THE OBSTRUCTION TO THE FINITENESS OF THE TOTAL
SPACE OF A FIBRATION

Karel Ehrlich

INTRODUCTION

Given a space E, we say it is finitely dominated if it is a homotopy retract
of a finite CW complex. That is, there is a finite CWcomplex K and maps £ —» K — E
so that the composition is homotopic to 1;. Wall [20] showed that in that case
the singular chain complex of the universal cover E is chain equivalent to a finite,
finitely generated projective chain complex P, over the group ring Z=, E. He further

showed that O(FE) = 2 (—1)iP,- € K, (w,E)is zero if and only if E has the homotopy
type of a finite CW complex.

Suppose F—l> E 5 B is a fibration, where both the fiber F and base B are
finitely dominated. Then E is also finitely dominated [17] and the question arises:
how is O(E) related to O(B) and O(F')? For the trivial fibration E = F X B, there
is the product formula of Siebenmann [19] and Gersten [13],

O(E) = x(F) s, O(B) + x(B) i, O(F) + O(B) ® O(F),

where x(F) is the Euler characteristic of F, and s,, i, are maps from K, (w,B),
K,(w,F) into K (w,E) induced by the corresponding maps of the fundamental
groups. Lal [17] obtained the same formula for a fibration in which the base
B has the homotopy type of a finite complex. The product formula breaks down,
however, if O(B) # 0. Anderson [6] computed p, O(E) € K, (w, B) for some fibra-
tions and showed that the orientation of the fibration had to be taken into account.
I showed that p, O(E) depends only on B and F and the orientation [10], [11].
Then Pedersen and Taylor [18] gave an explicit formula for p, O(E).

In this paper we are interested in the actual computations of O(E) € K, (m, E)
rather than its image in K, (w,B). The only known result in this direction is
Anderson [5]. He shows that O(E) = 0 for a principal S* bundle, S' - E — B,
where m,S' injects into abelian =,E. I derive several formulae and show that
under various conditions an analog of the product formula holds for orientable
fibrations.

By an orientable fibration I shall mean a Hurewicz fibration ' — E — B, which
is a pullback of a fibration with a simply connected base space. That means given
a space F, the orientable fibrations with fiber F are classified by a universal
fibration F — EF — BF, where BF is simply connected. This notion of orientability
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is stronger than the more usual one due to Serre, where one merely requires
w, B to act trivially on H, (F).

Section 3 contains the major results (see 1.4 for the definition of a pseudo-abelian
fibration):

THEOREM A. Let F—E — B be an orientable fibration with both F and B
finitely dominated. Then w,E = w,F X w,B and O(E) = O(F X B), provided any
one of the conditions below is satisfied.

1. x(F) # 0 and O(F) = 0.

2. x(F)#0 and the center of w,F has finite index in «w, F.
3. w, F has trivial center.

Notice that the second half of condition 2. is satisfied if , F is either an abelian
group or a finite group.

THEOREM B. Let F = E — B be an orientable pseudo-abelian fibration with
F and B finitely dominated, such that i : w,F — w E factors through a free abelian
group. If x(F') = 0 and if w,EF is a free abelian group, then O(E) = 0.

THEOREM C. Let F— E— B be a Steenrod fiber bundle associated to a
pseudo-abelian principal G bundle, where G is a connected, compact Lie group

acting smoothly on the compact manifold F. If x(F) = 0 and B is finitely dominated,
then O(E) = 0.

There are also some results on non orientable fibrations, in particular Theorems
2.5, 2.7 and 3.5. The methods employed throughout the paper can just as well
be applied to compute the Whitehead torsion of a fiber homotopy equivalence.
Therefore all the theorems in this paper are true for PL fibrations if K, () is
replaced by Wh(w) and Wall finiteness obstruction is replaced by Whitehead torsion.

The results in this paper form part of my Ph.D. thesis. I would like to thank
my advisor P. J. Kahn for his help and supervision.

1. ALGEBRAIC PRELIMINARIES

In this section we define a basic pairing in Proposition 1.2, which will enable
us later (in 2.7 and 3.5) to get an explicit description of the chain complex of
the total space in terms of the chain complexes of the base and fiber. We also
introduce the concept of a pseudo-abelian map which comes up as a necessary
condition in our main results. Proposition 1.7 shows that without this condition
the basic pairing is useless.

Notation 1.1. Let = be a group. A module over the integral group ring Zn
is called a = module.

2. Let K, (w) be the Grothendieck group of m modules, which admit a finite
resolution by finitely generated projective w modules. Let K, (w) denote the reduced
group. If v is a subgroup of m, then let G, (w) be the Grothendieck group of =
modules admitting a finite resolution by w modules, which are finitely generated
projectives when restricted to v. To indicate that a w module M admits such a
resolution, and hence determines a class in G, (w), we may write M € G, (w). Note
that by a Theorem of Grothendieck (Bass [8], p. 407) K, () is naturally isomorphic
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to the Grothendieck group of finitely generated projective modules. Similarly, G, ()
is naturally isomorphic to the Grothendieck group of = modules, which are finitely
generated projectives, when viewed as v modules.

3. Given a continuous map f: A — B, it induces a map of fundamental groups
also denoted by f :m,A— wB. This in turn induces a homomorphism
K,(w,A) - K,(w,B) denoted by f,.

PROPOSITION 1.2. Letv — 1 S o be a short exact sequence of groups. Then
there is a well defined pairing G, (w) ® K,(c) = K,(w). Let M € G, (w) and
N € K,(o), then the pairing is given by M ® p* N together with the diagonal w
action. Here p*™ N denotes the @ module obtained from N via the map p.

Proof. Without loss of generality we can assume that M is v projective and
N is ¢ projective. Therefore tensoring over Z will preserve short exact sequences
and direct sums. The only thing to prove then is that M ® p*Zo is a finitely
generated projective m module. M ® p* Zo=M® i, Z=i,(*M®Z)=1i,i*M.
The second equality is Frobenius reciprocity (Bass [8], p. 563). By hypothesis
1* M is finitely generated projective and so i, i* M will be.

Remark 1.3. This pairing was defined by Gersten [13] when w =v X ¢ and
by Anderson [4] when © was a semidirect product of v and o.

Definition 1.4, An epimorphism p : w — o of finitely presented groups will
be called pseudo-abelian, if the kernel of p is finitely presented and if it intersects
the commutator of = trivially. The resulting short exact sequence ker p > w—»> o
will be called a pseudo-abelian extension. A fibration p : E — B will be called
pseudo-abelian if the map p : w, E — w, B is pseudo-abelian.

LEMMA 1.5. Given a short exact sequency A >—> w—»> o, the following are
equivalent:

1. A>—> w—> o is a pseudo-abelian extension.

2. A »> w—» o is a pullback of an abelian extension via the map o —» c;b.

3. A injects into .

4. A is a central subgroup in wand H,p : H,w — H,o is an epimorphism.
Here 7, denotes the abelianization of .

Proof. We will prove here only 3. <« 4. The Serre spectral sequence of
A > w —» ¢ gives rise to a diagram of exact sequences:

A » T —=» O

H,m—> H,o— H,(0;A) —> =@, —» o,

The composition A —» H,(0;4) — 1, is an injection if, and only if, A = H,(c;A)
and H,o — H (0;A) is the zero map. H,(c;A) = A if and only if A is central
in .

Remark 1.6. The characterization 2. in Lemma 1.5 indicates why we call
the extension pseudo-abelian. We often consider an extension as an element of
H?(0;A), in that case the pseudo-abelian extensions form the subgroup
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Ext(H,0;A) C H?(o;A), where A is the trivial ¢ module. This is easily seen
from Lemma 1.5 and the universal coefficient theorem

0— Ext(H,0;A)— H?(0;A)— Hom(H,0,A)— 0.

PROPOSITION 1.7. Let A — w—» o be a central extension of o by A, where
A 1s a finitely generated free abelian group. Then the following are equivalent.

1. A >> 7 —» o is a pseudo-abelian extension.

2. There is a non zero w module M, which is a projective finitely generated
Z(A) module.

3. G, (w) has an infinite cyclic summand Z.

4. The trivial mw module Z belongs to G, (w) and it represents the zero element
in G, ().

Proof. The implications 3. = 2. and 4. = 2. are obvious.

1. = 3. The free abelian group A injects into w,, and also into w_,/torsion.
Let M be a matrix, with integral entries, representing this monomorphism between
finitely generated free abelian groups. Let N be a matrix with rational entries
which is a left inverse to M. Let n be an integer, such that n-N is a matrix
with integral entries. The matrix n-N defines a homomorphism =, /torsion —» A
such that the composite A — =, /torsion — A is a monomorphism of index n. Denote
by r the composite w— m_, /torsion - A and by i the injection A — w. Then the
map ri is a monomorphism of finite index. The maps { and r induce maps
r*: K,(A)— G, (w) and t*: G, (w) > K, (A). The composite i*r* = (ri)* is multi-
plication by the finite index of the map ri. K,(4) is infinite cyclic so i*r* is
a monomorphism. That gives 3.

1. = 4. Note, that the trivial module Z represents the zero element in K,(A).
That can be seen by looking at the cellular chains of the universal cover of a
torus and from the fact that x(torus) is zero. Let r*: K,(A) — (G, (w) be the

homomorphism constructed in the preceeding argument. Then Z = r*Z is zero in
G, (7).

2. > 1. Let M be as specified. There is a homomorphism of w to the group
of automorphisms of M, determined by the = action on M. A is central in m,
and so 7 acts on M via the Z(A) automorphisms. Projective modules over Z(A)
are known to be free, so once we fix a Z(A) basis of n elements for M, we get
an isomorphism between the Z(A) automorphisms and Gl(n,Z(A)), the group of
n X n invertible matrices over the group ring Z(A). So we have a sequence of
maps

de
Ao moGlZA) >+ A A,

where det denotes the determinant map, and the composite is just multiplication
by n, so A injects in m_,. *

Remark 1.8. If a finitely generated free abelian group A is a subgroup of
finite index in m, then every finitely generated m module admits a resolution,
of length at most (rank of A) + 2, by modules in G, (). Therefore the natural
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map G, (w) = G(w)isanisomorphism. Here G (7) denotes the ordinary Grothendieck
group of finitely generated = modules.

2. TWISTED PRODUCTS

Suppose that G is a compact Lie group or a discrete group and let G—» X — B
be a principal left G bundle over a finitely dominated base B. For a right G
space F define a left G action on F X X diagonally. The quotient space F >(§ X

is called the twisted product of F' and X and the resulting fibration F — F >C§ X—B

is called a Steenrod bundle. We are interested in computing the Wall obstruction
of F X X, when F'is a finite G-CW complex.
G

A finite G-CW complex is built up inductively by attaching finitely many
equivariant cells ¢” of the form e" X G/H, where H C G is some closed subgroup
(H is not fixed), by an equivariant map from S"~* X G/H. For a complete definition
see [16] or [22]. Here G/ H are the right cosets, G acts on G/ H by right translation
and e” is an ordinary n-ball with the trivial G action. We will say that a G
cell ¢” is of type (H) if the space it represents is of the form (¢” X G/K,S" ™' X G/K)
with K conjugate to H.

Definition 2.1. Let xy(F) = Z (—=1)" number of n-cells of F of type (H).

We will call x,(F) an equivariant Euler characteristic of F. A routine argument
[11], using cohomology with compact support, shows that x,(F) is a G invariant
of the G space F. That is, x;(F) does not depend on a particular G triangulation
of F.

LEMMA 2.2. Let F be the universal cover F. Then there exists a short exact
sequence of topological groups w, F>—> G—> G such that Fis a finite G-CW complex
and the projection F— F is a G map.

Proof. See Bredon [9] pp. 63-66 for the existence of G acting on F.

To see that F'is a finite G-CW complex we will describe the G cell of F which
covers a (G cell of F. Let ¢ be a G cell of type (H) and restrict the G action
on F to an H action. H fixes a point x in the interior of c; pick a point ¥ € F,
which lies over x. The choice of x and ¥ determines a monomorphism H »— G,
which covers the inclusion H C G and such that H, acting on F via the map
H — G, fixes the point #. Let H’ be the isomorphic image of H in G under this
map. Then the following diagram describes the G cell covering c:

G cell

" x G/H', S*'x G/H') —» (F* F*™)
‘l' G cell ‘l’
("X G/H, S ' x G/H) » (F",F*™)

Here we assume that the cell ¢ is an n dimensional G cell and F" stands for
the equivariant n-skeleton of F.

Notice that two G cells of the same isotropy type may very well lift to G
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cells of different isotropy type, unless of course, G is a connected group.

LEMMA 2.3. Let o,B be two G equivariant maps G/H’' — F, and let &, denote
the induced maps X/H = G/H’ X X— F X X= F§ X. Then & and B induce the

same maps on fundamental groups.
Remark 2.4. This means that ap:m, (X/H)y— w, (F é< X) depend only on the

conjugacy class H’ and not on a particular inclusion of G/H'’ in F. Therefore,
let us denote by j,. the map on fundamental group induced by G/H’ — F.

Proof of 2.3. Consider the following diagram:

X - G/H' x X (;1 FxX
Bx1
| mod H’ { mod H' | mod H'
X/H = G/H' X X :; FxX
B
\ !
G/H’>G§X :;; F§X=F§X

First let us observe that rs is a homeomorphism (Bredon [9], p. 81). This was
the homeomorphism used in the statement of the Lemma to identify X/H and
G/H' ><§ X. Then notice that as and Bs define two cross-sections to the fibration

F— FxX— X/H' =X/H. F is simply connected so &s and s induce the same
isomorghism on the fundamental groups.

THEOREM 2.5. Letjg:w,(X/H)— w,(F Z( X) be the map from Remark 2.4
and let G be a compact Lie group, then

OF X X) = xuz (F): ()« OX/H).

Proof. Proceed by induction on the number of G cells of F using the Sum
Theorem of Siebenmann [19].

O((F U c") X X) = O(F‘é X) + (Ju)sOe" X X/H) = (ji.)«O(S8" " X X/H)
= O(F’zf X)+ (1) () O(X/H).
Definition 2.6. If G = =, Bthentheresulting fibrationF— F X B— Biscalled

w1 B
a flat bundle.

THEOREM 2.7. Let F— E—i B be a flat bundle with B finitely dominated,
and let C, (F) denote the cellular chains of F. Then x = E (-1)'C,(F) e G, r(m E)
and O(E) = x ® p » O(B).
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Remark 2.8. This is a generalization of a result of Anderson [4]. He proves
this theorem assuming that the m, B action on F has a fixed point.

Proof. Lift the action of m,B to the action of G on F as in Lemma 2.2. G
acts freely on F' X B and the quotient is E. That means F X B is the universal
cover of E and G = w, E. Therefore x € G, p(m,E).

O(E) = > (-1)"C,(E)
= > (=1)""C,(F) ® p* C,(B)
= > (-1)C.(F)® p*O(B) = x ® p* O(B).

Notice, that we used the pairing from Proposition 1.2.

Remark 2.9. If we compare the results from 2.5 and 2.7, we see that

x= D xulF)Z((w E/H)

HCw,E

when m,B is a finite group. This can also be seen directly from the definition
of x.

3. ORIENTABLE FIBRATIONS

Given two orientable fibrations F—E—-B and F»E—B and a map
¢ : mw, E—> w E satisfying certain commutativity conditions, then O(E) = ¢, O(E).
This statement (Lemma 3.2) will be the starting point for the computations in
this section; we will apply 3.2 repeatedly. Whenever we succeed in computing
the Wall obstruction for a particular fibration then Lemma 3.2 will enable us
to extend the result to a larger class of fibrations with the same fiber. In particular,
Theorem A comes from the knowledge of the Wall obstruction of the trivial fibration.

Before stating Lemma 3.2 we need the following definition.

Definition 3.1. Given a CW complex F, let F— EF — BF be the universal
(classifying) fibration for orientable fibrations with fiber F. This is a fibration
with a simply connected base space BF, such that any orientable fibration F— E — B
is a pullback of F— EF — BF via a map uniquely determined (up to homotopy)
by the fiber homotopy type of F— E — B.

LEMMA 3.2. Suppose we have two orientable fibrations F —- E — B and
F — E — B with the same connected finitely dominated fiber F and the same
complex as the 2 skeleton of both B and B. If there exists a map ¢ : w,E — w,E
such that the following diagrams commute
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_ b
) w E —> . E
_ &
wE — mE and \ /
w, EF

T, B = B

and if O(B) = O(B) and X(B) = x(B) then O(E) = ¢,O0(E).

Proof. See [11] for a complete proof or see [12] for an outline of the same
proof.

LEMMA 3.3. Let G,(F) be the image of the boundary map w,BF — w,F. Then
G, (F) is the trivial group if any one of the three conditions below is satisfied:

1. xF # 0 and O(F) = 0.
2. xF # 0 and the center of w ,F has a finite index in «,F.
3. w,F has trivial center.

Proof. The group G,(F) has been defined and studied by Gottlieb in [14]
and [15]. Theorem 3.1 in [15] gives the first assertion. Theorem 1.4 in [14]
states that G, (F) is a central subgroup of m, F. To show the second assertion let
C be the center of =, F. C is finitely generated abelian so C = @ ZD 69 Z/p; ‘Z

where p; is a prime. consider the subgroup H = @Z@ @Z/p Z C C. Let F be

the finite covering of F such that w, F= H. Then Theorem 4.1 in [15] implies
that G, (F) is trivial. G,(F) N =, F C G,(F) (Theorem 6.1 in [15]) and since any
nontrivial central subgroup of 'n’lF intersects w, F nontrivially we get that G, (F)
is trivial.

THEOREM A. Let F— E — B be an orientable fibration, with both F and B
finitely dominated. If G, (F) is trivial then w,E = w,F X w,B and O(E) = O(F X B).

Proof. If G,(F) is trivial then =, F = w,EF (remember that BF is simply
connected). The map w,E — w,EF = «,F defines a splitting of =, E and therefore
an isomorphism ¢: @, F X w,B— @, E. The map ¢ satisfies the commutativity
conditions of Lemma 3.2, where F — E — B is taken to be just the product F X B.

Theorem A handles most of the cases where xF # 0. To get some results for
xF = 0, we will use the pairing from 1.2. We will adopt the arguments from
2.2 and 2.7, suitably generalized to apply to fibrations instead of bundles.

Given a fibration F 5 E—P> B, with a connected fiber F, it determines a lifting
function, which in turn determines an action of the loop space QB on F. Let
v be the kernel of p : 7w, E — «,B and let v — F'— F be the regular covering space
determined by the epimorphism =, F —» v.

LEMMA 3.4. With the notation as above, .
a) There exists a covering space (in the nonconnected sense) v— QB — QB and
an action of QB on F covering the action of OB on F.
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b) This action defines an action of w,E on the homology of F: hence H,F is
a v, E module.

Proof. 1t is not hard to verify that Theorem 9.3 on page 66 of Bredon [9]
holds when the Lie group G is replaced by the loop space QB. To show, that
the condition of 9.3 is satisfied, we have to verify, that for all g € QB the induced
map g : F — F lifts to a map F— F. That is equivalent to showing that

given any map « : S' - F such that Sl—a> F— E is nullhomotopic then

R SF 5 F 5 E is also nullhomotopic. By looking at the principle homotopy bundie
OB - F X PB — E, where PB is the path space of B, we see easily that ia
nullhomotopic implies iga is nullhomotopic. Therefore Theorem 9.3 gives us the
desired covering v— QB — QB and an action of QB on F, which covers the original
action.

The action of OB on F defines an action of w,0B on H,F. The second part
of the Lemma asserts only that w,Q0B = w, E. To see this consider this diagram
of principal hoomotopy bundles:

v — OB —_ OB

I ! !

v —» FxPB — FXPB
! I
E = E

Let us also look at the homotopy exact sequences of these bundles:

7w, OF > w, QB - v -
l ! I

w F > w, F - v
! ! /

m B = )
! l

— w, QB  —» wo (2B

! !

o F = wo

w,F— =, E is the trivial map since it factors as w, F — =, F— v— 7, E, therefore
w, E = w,0B (we assumed F to be connected).

THEOREM 3.5. LetF—l> E 5 B be a fibration (not necessarily orientable), with
fiber ar}‘d base connected and finitely dominated, and let v be the kernelof w, E — v, B.
IfH,(F) € G, (w,E), let

x(P) = D, (~1)'H,(F) € G,(w,E),
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then
O(E) = x(B)i, O(F) + x(p) ® p*O(B).

Proof. Throughout this proof we will use the following Lemma, which can
be found in Bass [8] on p. 406: If a chain complex C, and its homology H, (C)
are finitely generated projective m modules, then= (—1)'C, = =(—1)°H,(C) in K, ().

Without loss of generality we can assume that B” dominates B. Then
H,..(B,B*) € Ky(w,B)=Z ® K,(w,B)

and this isomorphism splits (—1)"**H,,,(B,B") as (x(B) — x(B™)) + O(B) in
K,(w,B).

Let E, denote the restriction of E over the n skeleton of B, E, is then the
restriction of E over B”. From [21] we have O(E) = O(E,) + O(E,E,) and from
[17] we have O(E,) = x(B")i,O(F), because E, is a fibration over a finite CW
complex B”,

From the Serre’s spectral sequence for the fiber pair F— (&, E‘n)—p> (B,B™),
we obtain H,,,(E,E,) = H,(F) ® p* H,(B,B"), where =,E acts diagonally on the
tensor product. From 1.2 we see that H,_,(E,E,) is a finitely generated projective
7, E module and therefore

O(E,E,) = > (-1)"H,,(EE,)

=S ~1H, () ® (-1)""'p* H,,,(B,B")

= x(5) ® [(x(B) — x(B"))p*Zw,B + p*O(B)]
= (x(B) — x(B™)j +j*x(B) + x(p) ® p* O(B).

Here j is the inclusion v C m, E and we used Frobenius reciprocity again, just
as we did in 1.2. H,(F) € G (7, E), which means that j* H,(F) € K,(v) and there-
fore j«j* x(P) = i, OF).

By adding O(E,E,) to O(E,) we obtain the conclusion of the Theorem.

Remark 3.6. In general, it is difficult to say when H,(F) € G, (=, E). A
necessary condition is that the Eilenberg-MacLane space K (v;1) be finitely domi-
nated. This can be seen from H,(F) = Z € G, (w, E), which implies that Z € K,(v)
and that is equivalent to K (v;1) being finitely dominated.

On the other hand, if v is a free abelian group and =,B is a finite group,
then H, (F) always belongs to Gv(w, E). That is because G, (m, E) = G(w,E) (see
1.8) and H, (F) is finitely generated w, E module (since it is a finitely generated
v module).

For an orientable fibration with free abelian v, H, (F') € G, (w,E) implies that
the fibration is pseudo-abelian, see 1.7.
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We return to the orientable fibrations. An orientable fibration F — E — B is
a pullback from the universal fibration ¥ — EF — BF via a map k£ : B — BF. Let
¢ denote the induced map £ — EF.

LEMMA 3.7. If F>E—>B is an orientable fibration and F' is the regular
covering space from 3.4 then H,F is also a w,EF module. The w,E action

on H,F constructed in 3.4 comes from this w,EF action via the epimorphism
c:mE—> mw EF.

Proof. QB acts on F via the map Q& : OB — QBF. If we apply the generalized
Theorem 9.3 of [9], we see that there is a covering (not necessarily connected)
v— OBF — QBF and an action of QBF on F covering the action of QBF on F.
This time the conditions of 9.3 are trivally verifiable since QBF is connected.
We get a diagram of covering spaces:

1 l
OB - QBF
! l

QOB — QBF

and QB acts on F via the map OB — QBF . Consider the homotopy exact sequences
of these coverings:

7w, QB - v - QB  —» 7, 1B

| | \ !
T QBF — v - 7w,QBF > 1

The cokernel of w, QBF = w,BF — v is just 7, EF, therefore w, QBF = «,EF, and
7, E acts on H, (F) via the map ¢ : w, E — w,EF.

LEMMA 3.8. Let F— E—p> B be an orientable pseudo-abelian fibration with
F and B connected and finitely dominated, such that the kernel of p is a free
abelian group. If w,EF is free abelian and x(F) = 0 then O(E) = 0.

Proof. We will first show that there exists a commutative diagram

A . s w, E S
)\ i’ /
A

where A is a free abelian group of the same rank as A, j and m are injections
and r and s are surjections. w, EF is an abelian group, so ¢ will factor through
the abelianization of w,E. Let A : w,E — H,E be the Hurewicz map and let
¢’ : HHE - «w,EF be such that ¢ = ¢’h. The fibration is pseudo-abelian so
hj: A —» H E is still an injection and H, E splits up as a direct sum of A ® D,

w, EF
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where A is a free abelian group containing Aj(A) as a subgroup of finite index,
see proof of 1.7. Let i’ be the inclusion of A into H, E, ¢j is surjective and therefore
so will be c’i’. Let f be a right inverse to c’i’, that is let f : w,EF— A be a
map such that ¢’i’f= 1, g, here we used the assumption that w, EF is a free
abelian group.

Now define r’ : H,E— Aby r’(a,d) = @ + fc'(0,d) and let r : w, E — A be just
the composite C,h' Let m : A - A be given by &y followed by the projection onto
A and let s : A —» w,EF be just ¢’i’. Then it is an easy check that m = rj and
¢ = sr.

The maps in the diagram induce homorphisms

K, (A) 5 G, (w,E) D K, (A)

and the composition j*r* = m* is a monomorphism. From 3.7 we know that H,(F)
is a w, EF module, and we want to show that ¢*H,(F) € G, (w,E). m*s*H,(F)
is finitely generated (because the chains of F are finitely generated projective
Z(A) modules) and so s*H,(F) is finitely generated. Every finitely generated
Z(A) module has a finite, finitely generated projective resolution and so
s*H,(F) € K,(A). Therefore c*H,(F)=r*s*H,(F)€ G, ,E).

m*s* (2 (—1)’H,(I7’-)) = j*x(p) = x(F) = 0. m* is a monomorphism so

s* (2 (-1)'H, (F')> =0,x(p) =r*s* (2 (—1)’H¢(F)) =0,

and the Lemma follows from 3.5.

Let F and B be two connected CW complexes and let =, F —» A be a fixed
epimorphism onto an abelian group A. Consider all orientable fibrations F — E — B,
where the map w,F— w,E decomposes as the epimorphism =, F—> A followed
by an inclusion A > 7, E. Equivalence classes of such fibrations lie in the kernel
K of the following natural map:

[B,BF]1— [B,K (r,BF;2)] = H*(B;w,BF) — H?*(B;A)

}
Hom(w,B;A)

BF is simply connected so there is a canonical map from BF to the Eilenberg-
MacLane space K(w,BF;2). The next map is induced by the homomorphism
w,BF — w,F-—-> A and the vertical line comes from the Serre’s exact sequence
for a covering space H*(w,B;A) > H?(B;A) —» Hom(w,B;A). From the last de-
scription we see that the image of K in H?(B;A) lies in H?(w,B;A), and this
induces a map o : K — H?*(w,B;A).

LEMMA 3.9. Letk € K C [B,BF] represent an orientable fibration F — E —B
such that A is the kernel of w,E —» w,B. Then A>> w,E—> w,B is equivalent
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to the extension of w,B by A determined by o(k) € H?(w,B;A).

LEMMA 3.10. Let F-; E— B be an orientable pseudo-abelian fibration over
a two dimensional CW complex B. If i : w,F— w,E factors through a finitely
generated abelian group A, then there exists an orientable pseudo-abelian fibration
F— E — B such that A is the kernel of w,E — =, B and there exists & : w,E—> w,E
satisfying the conditions of Lemma 3.2.

Remark 3.11. The proofs for 3.9 and 3.10 will be given in the Appendix.

THEOREM B. LetF > E — B be an orientable pseudo-abelian fibration, with
F and B finitely dominated, such thati : w,F — w, E factors through a free abelian
group A. If w, EF is free abelian and x(F) = 0 then O(E) =

Proof. Let B® be the two skeleton of B and let F— E, — B? be the restriction
of E over B% Let F— E— B? be the fibration from Lemma 3.10 corresponding
to A and F— E,— B®. Let B be a CW complex dominated by B? v VS?, such
that B® = B?, x(B) = x(B) and O(B) = O(B). B can be obtained from B?v VS?®
by attaching cells of dimension 4 and higher, see [20] Theorem F. Take the pullback
of F— E — B? via the map B— B? v VS§® > B?. The resulting fibration over B
has the same maps on fundamental groups as F— E — B”. From Lemma 3.8 we
get that O(E) = 0 and from Lemma 3.2 we get that O(E) is a homomorphic image
of O(E) so O(E) = 0.

Example 3.12. The obvious question is: Are there any spaces F where =, EF
is free abelian? If G, (F') is the Gottlieb subgroup from 3.3, then w, EF = =, F/ G, (F).
Theorem 2.1 in [15] states that G, (X X Y) = G,(X) X G,(Y), which implies for
F=XXY that wm,EF = w,EX X w,EY. If X is an H space then G,(X) =, X
and so w,EX = 0. Another example: Let X be an H space and let Y be a simply
connected complex or a finite complex with =, Y free abelian and x(Y) # 0. In
either case G,(Y) =0 and m,E(X X Y) = m,EY = &, Y = free abelian.

LEMMA 3.13. Let F— E — B be a Steenrod bundle associated to a principal
pseudo-abelian T' bundle, T— X — B, where T is a torus and F is .a finite T-CW
complex. If B is finitely dominated and x(F) = 0, then O(E) =

Proof. First, let us consider the case of ¥ = T'/H, where H is a proper closed
subgroup of T. F X X =T/H X ;X = X/H and X/H is the total space of another
principal torus bundle T/H — X/H — B. Let v be the kernel of w;, X — =, B and
let o be the kernel of w,(X/H)— w,B. We will show that o —» H,(X/H)— H,B
is a short exact sequence and then we can apply Theorem B to the pseudo-abelian
fibration T'/H — X/H — B to get O(X/H) = 0, since w, T is a free abelian group
and =, ET = 0.

There is a natural map of short exact sequences:

v o> m X - mB

l ! ll
g »» wm(X/H) —»> =B

Look at the homology exact sequences:
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H,(m,B) — H,(v) > H,X —> H,B

I l ! [
H,(x,B) — H,(6) — HJ(X/H) —> H,B

By hypothesis v = H, (v) >» H, X, therefore H,(w,B)— H,vis the zero map. Then,
H,(w,B)— H, (o) is the zero map and ¢ = H,(¢) >> H,(X/H).

Now we can consider the general case of F being any finite 7-CW complex.
If all the isotropy subgroups of 7" are proper, then by Theorem 2.5 we get

O(E) = O(F X rX) = Zxyc(F)(j )+ O(X/H) = 0.

If, however, T fixes a point in F then the map T— F induces the trivial homomor-
phism 7w, T— 7, F.Let F— F X , ET— BT be the classifying fibration for associat-
ed T bundles with fiber F. w,BT = w,T— =, Fis zero, so w,(F X ,ET) =« ,F and
by the same argument as in the proof of Theorem A we see that O(E) = O(F X B) = 0.

THEOREM 3.14. Let F— E — B be a Steenrod bundle associated to a principal
pseudo-abelian G-bundle G — X — B, where G is a connected, compact Lie group

and F is a finite G-CW complex of Euler characteristic zero. If B is finitely dominated,
then O(E) = 0.

Proof. Step 1. Assume first that «w, G injects into w, X. We will compute O(F)
by changing the fibration somewhat, but leaving it the same over the 2 skeleton
of B. The new fibration F— E — B will have O(E) equal to O(E) by 3.2 and
it will admit a reduction to a pseudo-abelian torus bundle. Applying 3.13 we get
O(E) = O(E) = 0.

Let T be a maximal torus of G, the inclusion of 7T into G induces a map of
classifying spaces BT — BQ@. consider the following diagram:

[B,BG] — [B, K (w ,BG, 2)] = H2(B;¢r1G)
0 U
[B,BT] =— H?*B;w,T)D Ext(H,B;w,T) - Ext(H,B;w,G)

The first horizontal map comes from the natural inclusion of the simply connected
space BG in the Eilenberg-MacLane space K (7, BG;2). The map on Ext is a surjection
because w,T surjects onto w,G. Let 2 € [B,BG] be the classifying map for the
principal G bundle X — B. By hypothesis H,G > H, X, so the map from H,B
to H,G is the zero map, and therefore the image of % in H?*B;w,G) lies in
Ext(H,B;w,G). Therefore, there exists an element r € Ext(H,B;w,T) mapping
onto the same element in Ext(H,B;w,6) as & did. Let % be the image of r in
[B,BG]. Then % determines a fibration F— E— B, which by Lemma 3.9 has the
same maps on fundamental groups as F— E— B had because o(k) = o(k). So
we can apply Lemma 3.2 to get O(F) = O(E). By a standard argument the map
r : B — BT defines a reduction of F— E — B to a torus bundle.

Step 2. We proceed just like we did in the proof of Theorem B. Let B be the
space from that proof and let A = w, G. Construct the principal pseudo-abelian
bundle G — X — B? from Lemma 3.10 and let G— Y — B be the pullback via
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the map B — B®.Then thebundles F— E — Band F—/F X, Y— Bsatisfy conditions
of Lemma 3.2 and, therefore, there is a map ¢ such that ¢, OF X,Y)= O(E).
From Step 1. we know that O(Fx.,Y) = 0 and so O(E) = 0.

THEOREM C. Let F— E — B be a Steenrod bundle associated to a principal
pseudo-abelian G bundle, where G is a connected, compact Lie group acting smoothly
on the compact manifold F. If xF = 0 and B is finitely dominated, then O(E) = 0.

Proof. F has the G-homotopy type of a finite G complex, see for example
[22]. Therefore we can apply 3.14.

APPENDIX

LEMMA 3.9. Let k € K represent an orientable fibration f - E— B such that
A is the kernel of w,E — w,B. Then A >> w,E —> m, B is equivalent to the extension
of w,B by A determined by o(k) € Hz('rr,B;A).

Proof. We will use (k) € H?(w,B;A) to denote three things: an equivalence
class of extensions of w,B by A, or a group representing this class, or a homotopy
class of maps from K(w,B;1) to K(A;2). The geometric description of the map
o:K— [K(w,B;1),K(A;2)] is the following. Given % : B— BF, then o(k) is the
map making the next diagram commutative. '

k

B —  BF
! l
alk)
K(w,B;1) -  K(4;2).

Let PK — K (A;2) be the path space fibration and let @ — BF and P — B be pullbacks
of this fibration given by the following diagram:

K(A;1) = K (4;1) = K(4;1)
! ! !

P — Q - PK

! | {

B 5 BF -  K(4;2)

We also have this pullback diagram:

K(4;1) — K@) — KA1
) ) )
j3 >  K(@k;l) o  PK
) \) )
B S K@mB:l) 5 K(4;92).
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When we look at the exact sequences of fundamental groups of this last diagram,
we see immediately that A >» w,P—»> w, B is equivalent to o(k) as extensions
of w,B by A. So all we have to do is to show that A > &, p —> 7, B is equivalent
to A>> w,E—»> mw B.

Let F—» K(w,F;1)— K(A;1) be the map which realizes our fixed epimorphism
w,F—> A as the map of the fundamental groups and consider this diagram:

F - K(A;1)

l !
EF Q

l !
BF = BF

Claim. There is a map from EF — @ making the diagram commute.

Proof. The map EF— BF— K(w,BF;2)— K(A;2), when thought of as an
element in H?(EF;A), is the image of an element in H'(F;A) via the map
HY(F;A)— H?*(BF;A)— H?(EF;A). It then follows, from the Serre’s exact se-
quence in cohomology, that the map EF — K (A4;2) is null homotopic and therefore
there is a map EF — PK making the following diagram commute.

F — K(A;1)

! )
EF — PK
! !

BF — K(4;2)

The claim follows once we realize that @ is the pullback by BF — K(4;2).

This determines a unique map from E — P such that the following diagram

commutes.

Q

EF

l
BF

Looking at the exact sequence of fundamental groups, we see that A >» w, E —> «w, B
is indeed equivalent to A >» m,p —> &, B.

LEMMA 3.10. Let F— E— B be an orientable pseudo-abelian fibration over
a two-dimensional CW complex B. Let v be the kernel of w,E—> w,B and let
w, F—> A —> v be surjections, such that the map of fundamental groups induced
by F— E is the composition n,F—> A —>v>o> w, E. If A is a finitely generated
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abelian group, then there exists an orientable pseudo-abelian fibration F— E— B
such that:

1. A is a kernel of w,E—> =, B, and

2. there exists a surjection & : w,E —> «,E satisfying the conditions of Lemma
3.2.

Proof.

Step 1. The universal orientable fibration F— EF— BF induces an exact
sequence mw,BF — 7w, F'— «w EF. BF is simply connected so there is the canonical
inclusion BF — K(w,BF;2). Let G,(F) be the image of the boundary map
w,BF — 7 F. Then the map w,BF —> G, (F) induces a map on the corresponding
Eilenberg-MacLane spaces K (w, BF'; 2) » K(G, (F);2). Let k2 : B— BF be a classify-
ing map for the given fibration ¥ - E— B, and let

3:B— BF— K(w,BF;2)—> K(G,(F);2).

Ty &
The composition m,B 5 G, (F) — wF is the boundary map in the exact sequence

Tod
of homotopy groups w,B— w,F— 7w, E— w B; and H2B—2> G,(F)— H,Fis the
boundary map in Serre’s exact sequence in homology for an oriented fibration
H,B—» H F—- H,E— H B.

Consider the following commutative diagram:

w,B » m F —> v
w‘ / //-r"
G -
1 (F) Phd
y 7
7

H,B » H,F

By hypothesis, v is an abelian group so the map w,F — v factors through the
abelianization H, F of « F. It is clear from the diagram above that H,B— H, F— v
is the zero map if and only if the image of H,3 is the same as the image of
w,8. H,B— v is the zero map if and only if v injects into H,E if and only if
v— m,; E—> 7, B is a pseudo-abelian extension. Therefore, an orientable fibration
is pseudo-abelian if and only if im H,3 = im m, 3.

Step 2. Let o be the kernel of the map w,F— A, and let D be the kernel
of the map A —» «, EF. Then there are the following short exact sequences.

w = w

{

G,(F) > =, F — u,EF

| u

A > w,EF.

O <«
!
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Step 3. Ultimately, we want to construct a fibration ¥F— E — B satisfying
the conditions of the Lemma. The boundary map 8:B — K (G, (F');2) corresponding
to this new fibration will have to satisfy the following:

imH,d = imm,d = w C imw,d = imH,3.

The first equality is equivalent (by Step 1) to F— E — B being pseudo-abelian.
The second equality will insure that A will be the kernel of 7, E—> 7w, B. In this
step we will construct one such map 3.

Let r be an endomorphism of the finitely generated abelian group im H,3,
whose image is precisely w C im H,8. Such an r is easy to construct. We can
write w as a direct sum of cyclic groups C; and im H,8 as a direct sum of cyclic
groups C., in such a way that C, imbeds in C, with index n,. Then let r be
defined on each summand C' as just multiplication by n,. Now let o be the composi-

tion H,B —» im H,3 — im H,3. « has the property that image o« = image ah = o,
where h : w, B— H,B is the Hurewicz homomorphism. If we think of a as a map
from H,B to w then it can be realized by a topological map :B — K(w;2) because
H?(B;w) surjects onto Hom(H,B,w). Let & be the composite

B— K(w,2)— K(G, (F);2).

Step 4. We want to find an element 2 € [B, BF] such that:
1. % maps to the element 7,8 € Hom(mw,B;G, F) via the maps

[B,BF|—> H?(B;m ,BF)—> H*(B;G,F)— Hom(r ,B; G, (F)),

which by the previous step will guarantee the correct kernel of w, K —> «,B. And

2. o(k) € Ext(H,B;A) C HZ('n'lB;A) and o(k) maps to the pseudo-abelian
extension v > m, £ —> m, B via the surjection Ext(H, B;A)—> Ext(H, B;v), which,
by Lemma 3.9, will guarantee the existence of ¢ : w, E—> w  E.

Consider the following diagram, where both straight lines are exact.

[B; BF]
\

| i H?(B;w,BF)
Ext(H,B;G,(F)) > H?B;G,(F)) —> Hom(H,B;G,(F))
I
Ext(H,B;G,(F)) —» Ext(H, B;D)
!
Ext(H,B;A) —> Ext(H,B;v)
2

Ext(H, B;w,EF)

[B,BF] surjects onto H?(B;G, (F)) because B is a two dimensional CW complex.
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Also notice, that the map on Ext induced by v-—> w,EF sends the extension
v > 1, E —> w B into the zero element. That is obvious from the diagram

v > w E —> w, B
! / ! ||
w,EF > ? T w,B

because ¢ defines a splitting of the bottom short exact sequence.

By a simple diagram chase, there is an element x € Ext(H,B; G, (F')) mapping

ontov >> 7, E—> w,Bin Ext(H,B;v). Let 2 € [B,BF] be any element which maps
onto x + 3 € H*>(B;G,(F). It is a straightforward verification to see that both
conditions 1 and 2 are satisfied.

ek

10.

11.
12,

13.

14.

15.
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