BORDISM OF METACYCLIC GROUP ACTIONS

Russell J. Rowlett

In this paper the term manifold means a differentiable, compact manifold having a unitary (stably almost complex) structure [9]. A G-action on such a manifold is a differentiable action of a finite group G preserving the unitary structure. We write Ω_*^U for the bordism ring of closed unitary manifolds; Milnor [9] proved that Ω_*^U is an integral polynomial ring with one generator in each even dimension. Let $\Omega_*^U(G)$ be the bordism of G-actions, as studied, for example, by Stong [13].

The following question, once under active study, has been dormant for several years. Is $\Omega_*^U(G)$ always a free Ω_*^U -module on even-dimensional generators? Stong [13] proved that this is true for abelian p-groups G, and Ossa [10] showed how to extend Stong's result to all abelian groups. Lazarov [8] showed that the answer is also yes if G is a group of order pq for distinct primes p and q. In this paper, we give an affirmative answer for a well-known class of metacyclic groups.

THEOREM. Suppose all Sylow subgroups of G are cyclic. Then $\Omega_*^U(G)$ is a free Ω_*^U -module on even-dimensional generators.

Some readers will recall that Landweber and Lazarov have announced such a theorem [7], although they required an additional hypothesis on the group G. Professor Lazarov was kind enough to send me, several years ago, a copy of a manuscript proving the theorem for groups of order $p^m q^n$. The proof given here is very different; although following the general outline proposed in [8], it uses the methods of [11] to reduce the necessary calculations by at least an order of magnitude.

There are six parts to the proof. The first two list some well-known facts we shall require. Part 3 is an outline of the proof. Part 4 recalls the machinery of [11]. The last two parts contain the computations.

1. GROUP THEORY

Let \mathscr{M} be the class of finite groups G such that every Sylow subgroup of G is cyclic. It is clear that if $G \in \mathscr{M}$ then each subgroup and each factor group of G is also in \mathscr{M} . By a well-known theorem, (see [5, pp. 146-148], for example), if $G \in \mathscr{M}$ then G may be written as an extension

$$1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$$
,

so that H and K are cyclic and have relatively prime orders. It follows that if n divides the order of G then G possesses a subgroup of order n. We will need the following refinements of this observation.

Received September 18, 1978

Michigan Math. J. 27 (1980).

PROPOSITION 1.1. Suppose $G \in \mathcal{M}$ and L is a normal subgroup of G. Let $[G:L] = p_1^{r_1}, ..., p_s^{r_s}$ be the prime factorization of the index of L in G.

- (a) There is some subscript i, for which G has a normal subgroup K, of index $p_i^{r_i}$ in G, containing L.
- (b) For each subscript i, there is a subgroup K_i of G (not always normal), such that K_i contains L and $[K_i:L] = p_i^{r_i}$.

The proof is an easy exercise. We shall also need a lemma from representation theory. Let $\theta \colon K \times \mathbf{C}^n \to \mathbf{C}^n$ be a complex representation space for some normal subgroup K of G. For each $g \in G$ there is a representation space $g_* \theta$ defined by the rule

$$g_* \theta(k, z) = \theta(g^{-1} kg, z), (k, z) \in K \times \mathbb{C}^n$$

Then θ is *G-invariant* if $g_*\theta \cong \theta$ whenever $g \in G$; more generally the set of $g \in G$ such that $g_*\theta \cong \theta$ forms a subgroup of θ .

PROPOSITION 1.2. Let G be a finite group, and let K be a normal subgroup of G such that G/K is cyclic. Let θ be a G-invariant complex representation of K. Then there is a complex representation σ of G whose restriction σ_K to a K-representation is isomorphic to θ .

Proof. Our reference is Feit [4]. Let ξ be an irreducible component of θ and let $J = J(\xi)$. Since θ is G-invariant, it contains Σ $h_*\xi$, where h runs over a set of coset representatives of G/J. We can assume $\theta = \Sigma$ $h_*\xi$ without loss of generality. Suppose there is a J-representation ρ such that $\rho_K \cong \xi$; then the induced G-representation ρ^G satisfies $(\rho^G)_K \cong \Sigma$ $h_*\xi = \theta$, by [4, (9.10)]. Thus we may also assume that J = G. In that case, choose an irreducible component λ of ξ^G , such that λ_K contains ξ . Then $\lambda_K = \xi$, by [4, (9.12) and (9.10)].

2. BORDISM THEORY

We adopt the notations and definitions of [12, 13], giving only a brief review. A collection \mathscr{F} of subgroups G is a family if \mathscr{F} contains every subgroup and every conjugate of K whenever $K \in \mathscr{F}$. Suppose $\mathscr{F}' \subseteq \mathscr{F}$ and both are families of subgroups of G; then there is a "relative" bordism group $\Omega_*^U(G)(\mathscr{F},\mathscr{F}')$ whose elements are represented by G-manifolds M such that, for each x in M, the isotropy subgroup $G_x \in \mathscr{F}$, and for each $x \in \partial M$, $G_x \in \mathscr{F}'$. In case $\mathscr{F}' = \emptyset$, then $\partial M = \emptyset$ also, and one writes $\Omega_*^U(G)(\mathscr{F})$ for the bordism group.

If K is a subgroup of G, there is a restriction homomorphism

$$r_K^G: \Omega_*^U(G) \to \Omega_*^U(K)$$

which restricts each G-action to a K-action, and an extension homomorphism $e_G^K: \Omega_*^U(K) \to \Omega_*^U(G)$ which sends the class of a K-manifold M to the class of $G \times_K M$. (See [12] for detailed definitions in terms of the relative groups). A family $\mathscr F$ of subgroups of K is G-invariant if $g^{-1}Hg \in \mathscr F$ for every $H \in \mathscr F$

and $g \in G$. Now suppose K is normal. Given a pair $(\mathscr{F}, \mathscr{F}')$ of G-invariant families of subgroups of K, there is an action of G/K on $\Omega_*^U(K)(\mathscr{F}, \mathscr{F}')$: if $\theta \colon K \times M \to M$ is a K-action and $g \in G$ there is another K-action $g_*\theta$ defined by the rule

$$g_* \theta(k, m) = \theta(g^{-1} kg, m), (k, m) \in K \times M;$$

G/K acts on bordism via $(gK)[M, \theta] = [M, g_* \theta]$.

We define abbreviations for certain families of subgroups of G. If K is a subgroup of G, we write AK for the family of all subgroups conjugate in G to subgroups of K, and PK for the family of all subgroups conjugate in G to proper subgroups of K. In particular, $\Omega_*^U(G) = \Omega_*^U(G)(AG)$. If, in addition, L is a normal subgroup of G, we write AKPL for the family of subgroups H of G such that (1) H is conjugate to a subgroup of K, and (2) $H \cap L$ is a proper subgroup of L.

Two families $(\mathscr{F}, \mathscr{F}')$ are adjacent, differing by L, if $\mathscr{F}' \subseteq \mathscr{F}$ and $\mathscr{F} - \mathscr{F}'$ consists of the conjugates of L.

PROPOSITION 2.1. Suppose $(\mathcal{F}, \mathcal{F}')$ are adjacent, differing by L. Then the inclusion $(AL, PL) \subseteq (\mathcal{F}, \mathcal{F}')$ induces an isomorphism

$$\Omega_*^U(G)(AL, PL) \stackrel{\cong}{\to} \Omega_*^U(G)(\mathscr{F}, \mathscr{F}').$$

Furthermore, if N is the normalizer of L in G, then the extension e_G^N is an isomorphism,

$$e_G^N: \Omega_*^U(N)(AL, PL) \xrightarrow{\cong} \Omega_*^U(G)(AL, PL)$$
.

For the proof of this fundamental result, see [12, pp. 14-20].

PROPOSITION 2.2. There is a canonical isomorphism

$$\Omega_*^U(G)(AG, PG) \cong \sum_{\sigma} \Omega_*^U(B\sigma)$$

in which σ runs over the set of complex G-representation spaces, and each $B\sigma$ is a classifying space homotopy equivalent to a Cartesian product of BU(k)'s. In particular, $\Omega^U_*(G)(AG, PG)$ is a free Ω^U_* -module on even-dimensional generators.

The essentials of the proof are present in Conner and Floyd [2, section 38]. Recall that the construction assigns, to a G-manifold M, the disjoint union of tubular neighborhoods of the various components F of the fixed set of G in M. Each such neighborhood is regarded as the total space of a G-vector bundle $v \to F$ whose fiber exhibits a G-representation σ . Corresponding to a decomposition of σ into irreducible components, $\sigma = \Sigma \xi_i$, there exist bundles ν_i so that $\nu = \Sigma \nu_i \otimes \xi_i$. Classifying the ν_i gives a mapping $F \to \Pi_i BU(k_i)$, $k_i = \dim \nu_i$, so the latter space serves as $B\sigma$. Finally the last statement holds because $H_*(BU(k_i))$ is free abelian and vanishes in odd dimensions [3, Proposition (3.3)].

Now let L be a normal subgroup of G. We shall use (2.2) to describe the action of G/L on $\Omega_*^U(L)(AL, PL)$. Suppose $[M, \theta] \in \Omega_*^U(L)(AL, PL)$. If F is a component

of the fixed set of L in (M, θ) , then it is also a component of the fixed set of L in $(M, g_*\theta)$ for each $g \in G$, but the associated representation σ is changed to $g_*\sigma$ in the latter case. Thus the effect of g_* is to permute the summands of $\Sigma \Omega_*^U(B\sigma)$ in the obvious fashion. This gives the following result.

PROPOSITION 2.3. Suppose L is a normal subgroup of G, and C is a set of representatives of G-conjugacy classes of representations of L. Then there is an isomorphism of (G/L)-modules,

$$\Omega^{\it U}_*(L)(AL,PL) \cong \sum_{\sigma \in C} \Omega^{\it U}_*(B\sigma) \otimes Z(G/J(\sigma)).$$

3. OUTLINE OF THE PROOF

If
$$M_*$$
 is a graded $\Omega^{\,\,U}_*$ -module, we write $M_+=\sum_i\,M_{2i}$ and $M_-=\sum_i\,M_{2i+1}.$

PROPOSITION 3.1. Suppose $G \in \mathcal{M}$ and suppose $(\mathcal{F}, \mathcal{F}')$ is an adjacent pair of families of subgroups of G. Then $\Omega_+^U(G)(\mathcal{F}, \mathcal{F}')$ is a free Ω_+^U -module, and $\Omega_-^U(G)(\mathcal{F}, \mathcal{F}')$ has projective dimension one over Ω_+^U .

Proof. See section 5 below.

PROPOSITION 3.2. Given the same hypothesis, the homomorphism

$$\Omega_{-}^{U}(G)(\mathscr{F},\mathscr{F}') \to \Omega_{-}^{U}(G)(AG,\mathscr{F}')$$

is the zero homomorphism.

Proof. See section 6 below.

The theorem appears as the case $\mathcal{F}' = \emptyset$ of the following proposition.

PROPOSITION 3.3. Suppose $G \in \mathcal{M}$ and \mathcal{F}' is a family of subgroups of G. Then $\Omega_*^U(G)(AG, \mathcal{F}')$ is a free Ω_*^U -module on even-dimensional generators.

Proof. Select a chain of families $\mathscr{F}' \subset \mathscr{F} \subset ... \subset PG \subset AG$ such that each pair of successive entries is adjacent. By (2.2) the Proposition holds for $\Omega^U_*(G)(AG, PG)$. Applying an obvious inductive argument, assume the Proposition holds for $\Omega^U_*(G)(AG, \mathscr{F})$. In particular, $\Omega^U_*(G)(AG, \mathscr{F}) = 0$.

The exact sequence [13, Prop. 2.2] for the triple $(AG, \mathcal{F}, \mathcal{F}')$ then has the following form:

$$0 \to \Omega_{+}^{U}(G)(\mathscr{F}, \mathscr{F}') \to \Omega_{+}^{U}(G)(AG, \mathscr{F}')$$

$$\stackrel{a_{*}}{\to} \Omega_{+}^{U}(G)(AG, \mathscr{F}) \to \Omega_{-}^{U}(G)(\mathscr{F}, \mathscr{F}')$$

$$\stackrel{b_{*}}{\to} \Omega_{-}^{U}(G)(AG, \mathscr{F}') \to 0.$$

By (3.2), we have $b_*=0$; thus $\Omega_-^U(G)(AG,\mathscr{F}')=0$. By (3.1), the image of a_* is a free Ω_*^U -module. Thus the exact sequence

$$0 \to \Omega_+^U(G)(\mathscr{F}, \mathscr{F}') \to \Omega_+^U(G)(AG, \mathscr{F}') \to \operatorname{Im} a_* \to 0$$

must split. By (3.1) again, this implies that $\Omega_+^U(G)(AG, \mathcal{F}')$ is free, as required.

Notice that the plan of attack is the same as that of Lazarov [8] for groups of order pq; the problem is to find tolerable proofs of (3.1) and (3.2). One should also notice that (3.1) often fails without the requirement that $G \in \mathscr{M}$. If $\mathscr{F} = \{\{1\}\}$ and $\mathscr{F}' = \emptyset$, then $\Omega_*^U(G)(\mathscr{F},\mathscr{F}')$ becomes the bordism $\bar{\Omega}_*^U(G)$ of free G-actions; by [2, (19.1)] the latter is isomorphic to the bordism $\Omega_*^U(BG)$ of a classifying space for principal G-bundles. Landweber [6, Theorem 3] has shown that dim $\Omega_*^U(BG) \leq 1$ if and only if G has periodic cohomology.

4. THE EQUIVARIANT BORDISM SPECTRAL SEQUENCE

We record here some results from [11].

PROPOSITION 4.1. Suppose K is a normal subgroup of G, $(\mathscr{F}, \mathscr{F}')$ is a pair of G-invariant families of subgroups of G, and $\Omega_*^U(K)(\mathscr{F}, \mathscr{F}')$ is a (G/K)-module as described in section 2. Then there is a spectral sequence $\{E_{a,b}^r: r \geq 2; a, b \geq 0\}$ such that

- (i) $E_{a,b}^2 = H_a(G/K; \Omega_b^U(K)(\mathscr{F}, \mathscr{F}'));$
- (ii) $E_{a,b}^{\infty}$ is associated with a filtration of $\Omega_{a+b}^{U}(G)(\mathcal{F}, \mathcal{F}')$; and
- (iii) the edge homomorphism $\Omega_b^U(K)(\mathscr{F},\mathscr{F}')\cong E_{0,b}^\infty\to E_{0,b}^2\Omega_b^U(G)(\mathscr{F},\mathscr{F}')$ is the extension, e_G^K .

For the proof, see [11, (2.1)]. Our only applications of (4.1) will be in the case $(\mathcal{F}, \mathcal{F}') = (AL, PL)$ for some normal subgroup L of G which is contained in K. Thus (2.3) will compute the E^2 term of the spectral sequence.

If K is a subgroup of G, P(G:K) is the collection of primes not dividing the index of K in G. If P is a collection of primes, Z_P denotes the P-local integers (integers not in P have inverses).

PROPOSITION 4.2. Suppose L is a subgroup of G, and P = P(G:L). Then $\Omega_*^U(G)(AL, PL) \otimes Z_P$ is a free module over $\Omega_*^U \otimes Z_P$.

Proof. see [11, (3.2)]. In particular, note that $\Omega_{-}^{U}(G)(AL, PL)$ contains only torsion, of orders involving primes that divide the index of L in its normalizer.

PROPOSITION 4.3. Let $(\mathcal{F}, \mathcal{F}', \mathcal{F}'')$ be a triple of families of subgroups of G, and let $P = \bigcap \{P(G:K): K \in \mathcal{F}' - \mathcal{F}''\}$. Then the forgetful homomorphism

$$i_* \colon \Omega^{\,\scriptscriptstyle U}_*(G)(\mathcal{F}^{\,\scriptscriptstyle \prime},\mathcal{F}^{\,\scriptscriptstyle \prime\prime}) \otimes Z_P {\to} \Omega^{\,\scriptscriptstyle U}_*(G)(\mathcal{F},\mathcal{F}^{\,\scriptscriptstyle \prime\prime}) \otimes Z_P$$

is a split monomorphism.

Proof. See [11,(3.3)]. We use the following corollary: suppose $x \in \Omega_*^U(G)(\mathscr{F}, \mathscr{F}'')$ is a q-torsion class for some prime q, and $x = i_*(y)$. Then we may assume y is also a q-torsion class.

PROPOSITION 4.4. Suppose $L \leq K \leq G$, and L is normal in G. Let q be a prime which does not divide [G:K]. Then the q-torsion submodule of $\Omega_*^U(G)(AL, PL)$ is contained in the image of e_G^K .

Proof. By (2.1) we may suppose K is normal in G. The result then follows from (4.1), since $E_{a,b}^2 = H_a(G/K; \Omega_b^U(K)(AL, PL))$ has no q-torsion for a > 0.

5. THE PROOF OF 3.1

For the rest of the paper, we assume $G \in \mathcal{M}$. However, this restriction is not actually needed in the proofs of (5.1), (5.2), or (6.1).

Suppose $(\mathcal{F}, \mathcal{F}')$ are adjacent, differing by L. By (2.1) and induction on the order of G, it suffices to assume that L is normal in G, and that

$$(\mathcal{F}, \mathcal{F}') = (AL, PL).$$

PROPOSITION 5.1. If L is normal in G, and G/L is cyclic, then the extension

$$e_G^L: \Omega_+^U(L)(AL, PL) \to \Omega_+^U(G)(AL, PL)$$

is a split epimorphism.

Proof. Let t be a generator of G/L, $t_*: \Omega^U_*(L)(AL, PL) \to \Omega^U_*(L)(AL, PL)$, $D_* = 1 - t_*$, and $N_* = \Sigma\{t_*^i: 0 \le i \le [G:L] - 1\}$. Of course,

$$H_{\alpha}(G/L;\Omega_{b}^{U}(L)(AL,PL))$$

is Ker N_* /Im D_* for even a > 0, and Ker D_* /Im N_* for odd a.

Let σ be a complex representation of L. Since G/L is cyclic, the isotropy subgroup $J(\sigma)$ is normal in G. Note that $H_{\sigma}(G/L; Z(G/J(\sigma))) = 0$ for even $\sigma > 0$. By (2.3),

$$H_{\sigma}(G/L;\Omega_{h}^{U}(L)(AL,PL))=0$$

for a>0 even, or for b odd. By (4.1), $e_G^L:\Omega_+^U(L)(AL,PL)\to\Omega_+^U(G)(AL,PL)$ is surjective.

Moreover, (2.3) implies that im ν_* (- Γ ner Γ is an Ω_*^U -module summand of $\Omega_+^U(L)(AL, PL)$. By [2, pp. 52-54] it is easy to see that

$$\operatorname{Im} D_* \subseteq \operatorname{Ker} e_G^L \subseteq \operatorname{Ker} N_*;$$

thus Ker e_G^L is a summand and e_G^L is a split epimorphism.

Note. This argument also shows that the spectral sequence collapses. Since $H_0(G/L; \Omega_b^U(L)(AL,PL)) = \Omega_b^U(L)(AL,PL)/\text{Im}D_*$, and Ker $e_G^L = \text{Im}D_*$, the

homomorphism $E^2_{0,b} \to \Omega^U_b(G)(AL, PL)$ is injective. It follows that there can be no nonzero differentials in the spectral sequence.

PROPOSITION 5.2. If L is normal in G, and G/L is cyclic, then $\Omega_{-}^{U}(G)(AL, PL)$ has projective dimension 1 over Ω_{*}^{U} .

Proof. First observe that $H_{2n+1}(G/L; Z(G/J(\sigma)))$ is cyclic; by (2.3) it follows that $H_{2n+1} = H_{2n+1}(G/L; \Omega_*^U(L)(AL, PL))$ has projective dimension one. By (4.1) there is a filtration

$$0 = V^{-1} \subseteq V^1 \subseteq V^3 \subseteq \ldots \subseteq V^{2n+1} \subseteq \ldots \subseteq \Omega_-^U(G)(AL, PL)$$

such that $V^{2n+1}/V^{2n-1}\cong H_{2n+1}$. In particular, $V^1\cong H_1$ and thus dim $V^1=1$. Using the exact sequences $0\to V^{2n-1}\to V^{2n+1}\to H_{2n+1}\to 0$ it follows that dim $V^{2n+1}=1$ for each n.

In fact, if $0 \to G^{2n+1} \to F^{2n+1} \to H^{2n+1} \to 0$ is a projective resolution (= free resolution, by [3], Proposition (3.2)), then one may construct free resolutions

$$0 \to \sum_{i=1}^{n} G^{2i+1} \to \sum_{i=1}^{n} F^{2i+1} \to V^{2n+1} \to 0$$

$$\downarrow \alpha \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \gamma$$

$$0 \to \sum_{i=1}^{n+1} G^{2i+1} \to \sum_{i=1}^{n+1} F^{2i+1} \to V^{2n+3} \to 0$$

so that α and β are the obvious injections $x \mapsto (x, 0)$ and γ is the inclusion. This is an easy exercise, or the construction may be found in [1, p.79]. Thus, by taking direct limits we obtain a free resolution

$$0 \to \sum_{i=1}^{\infty} G^{2i+1} \to \sum_{i=1}^{\infty} F^{2i+1} \to \Omega_{-}^{U}(G)(AL, PL) \to 0,$$

as required.

We now complete the proof of (3.1). If L has prime-power index in G, then G/L is cyclic and (3.1) would follow from (5.1) and (5.2). Otherwise, use (1.1a) to select a normal subgroup K of G containing L, such that $[G:K] = q^s$ for some prime q which does not divide [K:L]. By induction on the order of G, assume $\Omega_+^U(K)(AL, PL)$ is free, $e_K^L: \Omega_+^U(L)(AL, PL) \to \Omega_+^U(K)(AL, PL)$ is a split epimorphism, and $\Omega_-^U(K)(AL, PL)$ has projective dimension one.

Consider the action of the cyclic group G/K on $\Omega_+^U(K)(AL,PL)$. Let $t\in G-K$ be an element of order n whose coset generates G/K. Then t induces a Z/n action on $\Omega_+^U(L)(AL,PL)$, and with this action e_K^L becomes a Z/n-morphism. In fact, there is a K-equivariant diffeomorphism $t_*(K\times_L M)\to K\times_L(t_*M)$ defined by $[k,m]\mapsto [t\ k\ t^{-1},m]$. Therefore $\Omega_+^U(K)(AL,PL)$ is isomorphic as a G/K-module to a summand of $\Omega_+^U(L)(AL,PL)$.

As in the proof of (5.1), this implies that $H_{2a}(G/K; \Omega_+^U(K)(AL, PL)) = 0$ for a > 0. On the other hand, $H_-(G/K; \Omega_-^U(K)(AL, PL)) = 0$ because the coefficients contain only torison of orders prime to q (by (4.2)). Thus

$$e_G^K: \Omega_+^U(K)(AL, PL) \to \Omega_+^U(G)(AL, PL)$$

is surjective, by (4.1). As in (5.1), we see that e_G^K is in fact a split epimorphism, so $\Omega_+^U(G)(AL, PL)$ is free.

In the odd dimensions, let us write $\Omega_{-}^{U}(G)(AL, PL) = Q_{-} + T_{-}$, where Q_{-} is the q-torsion submodule. By (4.4), Im $e_{G}^{K} = T_{-}$. By [2, p. 54],

$$e_{G}^{K} r_{K}^{G} e_{G}^{K} = [G:K] e_{G}^{K} = q^{s} e_{G}^{K};$$

hence $e_G^K r_K^G | T_-$ is an isomorphism. Therefore T_- is isomorphic to a summand of $\Omega_-^U(K)(AL, PL)$ and must have projective dimension one. Since

$$H_{-}(G/K;\Omega_{+}^{U}(K)(AL,PL))$$

has projective dimension one, while $H_{2a}(G/K; \Omega_{-}^{U}(K)(AL, PL)) = 0$ by (4.2), it follows as in the proof of (5.2) that Q_{-} also has projective dimension one. The proof of (3.1) is thus complete.

6. THE PROOF OF 3.2

We continue to suppose that $(\mathcal{F}, \mathcal{F}')$ are adjacent, differing by L. As before, by (2.1) and induction on the order of G it will suffice to assume that L is normal, and that $(\mathcal{F}, \mathcal{F}') = (AL, PL)$. By (2.2) we may assume that L is a proper subgroup. Fix a prime q which divides [G:L]; by (4.2) it suffices to show that the q-torsion of $\Omega_{-}^{U}(G)(AL, PL)$ is sent to zero in $\Omega_{-}^{U}(G)(AG, PL)$.

PROPOSITION 6.1. Suppose G/L is cyclic of order q^s . Then

$$\Omega_{-}^{U}(G)(AL, PL) \rightarrow \Omega_{+}^{U}(G)(AG, AGPL)$$

is the zero homomorphism.

Proof. We continue the computations of (5.1) and (5.2), which cover this case. Suppose $x \in V^{2j+1} \cap \Omega^U_{2k+1}$ (G)(AL, PL). Then x determines a certain coset

$$[x] \in E_{2j+1,2(k-j)}^2 = H_{2i+1}(G/L;\Omega_{2(k-j)}^U(L)(AL,PL)).$$

Let $y \in \text{Ker } D_* \subseteq \Omega^U_{2(k-j)}(L)(AL, PL)$ determine this same coset. We show that there exists some $[M] \in \Omega^U_{2(k-j)}(G)(AG, AGPL)$ such that $r_L^G[M] = y$.

By (2.3), it suffices to assume that

$$y \in \sum_{i=0}^{[G:J]-1} \Omega^{U}_{*}(Bt^{i}_{*}\sigma)$$

for some L-representation σ and $J=J(\sigma)$. Thus, since $t_*y=y$, we may write $y=\sum_{i=0}^{[G:J]-1}t_*^i(z)$ for some $z\in\Omega_*(B\sigma)$. By (1.2) there exists a J-action M' such that $[M']\in\Omega_*^U(J)(AJ,AJPL)$ and $r_L^J[M']=z$. It follows that $r_L^Ge_G^J[M']=y$, so we choose $[M]=e_G^J[M']\in\Omega_*^U(G)(AG,AGPL)$.

Next, let S^{2j+1} have the standard free action of G/L, in which t acts as multiplication by a primitive [G:L]-th root of one in each coordinate of complex (j+1)-space. We regard this as an action of G via the projection $G \to G/L$. The product $S^{2j+1} \times M$ is thus a G-space, admitting a G-equivariant map $S^{2j+1} \times M \to S^{2j+1} \to E(G/L)$ to a classifying space for free G/L- actions. By the proof of [11, (2.1)] it follows that $[S^{2j+1} \times M] \in \Omega_*(G)(AL, PL)$ represents the coset [x]. Now $S^{2j+1} \times \partial M = \partial(D^{2j+2} \times \partial M)$, and in $D^{2j+2} \times \partial M$ all isotropy groups lie in AGPL. Therefore $[S^{2j+1} \times M] = 0 \in \Omega_*^U(G)(AG, AGPL)$. It follows, by a straightforward induction on j, that V^{2j+1} has zero image in $\Omega_*^U(G)(AG, AGPL)$.

By (1.2b), there is a subgroup K of G containing L, so that $[K:L] = q^s$ and [G:K] is prime to q. By (4.4), $e_G^K: \Omega_-^U(K)(AL, PL) \to \Omega_-^U(G)(AL, PL)$ maps onto the q-torsion. It follows by induction on the order of G that $\Omega_-^U(G)(AL, PL) \to \Omega_-^U(G)(AG,AKPL)$ kills q-torsion, for each prime q dividing [G:L], and must therefore be the zero homomorphism.

PROPOSITION 6.2. Suppose $G \in \mathcal{M}$, G/L is cyclic of order q^s , and \mathscr{F}_0 is a family of subgroups of G such that $PL \subseteq \mathscr{F}_0 \subseteq AGPL$. Then

$$\Omega^{U}_{*}(G)(AGPL, \mathcal{F}_{0}) \rightarrow \Omega^{U}_{*}(G)(AG, \mathcal{F}_{0})$$

is zero on q-torsion.

Proof. There is nothing to prove if $\mathscr{F}_0 = AGPL$. Suppose $\mathscr{F}_0 \subset \mathscr{F}_1 \subseteq AGPL$, $(\mathscr{F}_1, \mathscr{F}_0)$ are adjacent differing by H, and $\Omega^U_*(G)(AGPL, \mathscr{F}_1) \to \Omega^U_*(G)(AG, \mathscr{F}_1)$ is zero on q-torsion. Consider the commutative diagram

$$\dots \to^{\cdot} \Omega_{*}^{U}(G)(\mathscr{F}_{1}, \mathscr{F}_{0}) \xrightarrow{\dot{f}_{*}} \Omega_{*}^{U}(G)(AGPL, \mathscr{F}_{0}) \to \Omega_{*}^{U}(G)(AGPL, \mathscr{F}_{1}) \to \dots$$

$$\downarrow^{\cdot} id \qquad \qquad \downarrow^{\cdot} k_{*} \qquad \qquad \downarrow^{\cdot}$$

$$\dots \to \Omega_{*}^{U}(G)(\mathscr{F}_{1}, \mathscr{F}_{0}) \to \Omega_{*}^{U}(G)(AG, \mathscr{F}_{0}) \to \Omega_{*}^{U}(G)(AG, \mathscr{F}_{1}) \to \dots$$

If $y \in \Omega_*^U(G)(AGPL, \mathscr{F}_0)$ is a q-torsion class, then $y = j_*(z) + w$ for certain z and w such that $k_*(w) = 0$. We may as well assume $y = j_*(z)$; by (4.3) we can assume z is a q-torsion class also.

Now $\Omega_*^U(G)(\mathscr{F}_1,\mathscr{F}_0)$ is without q-torsion unless q divides [G:H], by (2.1) and (4.2). Suppose $[G:H]=q^t$; then either $H\leq L$ or $L\leq H$, according as $t\geq s$ or $t\leq s$, respectively. Since $H\notin\mathscr{F}_0$ and $\mathscr{F}_0\supseteq PL$, we must have $L\leq H$. This is not possible, since $H\in\mathscr{F}_1$, and $\mathscr{F}_1\subseteq AGPL$. Thus some other prime p divides [G:H].

We wish to prove that $\Omega_*^U(G)(\mathscr{F}_1, \mathscr{F}_0) \to \Omega_*^U(G)(AG, \mathscr{F}_0)$ kills q-torsion. By (2.1) we may assume H is normal in G. Use (1.1b) to select a subgroup Q so that H < Q < G, $[Q:H] = q^t$, and [G:Q] is prime to q. Then there is a commutative diagram

$$\Omega^{U}_{*}(Q)(AH,PH) \xrightarrow{i'_{*}} \Omega^{U}_{*}(Q)(AQ,PH)$$

$$\downarrow e^{Q}_{G} \qquad \qquad \downarrow e^{Q}_{G}$$

$$\Omega^{U}_{*}(G)(\mathscr{F}_{1},\mathscr{F}_{0}) \cong \Omega^{U}_{*}(G)(AH,PH) \xrightarrow{i_{*}} \Omega^{U}_{*}(G)(AG,PH)$$

By (4.4), e_G^Q maps onto the q-torsion. By induction on the order of G, i'_* is zero. Thus i_* is zero on q-torsion, which completes the proof.

We can now finish the proof of (3.2). Consider the commutative diagram:

$$\Omega_{-}^{U}(G)(AL, PL) \xrightarrow{id} \Omega_{-}^{U}(G)(AL, PL)$$

$$\downarrow l_{*} \qquad \qquad \downarrow j_{*}$$

$$\Omega_{-}^{U}(G)(AKPL, PL) \xrightarrow{i_{*}} \Omega_{-}^{U}(G)(AG, PL) \rightarrow \Omega_{-}^{U}(G)(AG, AKPL)$$

$$\uparrow e_{L}^{K} \qquad \qquad \uparrow e_{L}^{K}$$

$$\Omega_{-}^{U}(K)(AKPL, PL) \rightarrow \Omega_{-}^{U}(K)(AK, PL)$$

If $y \in \Omega_{-}^{U}(G)(AL, PL)$ is a q-torsion class, then by (6.1) we know $j_{*}(y) = 0$. Let $l_{*}(y) = i_{*}(x)$ for suitable $x \in \Omega_{-}^{U}(G)(AKPL, PL)$. By (4.3) we may assume x is a q-torsion class. If $[G:L] = q^{s}$ then K = G and we are done, by (6.2). Otherwise K < G and we apply induction on the order of G and the knowledge that e_{L}^{K} maps onto the q-torsion.

This finishes the proof of (3.2), and thus the proof of the theorem.

REFERENCES

- H. Cartan and S. Eilenberg, Homological algebra. Princeton University Press, Princeton, N.J., 1956.
- 2. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band. 33, Springer, Berlin, 1964.
- 3. P. E. Conner and L. Smith, On the complex bordism of finite complexes. Inst. Hautes Etudes Sci. Publ. Math. No. 37 (1969), 117-221.

- 4. W. Feit, Characters of finite groups. W. A. Benjamin, New York, 1967.
- 5. M. Hall, Jr., The theory of groups. Macmillan, New York, 1959.
- 6. P. S. Landweber, Complex bordism of classifying spaces. Proc. Amer. Math. Soc. 27 (1971), 175-179.
- 7. P. S. Landweber and C. Lazarov, *The cobordism of G-manifolds: preliminary report*. Abstract 71T-G24, Notices Amer. Math. Soc. 18 (1971), 431-432.
- 8. C. Lazarov, Actions of groups of order pq. Trans. Amer. Math. Soc. 173 (1972), 215-230.
- 9. J. W. Milnor, On the cobordism ring Ω_* and a complex analogue, Part I. Amer. J. Math. 82 (1960), 505–521.
- 10. E. Ossa, Unitary bordism of abelian groups. Proc. Amer. Math. Soc. 33 (1972), 568-571.
- 11. R. J. Rowlett, The fixed-point construction in equivariant bordism. Trans. Amer. Math. Soc. 246 (1978), 473-481.
- 12. R. E. Stong, Unoriented bordism and actions of finite groups. Mem. Amer. Math. Soc., No. 103, 1970.
- 13. ——, Complex and oriented equivariant bordism, in Topology of Manifolds. (J. C. Cantrell and C. H. Edwards, Jr., editors), Markham, Chicago, 1970, pp. 291-316.

Department of Mathematics University of Tennessee Knoxville, Tennessee 37916

