NEARLY MAXIMAL REPRESENTATIONS FOR THE SPECIAL
LINEAR GROUP

Bruce N. Cooperstein

1. INTRODUCTION

Since early in this century there has been a continuing interest in the following
problem: For a given finite group, G, what are the maximal subgroups of G?
This problem is of course most interesting when a family of groups is considered,
and examples of such work are the results of Mitchell on PSL,(q), PSU;(q) and
PSp,(q), g odd (see [7] and [8] resp.) and those of Hartley for PSL(q), ¢ even
(see [3]). More recently there is the work of Mwene (see [9]). The problem of
finding all the maximal subgroups of PSL,(g), or of any of the classical groups,
is in general not a realistic one, since this amounts to essentially finding all
irreducible subgroups of these groups (on their standard modules). A variation
on this theme is the following: suppose G is a group, and H is embedded in some
known way in G, what are the subgroups of G which contain H? In particular,
is H maximal? Burgoyne, Greiss and Lyons [1] considered this problem for G
a group of Lie type and H the fixed points of certain automorphisms of G of
prime order. In [2], E. Halberstadt considers X(X), the symmetric group on a
finite set X, and its action on X *’, the k-element subsets of X, and shows that
the embedding in =(X *’) or A (X *’) [alternating group] is almost always maximal
and determines the exceptions. The analogue of this for linear groups is: Show
SL(V)is “nearly” maximal in A (L,(V)) where L, (V) is the collection of k-subspaces
of V. In [4], Kantor and McDonough do this problem for 2 = 1. In this paper
we treat a problem similar to these. Before we get to our results we first introduce
some notation.

Suppose ¢ is a homomorphism from a group G to a group X, we will say
that ¢ is maximal if ¢$(G) is a maximal subgroup of X. ¢ is said to be nearly
maximal if whenever H is a proper subgroup of X and H contains ¢ (G), then
H normalizes ¢(G). Finally, for a prime p, we say ¢ is p-maximal, if for any
proper subgroup H of X which contains ¢ (G), then a p-Sylow of ¢ (G) is a p-Sylow
of H.

Now let V be a vector space of dimension n = 3 over a field F = F_e and for
k=n-—1let V= A*(V).Set G = SL(V), G, = SL(V,) and define ¢,, a homomor-
phism from G into G, by

($,8) W, A ... AU) = (8V,) A (8Uy) A ... A (gV,).
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The following seems to be reasonable:

n
Conjecture. If (k,p) # (—2—, 2), then ¢, is p-maximal. If 2 # (n/2) or (k,n)

= (2,4) and p # 2, then &, is nearly maximal.

Remarks. (1) The conjecture is equivalent to the following: If
$,.(G) = H< GL(V,) and ¢,(G) # H, then H = SL(V,).

(2) The restrictions in the conjecture are necessary: k = (n/2), p = 2, then ¢,
is not 2-maximal since the graph automorphism acts on V,. Moreover, when
k = (n/2), V,is self-dual as amodule for ¢ (G) and $(G) = Q™ (V,) or ¢ (G) = Sp(V,,)
as k is even or odd.

(3) For p > 3 a possible method of attack is the use of Thompson’s classification
of quadratic pairs [11): if T+ € G is a transvection on V, then ¢, (1) acts quadratically
on V, for each k. At this time the author is uncertain whether use of this result
suffices to prove the conjecture. We have chosen our method for its simplicity
and geometric character.

The purpose of this paper is to prove some cases of this conjecture. We prove
THEOREM 1.1. ¢,, ¢,,_, are p-maximal unlessn = 4, p = 2.

THEOREM 1.2. If n=4, p=2 and ¢,(G)<H<G,, $(G)# H, then
O* (H) = Sp(V,).

THEOREM 1.3. If n =5, then ¢,, ¢,_, are nearly maximal.

In section two we consider the module V® V, for SL(V) and get an FG-de-
composition. In section three we determine the dimensions of p-elements of SL (V)
in V,. In section four the cases n <4 in (1.1)-(1.3) are handled and in section

five the general cases are proved. In section six some concluding remarks on what
is necessary to extend our proof for the treatment of the conjecture in general.

2. THE MODULES V® V, FOR SL(V)
In this section we get an FG decomposition for the module
M=V®V, (Il=k=n-1),

where G = SL(V). We only need the result for 2 = n — 2; however, our proof is
by induction. It is possible that the result is known, but the author has not found
it accessible in the literature and so for completeness is included here.

Let Q={1,2,..,n}.For1=j=n,set Q;= {a C Q||a|] =j}. When a € Q; we
will identify o with the unique increasing map from {1, 2, ..., j} to Q with range
a. Let V= (v;:i € Q) be a vector space of dimension n over an arbitrary field
F. For a € Q, set

— J —
Wy = Vo) Uiy N -+ A Uy ) EAN(V) =V,

Fora€ Q,;,B € Q; withaNB=4§,lete(a,B) € {1, -1} C F* be defined so
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e(0,B)w, A wg =w,yp-

When j=1 and a = {i}, B € Q,., i & B we write £(i,B) for £({i},B). For i € Q,
a € Q,, let

x@0)=v,Quw,.

Now let vy € Q,,, and set

u,= > el — @)y — ), U= (u,:vE€ Qyy)
i€y
The following is straightforward to prove.

LEMMA 2.1. U is a submodule of M, and as a module for G is isomorphic
toV,.,.

Next consider the map:V® V,—»> V, by 0w ® w) =va wforve V,w e V,.
This is an FG-surjection of modules, and hence M has a quotient isomorphic to
Vi1 Set K = ker®. Notice 8(z,) = (kR + 1u,, and so U= K if and only if
char F'|k + 1. The main results of this section are as follows.

PROPOSITION 2.2. If Wis a submodule of M, W#£ U, then W= K.

COROLLARY 2.3. If char F does not divide k + 1, then K is irreducible, and
M= U® K as an FG-module.

COROLLARY 2.4. If char F|k + 1, then M has a unique composition series
as FG-module: 0 C UC K C M.

Proof. Clearly (2.3) and (2.4) follow immediately from (2.2). (2.2) is proved
by induction on 7. When 2 = 1, M = V® V and then the result is very well known
so we omit its proof. Thus we may assume &k = 2.

Let A={1,2,..,n—1}. As for Q, if 1 =j=n — 1, then A, is the collection
of all subsets of A of cardinality j. Set
Y = (v;:i € A), Q=C;(Y),
L=Ng4Y) N N;({v,)), L,=0%(L)=SL(Y).

For i #j € Q, o; will be the transvection centralizing (V,:t # j) such that o ,(v;)
=v;+v;,. For any ,j € Q, E,: V— Vis the linear transformation such that

E;(v,) =3 ,v;.

Finally, if« € Q,,i € o, j& o, then o’ =a — {i} U {J}.

Suppose first that 2 =n — 1. Then V, = V* = Hom (V,F) as FG-module and
V® V* = Hom,(V, V). Therefore we can identify G with SL,(F'), M with M, (F)
andlet g € Gacton T'e M by

goT=gTg™’
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Let

M =TeM:InTC Y, YC kerT}
M,={T€ M:ImTC Y)

Then
M,Q] =(gTg™' —T:g€ QTE M)=M,®U)N K

and U = [M, Q] if and only if char F|n. Note that M, = Y as FL and FL,-modules,
and M, /M, is isomorphic to Hom (Y, Y) as a module for Land L,. C,,(Q) = M, ® U.
Assume now that Wis a submodule of M, W+# U. Suppose C,,, (@) # U, then for
some \EF, Te M¥, \I,+T€ C,(Q). Choose g € L,, so goT+# T. Then
go(NI, +T) =\, + goT € Cy(Q), and then so is gI'—T € M?. It then
follows that M, = C(@). In particular E,, € C,(Q). Since G is 2-transitive
on the 1-spaces of V, E;; € Wfor i # j. So E,, € W. But then

G20y =(Ey — Ep) + (B, —Eyp)E W,

and hence E,, — E,, € W. Again, since G is 2-transitive on 1-spaces of V,
E;— E;€ W, W contains a base for K; and W= K. Therefore we may assume
C, (@) = U. Next note that [M,Q,Q] = M,, and since M, C C,,(®), C,, (@) = U,
[W,Q,Q] = 0. Since W #£ U, we must have [W,Q] = U. Therefore, thereis '€ W
and g € @, so goT — T = \I,,, some A\ € F*. Suppose

[ 1 0 \
B
T = T %) and g =
Yy a
0 1
\ o r)
Then

ap—
P = By T.B-
grm o= BYB
0 —vB

However, if goT — T = A, then
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a \

By EM, ,(F).

0 : )
\ A
But, the row rank of By =<1, and we have a contradiction since 2=k =n — 1.
Thus the theorem is proved when 2 =n — 1.

Now we may assume 2=k =n— 2. Let A, Y, @, L, L, be as above. It is easily
checked that C, (@) = (x(i,a):i €E A,a CA,) =Y ®Y, as a module for FL, and
FL. Assume W is a submodule of M, W £ U. If C,,(Q) # C,(Q), then by induction,
Cw(@)= KN Cy(Q), and so x(I,a) € Wiori € a € A,. However, it then follows
that x(i,a) € W for i € a € Q, since the Weyl group of G is transitive on
{(x(l,a)):i€ a € Q,}. Supposey €E A,,,,i#j € v. Then

ey —(BxGy - () —eUyy - UNxUy — G E W
But then it follows foranyy € Q,,,,i#j € v
el@v—{Nx@y—- ) —eUy—{UNxUy - {JHE W.

Therefore W contains a base for K, so K = W as claimed. Hence we may assume
Cw(Q) = Cy(Q). Since Cp(Q)#0, WN U#0, and U= W by (2.1). Note that
this implies char F divides & + 1, for otherwise W= U® (W N K), and

Cw(@) = Cynk (@) £ Cy(Q).

Next note that

M, Q] = Cy(Q) + (x(i,a)i,n € « € Q,)
+ (e(n,0) x(n,0) —e(j,a;) x(j,aj) a0 € A,,J € a).

Also, [M,Q]/Cy (@)=Y ® Y, ., as amodule for FL and FL ,, and UC,,(Q)/C,,(Q)
plays the same role in [M,Q]/C,(Q) as U does in M. Suppose WN [M,Q] # U.
Then by induction, for some y € C,, (@), « € Q, with j,n € a.

x=x({,0) +y€E W.

Choose j & a and let o = g,,. Then (ox — x) = (x(G,a’)) = C,,(@),but x({,a’)) & U
contradicting our assumption that Cy (@) = C,(®). Therefore WN [M,Q] = U.
But [W,Q] = Wn [M,Q]= U,so @ centralizes W/ U. Since @ £ Z(G) we must
have G centralizes W/ U. However, W/ U= W/[M,Q] N W= W[M,Q]/[M,Q]
as a module for L,. But M/[M,Q] is isomorphic to Y,_, ® Y, as a module for
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L, and so L, does not centralize anything in M/ [M,Q], we have a contradiction,
and the proof of (2.2) is complete.

3. CENTRALIZERS OF p-ELEMENTS IN V,

In this section V = (v;:1 =i =< n) is an n-dimensional vector space over F =F .,
V, = A%*(V), G = SL(V). We continue to denote the transvection with axis (v,: k& # J)
such that v;— v; + v;by 0,;. Let 0 = 0,,,. Then

Cy,0)=(uAy,pAvl=i<j=n-—1),

and so

n—1
(3.1) dim Cvz(‘f) = ( 9 ) + 1.

LEMMA 32. If n=4, v € G a p-element and Cy,(v) = Cy, (o), then 7 is also
a transvection with axis (v, ..., v,_,) and center (v, ).

Proof. Since 7 centralizes v; A v; for 1 =i <j=n -1, v normalizes (v;,v,).
For any 1=i=<n—1 we can find j, j/ distinct from { with j, j' =n — 1 since
n = 4. Then 7 normalizes (v;,v;) and (v;,v;.) and so normalizes

(v;) = (v, u;) N (V;, V).

Since 7 is a p-element, 7 centralizes v,, v,, ..., v,_,.Since T also centralizes v, A v,,
7 normalizes (v,,v,), so [V,7] = (v,) and the result is proved.

Remark 3.3. If we drop the restriction that v be a p-element, then T could
also be —1I, (and of course the product of any transvection with axis (v, ..., v,_,)
and center (v,) with —I,)) when —I, € G.

LEMMA 3.4. Letn,,n,, ..., n, be positive integers with

n,=n,=..=n.,n,+n,+..+n =m.

m+1
Then rn,+ (r—1)n,+ ...+ 2n,_,+n, =< ( 0 ) and we have equality if and

onlyifm=r.

Proof. The proof is by induction on m. f m =r, thenn, =n,=...=n,_,=1,
m+1

and then the sumism+(m —-1)+ ... +2+ 1= 0 ) Thus we may assume

r < m and show that we get strict inequality. Since r <m, n, > 1. If r = 1, then

m+1
m,+ ...+2n,_,+n=m< ( 0 . So we may assume r > 1. By induction

m-—n, +1
r—n,+ (r—2)n, + ---+nr_15( 0 )

Then
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m-—n,+1 m-—1 m+1
m,+r—n,+...+n. =< 0 +m= 0 +m< 0 .

LEMMA 3.5. Assumen=5,0=0,,, 7 € G so |t| =p. Then
n—1
dim Cy, (r) = dim Cy, (o) = ( 0 ) + 1,

and we have equality if and only if o 47 that is, if and only if T is also a transvection.

Proof. 1If we identify G with SL_(g), (g = p°), then we can identify V, with
alternate matrices, A = Alt, (q) = {(m,) € M, (@ym, = 0, m,, = —m}, the
action of g € SL,(q) on (m ;) € A given by:

go(m,) = g(m;)g' [ g’ is the transpose of g].

For a positive integer k%, let

1 1
1 1 0
J, = € M, (q).
0 1 1
If the invariant factors of v have degrees d,, d,, ...,d, with d, =d, = ... =d,

then d, + d, + ... + d, = n, and we can take

st—l

Sy

Assume N = (N, ) € C, () where N,, € M, , (q). 7oN=(J, N, dJ,,). From
l1=<a,b=<s

this and some simple matrix calculations it follows that
. d, d, d,
dimC,(x)=(—-1)d, + (s—2)d, + ... +d,_,+ Y + | —|+...+]|—=

By the previous lemma

n—d,+1
(s —1)d, +(s—2)d, + ---+ds_15( ) )
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Suppose d, = 3. Then

n—2 [ d, d,
dimC,(7) = +—|+...+|—
2 | 2 2
= +—
2 | 2
n—2
= +n-—2
2
\ 2
n—1
(1)
2
Therefore we may assume d, = 2. Suppose d, = d, = ... = d, = 2 so n = 2s. Then
§>2 and dimC,(1)=2[s—1)+(s—2)+..+2+1] +s=s(s—1)+s =
2s—1
§°< 28" —3s+2= . + 1. Therefore we may assume
d1=d2= =dr=1’dr+1= =ds=2

and also that r<s — 1, since when r=s—-1=n— 2, v is a transvection and
we get equality.

s
Now dim C,(7) = (2) + 25 — 2r — 1. Since s — r = 2, s <= n — 2. Also

r+2(s—r)=2s—r=n.So

n—2 n—1 n—1
Y (e TP ) Y CEA T

4. THE CASES n < 4

In this section we prove (1.1) when n = 4 and (1.2). Suppose V is a three-dimen-
sional vector space over F = F,e, G = SL(V). Then V, = A?*(V) is isomorphic
to V* = Hom(V,F) as a module for G. Then G = G, = SL(V*) and is clearly
p-maximal and nearly maximal in G,. Thus we may assume n = 4.

Note that A* (V) is a one-dimensional vector space over F and so may be identified
with F. Consider the map f: V, X V, — A*(V) = F induced by

fO, AV, U3AV,) =U, A UsA DaA U,

Then the following is well-known.
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LEMMA 4.1. (i) If p+# 2, f is a non-degenerate symmetric bilinear pairing
with maximal index and ¢(G) = G/Z(G) = Q™ (V,).

(i) When p = 2, f is a non-degenerate alternate bilinear pairing. In this case
G=o¢(G)= Q" (V,).

Remarks 4.2. (1) The decomposable vectors in V,, that is those of the form
v AW, v,w € V, are the singular vectors of V, while the remaining non-zero vectors
are the non-singular vectors.

(2) In odd characteristic ¢(G) has one orbit on singular points with length
(@® + 1)(g° + g + 1), (g = p°) and two orbits on non-singular points each with length
(¢%(g® — 1))/2. Note if U is a non-degenerate subspace with dimensional two and
non-maximal index, then U contains (g + 1) /2 points from each of the two orbits
on non-singular points.

(3) In characteristic two there is a single orbit on singular points with length
(¢* + 1)(¢® + g + 1) and one orbit on non-singular points with length ¢°(g® — 1).

We next introduce some notation.

For W a vector space and L = SL (W), U a subspace of W, set
4.3(i) x.(U)={ge L:[gU] =0, [Wg]=U}

For U, U’ subspaces of W, set
4.3(ii) x(U,U")=x,(U) N x,(U").

Let P be a one-subspace of V, U a hyperplane. Then |x;(P)| = |x¢(U)| = ¢°
and Cvz(xG(P)), C'V2 (x ¢(U)) are representatives of the two classes of maximal
totally singular subspaces of V,. Set X, = x5 (P), X, = xg(U). Suppose W is a
three-subspace of V,, W not totally singular. Then if x € W¥, x not singular,
C,(W)=Csx) =Q,(q). Cs(x) acts on x* in its natural way (irreducibly when
P # 2, indecomposably with constituents of dimension 1 and 4 when p = 2). When
p # 2, there is a unique class of elementary subgroups of order ¢® in C,(x). If
E is a representative of this class, then C..(F) is a one subspace. Therefore,
the subgroups in the G-classes of X, and X, are characterized as those elementary
abelian subgroups of G of order g® which centralize a three-subspace of V,. Thus
we have

LEMMA 44. Let p#2, S€ $1,(G), P=C,(S), U= [V,S], X, =xs(P),
X,=xc(U).Ifg € G, and X< S, then X% = X, or X,.

We now consider the case where p # 2.
PROPOSITION 4.5. Ifp # 2, then ¢(Q) is p-maximal in G,.

Proof. Set G = ¢(G) and assume on the contrary that G is not p-maximal in
G. Thus let Hbe a proper subgroup of G, withH = G, |H|, > |G|,.Let T € Syl,(H)
so 7= S and set T, = N.(S). By (4.4) T, permutes X, and X,. But orbits of T,
on {X,,X,} must have length a power of p, so T, normalizes X, and X,. Set
X =X,, N=NgX), W= C,,(X), N, = Ng,(X). Note that
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IN:OP(N)| =(g—1)/(g~14), 0" (N)/Z=0" (N/X)=SL,(q)

and N/X is a subgroup of GL;(g). W we saw previously, is a three-subspace
of X,, Cy(W)=X and as a module for N/X, W and X are isomorphic. Also
X =Cuy(V,/W) and

V,/W=Hom (X,F)=X*
as a module for N/X. Let L=N so LN X=1, N=XL, and set Q = xGZ(W).
Ther X < @. Set @, =@ N H.

LEMMA 46. Q,=X.

Proof. As a module for L, @ = X* ® X*, Since the characteristic, p, is odd, L
has two constituents on @, one of which is X. Therefore, if @, > X, then @, = @.
However, for every point R of W and hyperplane Y of V, containing W,

XG2 (R: Y) = Q'
If @, = @, then since H acts irreducibly on V,, by [5], H = G, a contradiction.

Thus @, = X as asserted.
Now set N, = Ny (X) and K = N,(X). O” (N,) = QO* (L). Then

0" (QK/Q) = O7 (L) = SL,(q).
In particular, |QK/Q| = ¢°. However, we have
|IQK/Q| = |K:K N Q] = |K:Q,| = |K:X]|.

Therefore |K|,=¢°:|X| = ¢°. But K=T, and |T,| > |G|, = ¢° and with this
contradiction (4.5) i_s_ proved. We continue to assume p # 2 and consider the
near-maximality of G in G,.

PROPOSITION 4.7. For p odd, G is nearly-maximal in G,.

Proof. Again our proof is by contradiction. Assume on the contrary that there
is a subgroup Hof G, soG=H< G,, G#£ H.

LEMMA 4.8. H is transitive on ponts of V,.

Proof. As we said in (4.2)(2), G has three orbits on points of V,, the singular
points, % and two orbits of equal length on non-singular points—mu, and w,. If
H preserved .% then H =< GO ™" (V,) and G = H contrary to assumption. So H fuses
< to at least one of the orbits, say m,. Suppose H did not fuse . to n, as well.
Choose R€ ¥ and Y €E q, with R and Y orthogonal and consider (R,Y).
N (R, Y)={R}and |q, N (R,Y)| = q. Now choose g € Hso R, = R € n, and
set Y, = Y% Now since H leaves 7, invariant, |n, N (R,,Y,)| = q and

{Rl} =m,N (R,,Y,).

Therefore (R,,Y,) is a non-degenerate subspace of V, with dimension two and
non-maximal index. But again by (4.2)(2), we must have
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|T|1 N (Rl:Yl)I =q+1/2>1,

a contradiction and (4.8) is proved.

Let x=v, Av,, Yy =, AU, + U, AU, where {v,,v,,0,;,0,} is a base for V. Set
X = xe({v,,05)). X induces the group of all transvections of V,/(x) with axis
x* /{x). Cx((y)) acts irreducibly on V,/(y). Since H acts transitively on points,
we must have that N,((x)) acts irreducibly on v,/(x). Set N = N,({x)), and
C = Cy(vy/{(x)). Then by [56] we must have O®(N/C)=SL(v,/(x)). Thus
|H|, = |[N|, = ¢"° > ¢° = |G|, contradicting the p-maximality of G. This completes
the proof of (4.7).

We now turn our attention to the casen = 4, p = 2. SupposeG = H< G,,G #£ H.
We must show O (H) = Sp(V,). As we remarked in (4.2)(3), G has two orbits
on points of V,. If H normalized these two orbits, then H <= GO " (V,) and G=H
which is not the case. Therefore H is transitive on the points of V,. As in the
case of odd characteristic, if for any point A of V,, N,(A) acts irreducibly on
V,/A, then H = G, which contradicts H < G,. For if N,(A) acts irreducibly on
V,/A, setting C = C,;(A), we have N,(A)/C = SL,(q) and then H is flag-transitive,
so by [10] H = G,.

LEMMA 4.9. H fixes the form f and therefore H < SO(f) = Sp(V,).

Proof. It is enough to show for each point A of V, that N ,(A) normalizes
A™*. Since H is transitive on points it suffices to consider A = (y) where

y=0v, AUy, +v3 AU, ({v,,V,,0;5,0,} abasefor V).

For this A, C = Cx(A) = Sp ,(q) acts indecomposably on V, and irreducibly on
the hyperplane A" /A of V,/A. If C did not normalize A" /A, then it acts irreducibly
on V,/A which we already said is not the case. Hence C and N,(A) normalize
A* and H = SO(f) as claimed. If O”(H) normalized G, then O®(H) = G since
Aut(G)/G is solvable. But then G = H, a contradiction. Therefore, we can assume
H=0"H)= K = Sp(V,) and we must show H = K.

From McLaughlin [5, 6], if x(4,A") = H, then H = K since H is transitive
on points. Thus we need to show for some point A of V,, x(4,A") < H. Since
|K |, = q° it is enough to show |H|, = ¢°. Now set X = v, A v,.

N = N ((x)) = Ng ((v1,0:)) =X 5 ((U1,0,)) = X.

X induces transvections on V,/(x) with axis x*/(x). Let D = C,((y)) and E =
Cu(y*/(y)). Then D/E= Sp(y*/(y)) = C = Cz((y)). Therefore |H|,=q°. As
before, let S € Syl,(G), T € Syl,(H) withT=8.Set V' = (v,, ..., v;)for 1= i< 4.
We may assume Snormalizes V°. Then (v, A v,,v, A U;) = Yisthe only two-subspace
of V, normalized by S, and hence by 7. Then T normalizes

YY" = (v, AUy, U1 A Ug, Uy A U, UgA Ug)
and hence permutes the three spaces Z of V, with Y C Z C Y*. Since there are

g + 1 such three spaces, no orbit of 7' on these three spaces can have length
greater than q. Let Z= (v, A v,, v, A U, 0,4 v,). Thus |T:N,(Z)] <¢q and so
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IN#(Z)|, = q". Let L= Ng{(v,)) N Ng({vy,v5,0,)). Then LN Cx(Z)=1 and
L = GL,(q). Consequently, N,(Z)/Cx(Z) = GL,(q). Note that Z is a maximal
isotropic subspace of V, and as H =< K, C,(Z) is a two group [Cx(Z) = xx(Z),
elementary abelian of order ¢°]. Set B = x &({(v,)). X ¢,(Z), as a module for L,
is isomorphic to B* ® B*, and by (2.4), L acts indecomposably on xs,(Z) with
three constituents of dimension three, and so acts indecomposably on x . (Z) with
two constituents of dimension three. Therefore, if |C,(Z)| > ¢°, then |C,(Z)| = ¢°.
However, |[N,(Z)|, = q’,

INH(Z)/CH(Z)I2 |GL (Q)Iz ’

and so, in fact, |C4(Z)| = ¢*. Hence |N,(Z)|, = q°, and as we indicated before,
this suffices to complete the proof of (1.2).

5. THE GENERAL CASE

In this section we prove (1.1) for n =5 and prove (1.3). Note that since V,
and V,_, are dual, it suffices to prove the result for V,.

Let v,,v,,...,0, be a base for V, and set V' = (v,:i =< j) and X; = x (V).
Let S be the p- Sylow of G which normalizes V’ for each j, 1<j<n — 1 Suppose
g€ G,and X4=<8.If o € X¥, then

n—1
dim CV2(a) = dim Cvz(cg) = ( 0 ) + 1,

and so of is a transvection by (3.5). Hence X% consists entirely of transvections,
so X4=X,or X{=X,_,.However,

dim Cy, (X,) = n — 1, dim Cy,(X,_,) = (n ; ! )
n—1
2

for some g € G,, then X¢_, = X, _,. Consequently we have proven
LEMMA 5.1. X,, X, _, are weakly closed in S with respect to G,.
We now consider the other X.
LEMMA 5.2. X, s weakly closed in S with respect to G, for1l=j=<n — 1.

Proof. Suppose P is a point of V and |x;(P) U S| =¢"*. Then we have
P C Vi Similarly if U is a hyperplane of V and |x4(U) N S| =¢’, then
U D V. Now consider X, 2=<j=n — 2. Suppose g € G, and X =< S. Let P be a
one-space in V’ and U a hyperplane containing V”. xG(P)g S = [xagP) N S)°¢
and so

and since n = 5, ( ) > n — 1. Therefore X¥ = X,. Similarly if X2_, < S

[xeP) N S| =q"”
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Also x;(P)® N S consists entirely of transvections by (3.5). However,

dim Cy,(x¢(P)* N 8) < dim Cy,([xo(P) N S1%) = dim Cy (x z(P) N )

<
2
since IXG(P) N S| = q°. Therefore x ;(P)° N S cannot centralize a hyperplane, so
there is a point, which we denote by Pg, such that XG(P)g N S =< x o(P#). Since
Ixc(P)? N S| =q"7, |xcP?) N S|=q"7, so Pg< V. Similarly, if U is a hyper-
plane of V, U= V7, then Ixe(U) N S|=¢q’=q”and xG(U)g NS= [xs(U)nN S14.
It follows that there is a hyperplane U® of V so x G(Ug ) N S = xs(U?%). Also,

since x (U N S= [xs(U) N S]* has order at least ¢/, U* = V,. Now for P a
point, U a hyperplane with P < V’ < U we have x (P, U)* < Xf= S But

Xc(P,U) = xa(P) N x(U).
Then

XG(P’ U)g = Xg(P)gn )(G(U)gﬂ S
= [xec®P)¥* N S N [xe(U)*N S]
= xg(P*%) N x o (U?) = x s(P%, U®).

But X; = (xc(P,U):P= V/ = U) and the above implies Xf = X, as asserted.

Suppose on the contrary that (1.1) or (1.3) is false. Choose n = 5 minimal so
that either (1.1) or (1.5) is false. Suppose (1.1) fails. Choose H < G,, so G < H,
[C_FII,7 < |H]|,. Let v, S, X, be defined as above. Let T € Syl (H) with T'= S and
set T, = N,(S). Then T, normalizes X, for each j by (5.2). In particular T, normalizes
X,=xe((vy)).LetL = N5 ((x,)) N Ng((vy, ..., v, ))and L, = L' = SL (v, ..., V,)).
Set N=Ngi(X,), W=C,,(X,), C,=Cxn(W), C,=Cy(V,/W). Finally, let
Q= X é, (W). Note that L and L, act linearly on @, and as a module for L
and L', Q=X*®A"°(X?¥) where X! =Hom.(X,,F). Therefore, by (2.2), if
xvW)y=C, nC, >X1,then|Q C,NC,|=q"".

LEMMA 53. C, N C, =

Proof. Assume on the contrary that C, N C, > X. Let R be a point of W.
n—1
Then |x¢,(R) N M| =q" P2, Asn =5, 0 > n + 1. Therefore

X, N C,N C,|= q°.

In fact, from the decomposition of @ as a module for L’, we see that for distinct
hyperplanes Z, Z’ containing R, Xa, R, Z), xcz(R,Z')s C,n C,. By [5, 6] we
must have H = SL(V,) = G,, contradicting H < G,. Consequently we must have
C, N C, = X, as asserted.
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LEMMA 54. C, N C, > X,.

Proof. Let N= N/X,.Denote imagesin Nby —. C,,C,#¢ Nand C,n C, =1,
so ¢,C,=C,xC,. N/C, = LC,/C,. Also_N/C,=LC,/C,. LC ,/C, acts
irreducibly on V,/W, and as a module for LC,/C,, V,/W is 1somorph1c to
A*(W). We know |N|, > |N4(X,)|, and therefore

|IN/X,|,> INa(X,) /X, |, =I|SL,_,(g)],.
Since N/C, is a subgroup of GL(W), we must have |C, |, # 1. Suppose
L.C,/C,# N/C,,
then by induction, O°(N/C,) = SL(V,/W) or n =5, p = 2 and
O”(N/C,) = Sp(V,/W).

But then O”(C,) = SL(V,/ W) or Sp(V,/W). This implies that every constituent

n
of C,Q/Q on @ has degree a multiple of K so that C,Q/@ cannot

normalize X,, a contradiction. Hence,
O*(N/C,) = Eléz/éz =8L,_,(9).

Then C,’ = SL(W). Now it follows that |C |, # 1, for otherwise |N /Csl,>I|L]|,
and L,C,/C #£ N/C, by induction. O~ (N/C, ) = SLn .(g) implies C, = SL,, 1 (q).
Now NQ / @ contains a subgroup isomorphic to SL , _,(g) X SL ,_, (g) and this cannot
normalize X,. We must therefore have HN @ = C, N C, > X, as asserted.

Notice that (5.4) contradicts (5.3). With this contradiction we have shown the
p-maximality of G. Therefore it must be the case that G is not nearly maximal.
Thus choose H < G, so G=H, G # H. By what we have shown, |G|, = |H|,.
We now introduce some notation.

Call a vector x in V, rank k&, 2 < [n/2], if there are independent vectors w,,
Woy ooy W, IN VSOX =W, AWy + WyAWw, + ...+ Wy | A Wy, Let

Q = {(x):x € V,, xisrank one},

= {(x):x € V,, xisrank k}.

A subspace of V, is pure if all its non-zero vectors are rank 1. The maximal
pure subspace of V, have dimensions 3 and n» — 1 and are conjugate in G to
(Ui AUy, Uy A Vg, Up A Uy} and (v, A v;iL = 2, 3, ... n),respectively.

LEMMA 5.5. H does not leave ) invariant.

Proof. Suppose Q7 =0, that is, H does not fuse any vector of
rank 1 to a vector of rank % for some %, 2 <k =< [n/2]. Define the following
graph on Q:(x) # (y) in Q are adjacent if and only if (x,y) is pure. This graph
is isomorphic to the graph whose vertices are the two subspaces of V, two adjacent
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if they meet in a one-space. The automorphism group of this graph, when n = 5,
is PT L(V). It follows that G £ H, a contradiction.

Thus H does not leave ) invariant. Hence H fuses v, A v, to some vector
W=V, AU+ UgAUy+ ... + Uyy_; A Uy, 0f rank &, where 2=< k= [n/2].

LEMMA 5.6. n = 2k.

Proof. Supposek <n/2.SetX = X,, = xs(V*)andlet g € Hso gw = v; A v,.
X = Cy(w), so X% = Cy(v, Av,). However, S= C(v, A v,), and since |S| = |H|,,
S € Syl,(Cy (v, A v,)). Therefore without loss of generality we can assume X* < S.
By (5.2), X is weakly closed in S with respect to G,, so X% = X, Let

W=A(V*) = (v;av;:l=i<j=2k) = Cy (X),
L=NsV*) N Co((Vgpsys s Uy ).

Then L = SL(V*). Since g € N,(X), g normalizes W. Let N = N, (X),
C = Cy(W), N,=Ng(X). C,=Cy (W)=Csz(W). Clearly |C|,= |C,], and
IN/C|,=|N,/C|,. However, as N, = § € Syl,(N), we have equality in each case.
However, gN € N/C and gN fuses W to v, A v,. It follows that gN does not
normalize LC/C. By induction, O*(N/C) = SL(W) or Sp(W) which contra-
dicts |N/C|,=|N,/C,|, = |L|,, and completes the lemma.

Therefore we must have n = 2k even, and H fuses v, A v, and
W=U,A0, U, AU, + ... U, AUy,

but does not fuse v, A v, with any vector of rank j for 2<j<%k — 1. Let g € H,
SO W = U; A U,. Set

Q=xz{vy), V') = Cs(w). Q= Cylv, A vy).

Since S € Syl,(Cy(v, A v,)) we can assume @°=3S. Since G is transitive on
incident point-hyperplane pairs of V we can assume @° = @, (g, w) € Q. Note
thatgw € Cy, (@) = (v, A v,, ;A v;:1 =i <j=n — 1).Weneed to again introduce
some notation:

Foravectorv € V* L, set Hv) = (vAw:w € V* ') < Cy,(@).Let N = N,4(@),
W=Cy, (@), R=xo(V"™).

LEMMA 5.7. N, (W)/C,(W) does not act irreducibly on W.
Proof. Note that R/ induces transvection W with axis

Wi={(v;avpl=si<j=n-1).
If N, (W)/C,(W) acts irreducibly on W, then by [5],
0% (Nyw)/Cy(w)) = SL(W).

Then |N|, > |S], a contradiction.
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Thus N/Cy(W) is reducible on W. N (W) acts indecomposably on W. N.(@Q)
normalizes W, and the n — 2 space H(v,) and acts irreducibly on H(v,) and
W,/H(v,).

LEMMA 5.9. If N normalizes W,, then N normalizes H(v,).

Proof. If N normalizes W, but not H(v,), then N acts irreducibly on W,,
and thus acts irreducibly on the group of all transvections with axis W,. Since
R/Q induces such transvections, we must have |Cy(W,)|,=¢" "% Then
IN|, > |S|, a contradiction.

LEMMA 5.10. If N normalizes H(v,), then N normalizes W, .

Proof. Suppose N normalizes H(v,), but does not normalize W,. Then N acts
irreducibly on W/H(v,). Let R, = Rxs((v,)), K = Cy(W), N = N/K. Note that
Q € Syl (K), otherwise |N|,>|S|. R,=xgxgH(W®,). I R,#xyH@,)),
then |N|, > |S|. Thus R = x §(H(v,)). Let M be the subgroup of SL(W) which
centralizes H(v,) and W/H(v,). Since N/Cx(W/H(v,)) acts irreducibly on
W/H(v,), every constituent of N in M has dimension a multiple of

n—2
dim W/H(v1)=( 0 )+ 1.

_ — n—2 _
However, N normalizes R, = M. If n = 7, then ( 0 ) +1>2(n—-2)=dim R,.

n—2
Whenn = 6,( 0 ) +1=7,n—-2=4,2(n — 2) = 8,and we have a contradiction.

From (5.9) and (5.10) it follows that N normalizes H(v,) and W,. Since W,
does not have vectors of rank %, N permutes the vectors of rank 1 in W, among
themselves. Therefore, if v € V"', g € N, H(v)® is a pure subspace of W, with
dimensionn — 1. Sincen=6,n — 1 =5 > 3, so H(v)’ = H(@’) for some v/ € V"',
We know there is a g € N so gw € W has rank 1. However, N 4(@) is transitive
on the vectors of rank 1 in W — W,, so without loss of generality, gw = v, A v,,.
Let h=g" so h(vAv,)=v,AU,+UsAV, ;+ ...+ U,A U,,, =w. Choose
ue V! so Hu)" = H(,). Note u # v,. Now v, A vy + w has rank % and this
is the image of v, Av,+gVyAv;) € H(u). If (g, v3)) # (unv,), then
v, AU, + (v, A U;) has rank two and H fuses 1, to 1, contrary to assumption.
Therefore (g(v, A v3)) = {(u A v,).Now also (v, +v,_, +w)€E Q ,.

v2 A vn—2 = h[g(vz A Vn—2) + VI A vn]'
But (g(vo AV, 5)) #F(uav),so (g(voav, ) +v,Aav,) EQ,, and H does fuse

Q, and Q, and this gives us a final contradiction and completes the proof of
(1.1) and (1.3).

6. CONCLUDING REMARKS

(1) Thompson’s theorem classifying the groups with a quadratic pair does not
immediately yield the conjecture when p > 3 since only the groups occurring are
known and not all the quadratic modules.
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(2) Our method can be extended to prove the conjecture if the following
generalization of (2.2)-(2.4) can be proved:

Let i,j be positive integers, i + j=<n. Then as a module for G =SL(V),
i+J
V; ® C; decomposes as follows: when charF\L( ) ), V; ® V, is completely
i

i+
reducible with two constituents, one isomorphic to V,,,. When CharF |( ) ),
l
then G acts indecomposably on V,;® V. There is a unique composition series
UCKCV,®V,withU=V,®V,/K=YV, as G-modules.
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