROPOSITION 1.1. If A is a stably finite C* algebra, then A possesses a
Cuntz’s dimension function extendible to all matrix rings.

SECTION 2

‘Here we show that any stably finite C* algebra admits a homomorphism to
a finite AW™ factor.

Let {A;: i € N} be a countable collection of C* algebras. Define thé {"-product
of the {A,},

I”({A,}) = {a=(a;) € wA,:sup;|a;| <=}

This is called a C *-sum in some references (e.g. [1; Section 10]). With the supremum
norm, I”({A,}) is a C* algebra. If A = A, for all i, we write instead, [ (A). Define
the closed ideal of [ ({A;}),

¢o(4;) = {a = (&) € I”({A;}):lim sup ||a;|| = 0}.

Set A = 1”(A)/c, (A); with the quotient norm, this is a C* algebra, and the norm
is given by |(a;) + ¢, (4)] = lim sup |ja;]. To avoid disrupting the flow of the paper,
I have incorporated some results that are either routine or well known into the
Appendix.

A C* algebra T is said to R,-injective if for all a,b in T, a*a < b*b implies
there exists ¢ in T such that a = ¢b.

PROPOSITION 2.1. If {T,:i € N} is a countable collection of C* algebras,
then, T = 1"({T;})/ ¢, (T})

(1) is Ry-injective and

(ii) satisfies, given a in T, there exists c so that ||c| = 1 and a = c(a*a)'/>.

Proof. Suppose a*a = b*b, with a, b in T. By Lemma A-1 (in the Appendix),
there exists for each j in N, an element z; in T with |lz;]| = 1 and |a — z;8]| = 1/J.
Since T' inherits the quotient norm from I”({T}}), we may lift all of a,b,z; to
sequences (a;),(b;),(2;;) respectively so that

sup; [la;|| < 2||a|l, sup; [|5:| = 2|5, and for all j, i llz;:ll <1+ (1/2).

For each j in N, there exists an integer K (j) so that for all { = K (),

la; — 2, b: < 2/7;
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moreover, we may assume that K(j) < K(j+ 1). For each positive integer
i = K(1), let L({) denote the largest integer with K (L({)) = i. Then L(f) = L(i + 1),
and L(i) becomes arbitrarily large. Define

{0 i< K(1)
¢ = .
2r). 1= K(Q).

Thenforalli = K(1), |a; — ¢;b;]| < 2/L(i), and |c;|| < 1 + I,A(i)—l. Hence the sequence
(c;) belongs to {*(T;), and if ¢ is the image of (c;) in 7, it follows that a¢ = cb
and ||c]| = 1.

Now (ii) follows from the identity a*a < (a*a)*’* (a*a)'/>.

PROPOSITION 2.2. Let A be a C* algebra, I a closed ideal, and T=A/I
the quotient algebra.

(i) If A is X4-injective, so is T;
(ii) If A satisfies both conditions (i), (ii) of Proposition 2.1, then so does T.

Proof. We show, to begin with, that if A is R -injective (satisfies (ii)), then
given x in 7, there exists y in 7 with (x*x)'/? = yx (with additionally ||y[| = 1).

Lift xto Xin A. Since ((X *X)/?)® = X *X, there exists Yin A with YX = (X *X)'/?
(if (ii) holds, we may also assume ||Y| < 1). Sety =Y + L

Now given x, £ in T with t*t < x*x, we find e in T with ¢ = ex. Lift ¢ to U
in A, and lift x*x — £*¢ to a positive element C in A. Then

U*U+ C+ I=x*x, and U'U= U*U + C,

so there exists F in A with U= F({U*U + C)"2 Hence if f=F+ I, then
1/2

t = f(x*x)'/%. By the preceding paragraph, there exists y in T with yx = (x*x)'/?,
so t = fyx.

A C* algebra A is called an AW™ algebra, if every maximal commutative
*-subalgebra is of the form C(X), X extremally disconnected; equivalently, for
all a in A, there exists a projection p such that pa = a and ya = 0 implies yp = 0,
and additionally, suprema of projections- exist. If one requires only the single
projection p to exist for each element @, then A is called a Rickart C* algebra.
The standard references are [16] and [1].

Two elements of a C* algebra, x, y are called orthogonalifxy = xy* = yx = x*y = 0,
and a set is called orthogonal if all of its elements are mutually orthogonal. We
shall usually be restricting the notion of orthogonality to symmetric elements,
where it reduces to xy = 0.

PROPOSITION 2.3. Let A be an R,-injective C* algebra that has no uncount-
able sets of orthogonal symmetric elements. Then A is an AW algebra.

Proof. We begin by showing A is Rickart, that is, we may find for each x
in A, a projection p such that xp = x, and that xy = 0 implies py = 0.

First suppose x = x*.Let { y;},be a maximal orthogonal set of selfadjoint elements
of A, such that xy;, = 0. By hypothesis, we may assume I = N. Set
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2

Y:
y = i .
2 2 |yill®

Then xy =yx =0 and y= 0. If (x + y)z= 0, then (x + y)2zz* = 0, so multiplying
by x, x®22* = 0, whence xzz* = 0, but yzz* = 0 for the same reason, so {z2z2%,y,}
would be a larger orthogonal set, a contradiction. Hence x + y is not a zero divisor.

Now xx* = x* =< 2® + y* = (x + y)(x + y)*,s0 there exists an element p in A with
x = (x + y)p (N,-injectivity applied on the other side). Multiplying by x on the
left, x*> = x*p, but since x is in the closure of the left ideal generated by x2
we obtain x = xp, and thus yp = 0. Then (x + y)(p* — p) = 0, so since x + y is not
a zero divisor, p = p®, that is, p is idempotent. Also, from (x + y)px = x%, we have
(x + Y (px — x) = 0, so px = x, and similarly py = 0. Hence xp* = x, and yp* = 0,
whence (x + y)(p* — p) = 0, and thus p = p*, so p is a projection. Finally, suppose
xz = 0; then axpz = 0,s0 (y + x)pz = 0,and thus pz = 0.So p is the desired projection
for x.

Let x now be an arbitrary element of A. As x*x is selfadjoint, there exists
a projection p with px*x = x*xp = x*x, and x*xz = 0 implying pz = 0. Then
(px* — x)xp — x) = x*x — x*x + x*x — x*x = 0, so xp = x, completing the proof
that A is Rickart.

By [1; p. 45, Lemma 3], countable suprema of projections exist. Since by
hypothesis (restricted to projections), the lattice of projections must thus be complete,
Ais AW™,

THEOREM 2.4. If A is a stably finite C* algebra, there is a (unital) *-
homomorphism from A to a finite AW™ factor.

Proof. Form/ﬁ\ as in Proposition 2.1. Now matrix rings over A are naturally
isomorphic to (M, A), so M, A is for example R,-injective, and all considerations
of A apply to M, A. If J denotes the ideal of sequences with all but finitely many
of the entries zero, then c¢,(4) is the closure of J, and it is a triviality to check
that {”(A) /J is stably finite. By Lemma A-2, A is stably finite.

Let % = {I,x-ideal of A:A/Iis stably finite}. If K = U I, is the union of an
ascending chain of elements of %, then A/K is stably finite (proof: if X,Y € M A,
and XY -1, € M K, then XY — 1, belongs to M, I, for some i, whence by the
stable finiteness modulo I;, YX — 1, lies in M, I, C M,K). Hence % possesses
maximal elements. Let L be one such. If L denotes the closure of L, then L/L
is the Jacobson radical of A/L; by Lemma A-2 and the maximality of L, L = L,
that is, L is closed.

At this point, we employ Cuntz’s dimension functions, viz. section I. Since
B = A/L is stably finite, B (and each of its matrix rings) has a Cuntz’s dimension
function (Proposition 1.1), call it D. We now show that the kernel of D is an
ideal modulo which B is stably finite, hence must be zero. '

Define Ker D = {x in B: D(x) = 0}. By the remarks before Proposition 1.1, Ker D
is a *-ideal, and it is implicit in the definition of K (B) that for all n,

M, (Ker D) = Ker D,
where D, is the extension to M, B. We need only show B/Ker D is directly finite,
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since M, B is an image of ]\7,,1\4 and is thus R,-injective. This will follow from
a lemma.

LEMMA 2.5. Let C be a C* algebra satisfying the condition: for all x in
C, there exists uin C with ||u| < 1 so that x = u(x*x)'’>. Let D be a Cuntz’s dimension
function on C.

(a) For x in C, xx* — 1 belongs to Ker D implies x*x — 1 belongs to Ker D;

(b) Let P be the norm closure of Ker D in C. For x in C, if xx* — 1 lies in
P, so does x*x — 1.

Proof. (a) Write
(1) x=u(x*x)"? with |ul=1.
Then x*x = (x*x)"%u*u (x*x)'/% whence x*xu*ux*x = (x*x)z;'hence
x*x(1 — u*u)x*x = 0.
As1=u*u, 1 — u*u)'’?x*x = 0; from the functional calculus, we deduce that
(2) (1 — w*u)x*x)'? = 0.

Multiplying on the right by ©*, we obtain

(3) urux® = x*.
From (1) and (2),
(4) u'x = uu (@0 = (*x)'%

then premultiplying by u yields that uu*x = x. Thus

(5) (uu® — ax™ = 0.

Now (2) implies,

(6) D(1—u'u+ x*x) = D1 — u*u) + D(x*x);
and from (5),

(7) D1 — uu® + xx*) = D(1 — uu”™) + D (xx¥).

As D(1 — xx*) = 0, we have D(xx*) + D(1 — xx*) = D (1) = 1; therefore D(xx*) = 1,
whence D(x*x) = 1. By (6) and (7), it follows that

8) D(1—-uu™y=D(1—u"u) =0.

Inasmuch as D(xx* — 1) = 0 and u*xx*u = x*x (from (4)),



236 DAVID HANDELMAN
D(x*x — u*u) = D(u* (xx* — Du) =< D(xx* — 1) = 0,
and thus
9 D(x*x — u*u) = 0.
By (8), (9),
D(x*x—-1)=D@E"x—u*u) + Dwu—1) =0,

whence D (x*x — 1) = 0. This concludes the proof of (a). (b). Suppose xx* — 1 belongs
to P. Writing (xx*)'/%2 — 1 = (xx* — 1) ((xx*)*/% + 1), we see that (xx*)'/% — 1 lies
in P. Let J be the ideal P/Ker D in C/Ker D; J is the Jacobson radical. Let
Y denote the image of (xx*)*/? in C/Ker D. As Y + J is invertible in C/P, Y
is invertible in C/Ker D. Hence there exists z in C with

(xx*)2z=1=2(xx*)""?> mod(Ker D).

As Ker D = (Ker D)*, we may assume that z = z*. Thus zxx*z — 1 lies in Ker D;
by part (a), x*2°x — 1 does as well. Now

(1 — x*x)x*x (x*2%) (2% %) = (1 — 2*2)x* (xx™)V 2 (xx*) /% 22 (2% %)
=(1-x*x)x*2°x modP

=1-x*x mod P.

But (1 — x*x)x*x = x*(1 — xx*)x, so the former lies in P, whence 1 — x*x does as
well.

Conclusion of Proof of Theorem 2.4. With C = M_B, 2.5 applies; hence with
P the closure of Ker D, B/P is stably finite.

Since B was constructed so that it had no proper stably finite images, we
must have P = {0}, and thus Ker D = {0}. Then B can have no uncountable sets
of orthogonal elements (if {y;}; were an uncountable orthogonal set of nonzero
symmetric elements, then for some rn, the subset of I defined by

1
K, = {j e I:D(y,) >—-}
n

would be infinite, so if y were a sum of n + 1 distinct elements of K,, D(y) > 1,
a contradiction). By Propositions 2.1, 2.2, 2.3, B is an AW™ algebra, and by
construction, B is finite. Hence A — A — B yields a unital *-homomorphism to
a finite AW™ algebra. This completes the proof of the Theorem.

SECTION 3

Propositions 2.1, 2.2, 2.3 admit a surprising consequence. Let {A,;:i € N} be
a countable collection of C* algebras, and form
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I”({A;}) = {(a;):a; € A;, sup, ||a,|| < o}

with the sup norm, and let M be its ideal of null sequences. Suppose it is known
that all (simple) images of [”({4;}) with M in the kernel are stably finite, and
let Pbe amaximal ideal containing M. Then B = [*({A,})/P has a faithful dimension
function, whence from Proposition 1 (and its remark), and Propositions 2.2 and
2.3, B must be an AW™ algebra and a factor.

One condition on the A; that will guarantee that all images of ["({4,}) are
stably finite, is unitary 1-stable range [14]:

A C™ algebra A satisfies unitary 1-stable rangeif for all a,bin A, ifaA + bA = A
implies that there exists a unitary u such that a + bu is invertible.

The condition aA + bA = A is better expressed: aa® + bb* is invertible. Now C*
images of such C* algebras retain this property [14; 8(c)], as do the !”-products,
1”({A,}), if each of the A, has it. Unitary 1-stable range trivially implies stable
finiteness (for it implies the usual 1-stable range of algebraic K-theory, and this
goes up to matrix rings and implies direct finiteness), so all images are going
to be stably finite. Included in the class of C* algebras with unitary 1-stable
range are AF algebras [14; 12] and finite AW™ algebras [14; 3]. Robertson [18]
has characterized C* algebras with unitary 1-stable range as those whose unit
group is dense.

If A is a UHF algebra, let A denote the II, hyperfinite factor generated by
the tracial representation of A. Define an ideal I of [”(A),

I={c=(c;) € I”(A):limsup tr(c} ¢;)/* = 0}.

Then an easy consequence of Kaplansky’s density theorem yields that the natural
embedding, [”(4)/I N I (A)) — I (A) /I is actually onto. Since all maximal ideals
of 1”(A) that contain M also contain I N [*(A), we deduce that all nontrivial
simple images of [”(A) (that is, not arising from a point of N) is equal to a
W™ factor constructed as an ultraproduct of W* algebras.

More is true; viz. 3.1.
The definition, R,-injective, stems from the following considerations. The condi-
tion a*a < b*b implies a = cb is equivalent to:

If f(b) = a extends to a continuous A-module homomorphism b4 — aA, then
there exists ¢ in A with f given by left multiplication by c.

This equivalence was found by William Paschke around ten years ago, but
I misplaced the reference. Of course the closure of a countably generated right

ideal is the closure of a principal right ideal, so such C* algebras are precisely
those which satisfy:

all continuous module homomorphisms to A from a countably generated right

ideal, are given by left multiplication by an element of A.

For general rings, drop the word, “continuous,” and the definition of (right)
Ro-injective for rings arises. This paper was motivated by the simple observation

N
that if R is any von Neumann regular ring then (,,,‘.’R)/ (®PR) is X,-injective, so
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that any simple stably finite image will be a continuous self-injective regular
ring. For regular rings, a condition that will guarantee that all images of wR
are stably finite is unit regularity ([11; Section 2] or, for a comprehensive treatment
see [10]). Not surprisingly, in view of the earlier remarks, for regular rings,
unit-regularity is equivalent to 1-stable range.

The “product by sum” result, in turn was suggested by a result (apparently
well known) mentioned by C. U. Jensen of Copenhagen in a lecture series, that
if {A;} is a countable collection of abelian groups, then (wA;)/ (@ A,;) is R,-algebra-
ically compact.

PROPOSITION 3.1. Let A be an AF algebra. Then any simple image of [~ (A)
whose kernel contains c,(A), is a finite W* factor.

Proof. Let S = N", equipped with the pointwise ordering. Write A as the C*
limit of finite dimensional algebras {C,,},.cn. To each sequence s = (n(1),n(2),...)
in S assign a W™ algebra of finite type, B, = [”(C,,,C,¢)»--.)- With the obvious
maps, [”(A) is the C* direct limit, over the directed set S, of finite W* algebras
{Bs}sES'

Let M be a maximal two-sided ideal of {”(A) containing ¢, (A). Then R = ["(A) /M
is a finite AW™ factor, as follows from the discussion immediately preceding.
On the other hand, R is the C* limit of quotients of finite W* algebras,

{ars)
B,NnM)}
Any image of a finite W* algebra admits a homomorphism to a finite W* factor
(e.g. [1; p. 208, Example 2]), hence possesses a (not necessarily faithful) trace.
As the trace space of R is the inverse limit over a directed set of nonempty compact

sets (the trace spaces of the B,/(B, N M)), it is nonempty, so R has a trace. A
finite AW™ algebra factor with a trace is W* [9], completing the proof.

Minor modifications of the proof can be made in case either A is nonseparable,
or the /"-product is taken over a larger index set than N.

APPENDIX: TECHNICALITIES

LEMMA A-1. Let A be any C* algebra, and let a, b be elements of A such
that a*a < b*b. Then there exist z;in A with ||z;| = 1 and lim z;b = a (in the norm).

Proof. (Essentially due to Joachim Cuntz). This is divided into three steps.
Set ¢t = (a*a)'/?, s = (b*b)'/%. We may obviously assume 0 is in Spec b*b.

" (i) There exist w; in A with |lw,| =1 and a = lim w;t.

Regard A as a subalgebra of B(H) for some Hilbert space H. If ¢ = ut is the
polar decomposition of a (in B(H)), and f is a continuous real-valued function
on R with f(0) = 0, then uf(¢) lies in A ([4; 1.3]). In particular, if f, is of the
form,
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0 x=<0
f.x)=4{nx "0==x=<1/n
1 x=1/n

then f,(¢)t converges to ¢ (as 0 lies in its spectrum); thus uf, (£)¢ converges to
a; set w; = uf;(t).

(ii) There exist x; in A with x;| =1 and ¢ = lim x;s.
This follows the idea in [6; 1.7.2]. Set Y,, = s*(1/n + s%)7%; then

()G

(Y, — DI LY, — DE]* = (Y, — DEX(Y, — 1) < (Y, — Ds(Y, — 1)

s?\/[1 2
= (‘—; —+ s .
n n
Since the real valued function f(v) = v/(1/n + v)® assumes a maximum for positive
v of n/4, we deduce that [(Y, — 1)¢|* =4/n; setx; = Y, — 1.

= 1.

Now

(iii) There exist y; with ||y, = 1 and s = lim y; .

If we write b = ws in its polar decomposition in B(H) (as in (i), as is well known,
w*b = s. As in (i), we find continuous functions { f,} with

f.(0) =0, O0=<f, =1, and wf,(s)s

converging to b. Now f, (s)w* = (wf,(s))* belongs to A ([4; 1.3]), and
f.(slw*b = £, (s)s which converges to s. Set y, = f;(s)w*.

Finally, set z; = w;x;y;.

A-2. If T is any ring, and J is its Jacobson radical, then direct (stable)
finiteness of T implies that of T'/J.

Proof. Since J(M,T) = M,J, we need only show direct finiteness holds, for
n=1. If xy — 1 belongs to J, then xy belongs to 1 + J whence xy is invertible
in T. There thus exists z in T with xyz = 1 = zxy. By direct finiteness of T, y
is invertible, so is invertible mod J, and thus yx — 1 belongs to «J.
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