BORDISM OF METACYCLIC GROUP ACTIONS
Russell J. Rowlett

In this paper the term manifold means a differentiable, compact manifold having
a unitary (stably almost complex) structure [9]. A G-action on such a manifold
is a differentiable action of a finite group G preserving the unitary structure.
We write QY for the bordism ring of closed unitary manifolds; Milnor [9] proved
that Q Y is an integral polynomial ring with one generator in each even dimension.
Let QY (G) be the bordism of G-actions, as studied, for example, by Stong [13].

The following question, once under active study, has been dormant for several
years. Is QY (@) always a free Q-module on even-dimensional generators? Stong
[13] proved that this is true for abelian p-groups G, and Ossa [10] showed how
to extend Stong’s result to all abelian groups. Lazarov [8] showed that the answer
is also yes if G is a group of order pg for distinct primes p and q. In this paper,
we give an affirmative answer for a well-known class of metacyclic groups.

THEOREM. Suppose all Sylow subgroups of G are cyclic. Then QY (G) is a
free QY -module on even-dimensional generators.

Some readers will recall that Landweber and Lazarov have announced such
a theorem [7], although they required an additional hypothesis on the group G.
Professor Lazarov was kind enough to send me, several years ago, a copy of a
manuscript proving the theorem for groups of order p™¢”. The proof given here
is very different; although following the general outline proposed in [8], it uses
the methods of [11] to reduce the necessary calculations by at least an order
of magnitude.

There are six parts to the proof. The first two list some well-known facts we
shall require. Part 3 is an outline of the proof. Part 4 recalls the machinery
of [11]. The last two parts contain the computations.

1. GROUP THEORY

Let .# be the class of finite groups G such that every Sylow subgroup of
G is cyclic. It is clear that if G € .# then each subgroup and each factor group
of G is also in .#. By a well-known theorem, (see [5, pp. 146-148], for example),
if G € # then G may be written as an extension

l1->H->G—>K-1,
so that H and K are cyclic and have relatively prime orders. It follows that if

n divides the order of G then G possesses a subgroup of order n. We will need
the following refinements of this observation.
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PROPOSITION 1.1. Suppose G € .# and L is a normal subgroup of G.
Let [G:L] =p't, ..., p.* be the prime factorization of the index of L in G.

(a) There is some subscript i, for which G has a normal subgroup K, of index
piin G, containing L.

(b) For each subscript i, there is a subgroup K, of G (not always normal),
such that K, contains L and [K;:L] = p}.

The proof is an easy exercise. We shall also need a lemma from representation
theory. Let 6: K X C* — C”" be a complex representation space for some normal
subgroup K of G. For each g € G there is a representation space g, 0 defined
by the rule

8+0(k 2)=0(g " kg, 2),(k,2) € KXC".

Then 0 is G-invariant if g, 0 = 6 whenever g € G; more generally the set of
g € G such that g,0 = 6 forms a subgroup J(8) of G, the isotropy subgroup
of 0.

PROPOSITION 1.2. Let G be a finite group, and let K be a normal subgroup
of G such that G/K is cyclic. Let 6 be a G-invariant complex representation of
K. Then there is a complex representation o of G whose restriction oy to a
K -representation is isomorphic to 9.

Proof. Our reference is Feit [4]. Let £ be an irreducible component of 6 and
let J = J(&). Since 6 is G-invariant, it contains X A.§ where A runs over a set
of coset representatives of G/J. We can assume 0 = = A £ without loss of generality.
Suppose there is a J-representation p such that p;, = &; then the induced G-repre-
sentation p€ satisfies (p%) = = h,£ = 6, by [4, (9.10)]. Thus we may also assume
that J = G. In that case, choose an irreducible component A\ of £€, such that
Ak contains & Then A, = & by [4, (9.12) and (9.10)].

2. BORDISM THEORY

We adopt the notations and definitions of [12, 13], giving only a brief review.
A collection # of subgroups G is a family if % contains every subgroup and
every conjugate of K whenever K € % Suppose %’ C % and both are families
of subgroups of G; then there is a “relative” bordism group Q5 (G)(% % ') whose
elements are represented by G-manifolds M such that, for each x in M, the isotropy
subgroup G, € 4% and for each x € oM, G, € #'. In case ' = Q, then
M = 9, also, and one writes Q5 (G)(#) for the bordism group.

If K is a subgroup of G, there is a restriction homomorphism
re: 0@/ (K)

which restricts each G-action to a K-action, and an extension homomorphism
eg:ﬂf (K)—> QY (G) which sends the class of a K-manifold M to the class of
G X M. (See [12] for detailed definitions in terms of the relative groups). A
family # of subgroups of K is G-invariant if g Hg € % for every H € #
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and g € G. Now suppose K is normal. Given a pair (¥ % ') of G-invariant
families of subgroups of K, there is an action of G/K on QY (KWF#F F'): if
0: K X M — M is a K-action and g € G there is another K-action g, 6 defined
by the rule

g« 0(k,m)=0(g™" kg, m), (k,m) € K X M;

G/K acts on bordism via (gK)[M, 0] = [M, g, 0].

We define abbreviations for certain families of subgroups of G. If K is a subgroup
of G, we write AK for the family of all subgroups conjugate in G to subgroups
of K, and PK for the family of all subgroups conjugate in G to proper subgroups
of K. In particular, QY (G) = QY (G)(AG). If, in addition, L is a normal subgroup
of G, we write AKPL for the family of subgroups H of G such that (1) H is
conjugate to a subgroup of K, and (2) H N L is a proper subgroup of L.

Two families (% % ') are adjacent, differing by L, if #' C % and % — %'
consists of the conjugates of L.

PROPOSITION 2.1. Suppose (% % ') are adjacent, differing by L. Then the
inclusion (AL, PL) C (% % ') induces an isomorphism

QY(G)AL, PL)> QU (GNE F').

Furthermore, if Nis the normalizer of L in G, then the extension eg is an isomorphism,
e QU(N)AL, PL) > QV(G)(AL, PL).

For the proof of this fundamental result, see [12, pp. 14-20].
PROPOSITION 2.2. There is a canonical isomorphism

QY (G)(AG, PG) = z Q Y(Bo)

in which o runs over the set of complex G-representation spaces, and each Bo
is a classifying space homotopy equivalent to a Cartesian product of BU(k)’s. In
particular, QY (G)(AG, PG) is a free Q J-module on even-dimensional generators.

The essentials of the proof are present in Conner and Floyd [2, section 38].
Recall that the construction assigns, to a G-manifold M, the disjoint union of
tubular neighborhoods of the various components F of the fixed set of G in M.
Each such neighborhood is regarded as the total space of a G-vector bundle
v — F whose fiber exhibits a G-representation o. Corresponding to a decomposition
of o into irreducible components, ¢ = X§;, there exist bundles v; so that
v = X v; ® §,. Classifying the v, gives a mapping F — II; BU(k,), k;, = dim v,;,
so the latter space serves as Bo. Finally the last statement holds because H, (BU (k;))
is free abelian and vanishes in odd dimensions [3, Proposition (3.3)].

Now let L be a normal subgroup of G. We shall use (2.2) to describe the action
of G/L on QY (L)AL, PL). Suppose [M, 8] € QY(L)YAL,PL). If F is a component
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of the fixed set of L in (M, 0), then it is also a component of the fixed set of
L in (M, g,0) for each g € @G, but the associated representation o is changed
to g, o in the latter case. Thus the effect of g, is to permute the summands
of = QY (Bo) in the obvious fashion. This gives the following result.

PROPOSITION 2.3. Suppose L is a normal subgroup of G, and C is a set
of representatives of G-conjugacy classes of representations of L. Then there is
an isomorphism of (G/L)-modules,

QY (L)AL, PL) = 2 QY (Bo) ® Z(G/J (v)).

ael

3. OUTLINE OF THE PROOF

If M, is a graded Q [-module, we write M, = 2 M,;and M_ = 2 M, ..

PROPOSITION 3.1. Suppose G € .# and suppose (% % ') is an adjacent
pair of families of subgroups of G. Then QY (G)(# F') is a free Q7 -module,
and QY (GWZ F') has projective dimension one over Q7.

Proof. See section 5 below.
PROPOSITION 3.2. Given the same hypothesis, the homomorphism

QYVGHZE F')— QY (G)AG, F')

is the zero homomorphism.
Proof. See section 6 below.
The theorem appears as the case %’ = @ of the following proposition.

PROPOSITION 3.3. Suppose G € .# and %' is a family of subgroups of
G. Then QY (G)WAG, F ') is a free QY-module on even-dimensional generators.

Proof. Select a chain of families #’' C % C ... C PG C AG such that
each pair of successive entries is adjacent. By (2.2) the Proposition holds for
QY (G)AG, PG). Applying an obvious inductive argument, assume the Proposi-
tion holds for QY (G)(AG, #). In particular, Q Y(G)(AG, #) = 0.

The exact sequence [13, Prop. 2.2] for the triple (AG, % #’) then has the
following form:

0> QYGNE F')— Q7 (G)AG, F')

Qy
- QJ(G)AG, #) - QY (G)Z F)

b.
— QY (G)AG, F')— 0.
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By (3.2), we have b, = 0; thus Q Y(G)}(AG, #') = 0. By '(3.1), the image of a,
is a free Q ¥-module. Thus the exact sequence

0 QUG)E F')— QY(G)AG, F')— Ima,— 0

must split. By (3.1) again, this implies that QY (G)AG, F') is free, as required.

Notice that the plan of attack is the same as that of Lazarov [8] for groups
of order pq; the problem is to find tolerable proofs of (3.1) and (3.2). One should
also notice that (3.1) often fails without the requirement that G € Z If
F = {{1)} and F’ = ¢, then QJ(G)(HF') becomes the bordism Q@)
of free G-actions; by [2, (19.1)] the latter is isomorphic to the bordism QY (BG)
of a classifying space for principal G-bundles. Landweber [6, Theorem 3] has
shown that dim Q ; (BG) = 1 if and only if G has periodic cohomology.

4. THE EQUIVARIANT BORDISM SPECTRAL SEQUENCE

We record here some results from [11].

PROPOSITION 4.1. Suppose K is a normal subgroup of G, (% F') is a
pair of G-invariant families of subgroups of G, and QY (K% F') is a (G/K)-
module as described in section 2. Then there is a spectral sequence {E,,:r=2;a, b
= 0} such that

() E5,=H,(G/K;Q; (K)&F F'));
(ii) EZ, is associated with a filtration of @], ,(G)(% F'); and

(iii) the edge homomorphism QJ(KN% F')=E;,— EL, Q. (G)I(F F')
is the extension, eX .

For the proof, see [11, (2.1)]. Our only applications of (4.1) will be in the
case (% #') = (AL, PL) for some normal subgroup L of G which is contained
in K. Thus (2.3) will compute the E? term of the spectral sequence.

If K is a subgroup of G, P(G:K) is the collection of primes not dividing the
index of K in G. If P is a collection of primes, Z, denotes the P-local integers
(integers not in P have inverses).

PROPOSITION 4.2. Suppose L is a subgroup of G, and P = P(G:L). Then
QY (GWAL, PL) ® Z.is a free module over QY ® Z,.

Proof. see [11, (3.2)]. In particular, note that QY (G)(AL, PL) contains only
torsion, of orders involving primes that divide the index of L in its normalizer.

PROPOSITION 4.3. Let (% %', #") be a triple of families of subgroups
of G, and let P= N {P(G:K): K€ #' — F#"}. Then the forgetful homomorphism

QY GNF ', F"V® Z— QY (GUFE F")® Z,,

is a split monomorphism.



228 RUSSELL J. ROWLETT

Proof. See [11,(3.3)]. We use the following corollary: suppose
x € QY(G)WF F") is a g-torsion class for some prime g, and x = i,(y). Then
we may assume y is also a g-torsion class.

PROPOSITION 4.4. Suppose L =< K <G, and L is normal in G. Let q be
a prime which does not divide [G:K]. Then the gq-torsion submodule of
QY(G)AL, PL) is contained in the image of e&.

Proof. By (2.1) we may suppose K is normal in G. The result then follows
from (4.1), since EZ, = H,(G/K; @, (K)(AL, PL)) has no g-torsion for a > 0.

5. THE PROOF OF 3.1

For the rest of the paper, we assume G € .# However, this restriction is
not actually needed in the proofs of (5.1), (5.2), or (6.1).

Suppose (% % ') are adjacent, differing by L. By (2.1) and induction on the
order of G, it suffices to assume that L is normal in G, and that

(% #')= (AL, PL).
PROPOSITION 5.1. If L is normal in G, and G/ L is cyclic, then the extension
es: QY(L)AL, PL)— Q Y(G)AL, PL)

is a split epimorphism.
Proof. Let ¢ be a generator of G/L, t,: QY (INAL, PL)— QY (L)AL, PL),
D,=1-t,,and N, =3{t,:0=<1i=< [G:L] — 1}. Of course,
H,(G/L;Q,/ (LNAL, PL))

is Ker N, /Im D, for even a > 0, and Ker D, /Im N, for odd a.

Let o be a complex representation of L. Since G/ L is cyclic, the isotropy subgroup
J (o) is normal in G. Note that H,(G/L; Z(G/J (0))) = 0 for even a > 0. By (2.3),

H,(G/L;Q, (L)(AL, PL)) = 0

for a > 0 even, or for b odd. By (4.1), eZ:QH(L)(AL, PL)— QE(G)(AL, PL) is

surjective. o
F = {({1}} and #’ = ¢ ) v
Moreover, (2.3) implies that 1m £, — ner N,) is an  ,-module summand
of QY (L)AL, PL). By [2, pp. 52-54] it is easy to see that

Im D, C Keres C Ker N,;

thus Ker e% is a summand and e} is a split epimorphism.

Note. This argument also shows that the spectral sequence collapses. Since
H,(G/L; QY (LYAL,PL)) = Q] (LWAL,PL)/ImD,, and Ker ey = ImD,, the



BORDISM OF METACYCLIC GROUP ACTIONS 229

homomorphism Ej,— QY (G)AL, PL) is injective. It follows that there can be
no nonzero differentials in the spectral sequence.

PROPOSITION 5.2. IfL isnormalin G, and G/Lis cyclic, then Q) Y(G)AL, PL)
has projective dimension 1 over QY.

Proof. First observe that H,,.,(G/L; Z(G/J(0))) is cyclic; by (2.3) it follows
that H,,,, = H,,.,(G/L; QY (L)AL, PL)) has projective dimension one. By (4.1)
there is a filtration

0=V1icVicVic..cVv®'c..cQY@G)AL, PL)

such that V***'/V* ' = H, ... In particular, V' = H, and thus dim V' = 1.
Using the exact sequences 0 —» V>*™'— V"' 5 H, — 0 it follows that dim
V®**! = 1 for each n.

In fact, if 0 - G*** —» F?***'  H?"*' - 0 is a projective resolution (=
free resolution, by [3], Proposition (3.2)), then one may construct free resolutions

0— z G2i+1 - 2 F2£+1 - V2n+1 - 0
i=1 i=1
la B Wy
n+1 n+1
0—> 2 G2i+1 N 2 F2i+1 N V2n+3 - 0
i=1 i=1

so that a and B are the obvious injections x +» (x, 0) and v is the inclusion. This
is an easy exercise, or the construction may be found in [1, p.79]. Thus, by taking
direct limits we obtain a free resolution

0— Zl G2i+1'—) Zl F2i+1-_>Q[—f(G)(AL, PL)‘—) O,

as required.

We now complete the proof of (3.1). If L has prime-power index in G, then
G/L is cyclic and (3.1) would follow from (5.1) and (5.2). Otherwise, use (1.1a)
to select a normal subgroup K of G containing L, such that [G:K] = ¢° for
some prime q which does not divide [K:L]. By induction on the order of G, assume
QZ(K JAL, PL) is free, ef{: QZ(L)(AL, PL)— Qf(K YAL, PL) is a split epimor-
phism, and QY (K)(AL, PL) has projective dimension one.

' Consider the action of the cyclic group G/K on QY(K)AL, PL). Let
t € G — K be an element of order n whose coset generates G/ K. Then t induces
a Z/n action on QY (L)(AL, PL), and with this action e % becomes a Z/n-morphism.
In fact, there is a K-equivariant diffeomorphism ¢, (K X, M) — K X, (¢, M) defined
by [k, m]+> [tkt ™, m]. Therefore Q Y (K)(AL, PL) is isomorphic as a G/ K-module
to a summand of QY (L)(AL, PL).
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As in the proof of (5.1), this implies that H, (G/K; QY (K)(AL, PL)) = 0 for
a > 0. On the other hand, H_(G/K; QY(K)(AL, PL)) = 0 because the coefficients
contain only torison of orders prime to ¢ (by (4.2)). Thus

ea: QY (K)WAL, PL)— QY(G)(AL, PL)
is surjective, by (4.1). As in (5.1), we see that e is in fact a split epimorphism,
so f (G(AL, PL) is free.
In the odd dimensions, let us write QY(G)(AL, PL) = @_ + T_, where Q_
is the g-torsion submodule. By (4.4), Imes = T_. By [2, p. 54],

K_G K . K _ s _K,
egrgeg = [G:K]leg=g°eg;

hence ef rg|T_ is an isomorphism. Therefore 7' is isomorphic to a summand
of QY (K)(AL, PL) and must have projective dimension one. Since

H_(G/K; QJ(K)WAL, PL))

has projective dimension one, while H,_ (G/K; QY (K)(AL, PL)) = 0 by (4.2), it
follows as in the proof of (5.2) that @_ also has projective dimension one. The
proof of (3.1) is thus complete.

6. THE PROOF OF 3.2

We continue to suppose that (% % ') are adjacent, differing by L. As before,
by (2.1) and induction on the order of G it will suffice to assume that L is normal,
and that (# % ') = (AL, PL). By (2.2) we may assume that L is a proper subgroup.
Fix a prime g which divides [G:L]; by (4.2) it suffices to show that the g-torsion
of QY (G)IAL, PL) is sent to zero in Q “(G)(AG, PL).

PROPOSITION 6.1. Suppose G/L is cyclic of order q°. Then
QY(@G)AL, PL) - QY(G)(AG, AGPL)

"is the zero homomorphism.
Proof. We continue the computations of (5.1) and (5.2), which cover this case.
Suppose x € V¥*' N Q% ., (G)(AL, PL). Then x determines a certain coset
[x] € E§j+1,2(k—j) = H,, ., (G/L; Qzl(lk—_;) (L)AL, PL)).
Lety € Ker D, C .Q;](k_j) (LY(AL, PL) determine this same coset. We show that
there exists some [M] € Qf(k_j) (GNAG, AGPL) such that r& [M] = y.
By (2.3), it suffices to assume that

IG:d] —1
ye Y QlBtio)

i=0
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for some L-representation o and J = J(o). Thus, since ¢,y = y, we may write
[G:J]—-1

y = 2 t' (2) for some z € Q, (Bo). By (1.2) there exists a J-action M’ such

=0
that [M’] € QY J)AJ, AJPL) and r} [M’] = z. It follows that rS e’ [M'] = y,
so we choose [M] = e%, [M’] € QY (G)AG, AGPL).

Next, let S¥*! have the standard free action of G/L, in which ¢ acts as
multiplication by a primitive [G:L]-th root of one in each coordinate of complex
(j + 1)-space. We regard this as an action of G via the projection G — G/L.
The product S¥*' X M is thus a G-space, admitting a G-equivariant map
S¥* x M — 8¥*' 5 E(G/L) to a classifying space for free G/L- actions. By
the proof of [11, (2.1)] it follows that [S¥*' X M] € Q, (G)(AL, PL) represents
the coset [x]. Now S¥*' X oM = a8(D¥*? x aM), and in D¥** x oM all
isotropy groups lie in AGPL. Therefore [S¥*! X M] = 0 € QY (G)(AG, AGPL). 1t
follows, by a straightforward induction on j, that V**' has zero image in
QY(G)(AG, AGPL).

By (1.2b), there is a subgroup K of G containing L, so that [K:L}] = ¢° and
[G:K] is prime to q. By (4.4), es: QY(K)AL, PL) —» QY (G)(AL, PL) maps
onto the g¢-torsion. It follows by induction on the order of G that
QY(G)AL, PL) —» QY(G)(AG,AKPL) kills g-torsion, for each prime ¢ dividing
[G:L], and must therefore be the zero homomorphism.

PROPOSITION 6.2. Suppose G € #, G/L is cyclic of order q°, and %, is
a family of subgroups of G such that PL C %, C AGPL. Then

QY (GYAGPL, %) — QY (G)AG, %)

is zero on q-torsion.

Proof. There is nothing to prove if % = AGPL. Suppose % C % C AGPL,
(#, %) are adjacent differing by H, and QY (G)AGPL, H) > QY (G)AG, H)
is zero on g-torsion. Consider the commutative diagram

.= QY (GNHA, F) s QY (AAGPL, %) —» QJ(GAGPL, %) — ...

Jia . !
. o> QYGONHE,F) > QVGHAG %) > QVG)AG FH) — ..

Ify € QY(G)AGPL, %) is a g-torsion class, then y = j,(2) + w for certain
z and w such that k,(w) = 0. We may as well assume y = j, (2); by (4.3) we
can assume z is a g-torsion class also.

Now QY (G)(%#, %) is without g-torsion unless ¢ divides [G:H], by (2.1) and
(4.2). Suppose [G:H] = q'; then either H < L or L = H, according as ¢t = s
or ¢ < s, respectively. Since HZ¢ %, and % 2 PL, we must have L < H. This
is not possible, since H € A, and %4 C AGPL. Thus some other prime p divides
[G:H].
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We wish to prove that QY (G)(%, %) — QY (G)AG, %) kills g-torsion. By
(2.1) we may assume H is normal in G. Use (1.1b) to select a subgroup @ so
that H< @ < G, [Q:H] = ¢‘, and [G:Q)] is prime to q. Then there is a commutative
diagram

s/

QYQAHPH) 3 QY(Q)AQ PH)

Jeg Jes

QG A, %)= Q) (G)NAH,PH) — Q./(G)(AG, PH)

~,
*

By (4.4), e2 maps onto the g-torsion. By induction on the order of G, i/ is zero.
Thus i, is zero on g-torsion, which completes the proof.

We can now finish the proof of (3.2). Consider the commutative diagram:

id
QY(G)YAL, PL) — QY(G)(AL, PL)

. i

QY(G(AKPL, PL) ki QY (GYAG, PL) —» QY(G)(AG, AKPL)

fex fex
QY (K)(AKPL, PL) - QY(K)(AK, PL)

If y € QU(GHAL, PL) is a g-torsion class, then by (6.1) we know j, (y) = O.
Let I, () = i, (x) for suitable x € QY(G)(AKPL, PL). By (4.3) we may assume
x is a g-torsion class. If [G:L] = ¢q° then K = G and we are done, by (6.2).
Otherwise K < G and we apply induction on the order of G and the knowledge
that e; maps onto the g-torsion.

This finishes the proof of (3.2), and thus the proof of the theorem.
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