EXTENSION OF A THEOREM OF SZEGO
Tavan T. Trent

We extend to more general measures a theorem due to Szego [7] which states
that the boundary values of a (nonidentically zero-valued) function in classical
Hardy space [4] are log integrable with respect to normalized Lebesgue measure
on the unit circle. Our interest in this area arose from a desire to understand
the interplay between the existence of bounded point evaluations for a measure
and the parts of the measure carried by the open unit disc and the boundary
of the unit disc.

Let D denote the open unit disc of the complex plane, C. In this paper all
measures considered will be finite positive compactly supported Borel measures
carried by D. For a measure p let H?(n) denote the closure in L?(p) of the set
of polynomials in z. If for some A € C the point evaluation functional p — p(\)
defined on polynomials p is bounded, i.e.,

sup {|p M)|/lip|l,.: p is a nonzero polynomial} < oo,

then we say that p has a bounded point evaluation at \ or a b.p.e. at \ for short.

Let K be a compact set. Then K contains an exposed arc J if there exists
a simply connected open set E such that E N K = J and ¢/ is the range of a smooth
Jordan curve. A bounded component of K is called a hole of K.

For a measure p. carried by D for which

*) there is a hole H of the support of p so that H has an exposed arc I’
withI' C 8D

we say that p satisfies (*) (with respect to H and I'). Denote the open subarc
obtained from T by the removal of the endpoints by I'° (if I' = 8D then let I'° = 9 D).
For example, do, normalized Lebesgue measure on 4D, satisfies (*) (with respect
to D and oD).

The filling in holes theorem due to Bram [2] interpreted in our context states
that for a measure p satisfying (*) either

(1) nhasa b.p.e. ateveryA € H
or else
(2) phas no b.p.e’sin H.
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Denote the absolutely continuous and singular parts of du|,, with respect
to o by dp, and dp,, respectively. By a result of Clary [3],

H?*(pn) = H*(p — p,) ® L*(p,)
and for A € D, p has a b.p.e. at A if and only if p — p_ has a b.p.e. at \. Thus
if (1) holds we must have . (I'°) > 0.

Whenever (1) occurs we consider the functions of H?(p) to have an analytic
extension in H [1] and would expect the restrictions of such functions to I to
reflect this fact. The following theorem shows that this is indeed the case.

THEOREM 1. Let w satisfy (*) and assume that p.,(T'°) > 0. Then the following
are equivalent:

(A) . has bounded point evaluations at every A € H.
(B) L?(1|ro) is not contained in H” ().
(C) For every f € H? (1) which does not vanish ., a.e. on I'°, we have

log |f| € L'(do|y)

where T', is any closed subarc of T'°.

(Note. By L? (] 10) in (B) we mean {f € L*(n): f=00off T'°}. Also if p,(T'°) =0
then Clary’s result says that (A) and (B) are equivalent.)

We remark that our theorem implies Szegd’s theorem by considering H?(do)

and using the fact that |p(0)}* < X |p|?do for all polynomials p.

8D

Before proving the theorem we need two lemmas. For the remainder of this
paper p. satisfies (*).

LEMMA 1. Let A\ € H (H is a hole of the support of p as in (*)). p. has a
bp.e at Nifandonly if 1/(z — \) & H?(p).

Proof: This is a routine calculation and is left to the reader.
For I and I'° as in (*) let I, be any closed subarc of T'°.

LEMMA 2. Suppose that p. has bounded point evaluations in the hole H, then

dp.
log — do > —ox,
r do

dp
Proof: Let w be any representative of d_ on dD. By Clary’s result, we may
g

assume that p, = 0.

In our original argument we showed that if logwdo =~ and if A € H

ry
then a sequence of outer functions f,, can be constructed so that
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and thus p. can have no b.p.e. at \. A more elegant argument has been communicated
to us by J. Brennan and we shall present it instead.

For a measure . on D let

1
ll(Z)=X dp (w)
pW—2

denote the Cauchy transform of p. Suppose S log wdo = —. Let g € H*(n)*
r

and define dv = gdu, dv, = gwdo, and v, = v z v,. By Lemma 1 it suffices to

show that v = 0 in H. By the choice of g, v = 0 for |z| > 1 so

3) -V, = b, for |z| > 1.
Since v, is analytic off the support of v,, it is analytic across I'; so by (3) v,

extends continuously to I'; from |z| > 1. For |2| <1, ¥, € H*(do),a < 1 since it
is the Cauchy integral of an L' function [4, p. 39].

Let © be a smoothly bounded region with Q C H and
dQ N supportofp =00 N D =T,.

b, is analyticon Q so ¥ = ¥, + v, € H*(Q) for a < 1. Note that if | dz| is arc length
measure on d{) then H* () = H* (| dz|) since d{) is smooth [4, p. 173].

Lim [v,(z) +7,(2)] = Lim [§,(z) — ¥,(z%)]
z—z, €N z—zg €T
zEN zEN
= g(zo) w(z,)

for o-a.e. z, € T';. Here z* is the reflection of z in 8D. The first inequality follows
from (3) and the continuity of v, on I';,. The second follows from an argument
similar to that of [4, p. 39] relating Cauchy integrals to Poisson integrals and
then applying Fatou’s theorem. Thus

S log |v|do = loglgw|do
r

1
X log(lglzw)do+5—8 log w do
r

ry

1
lg|?wdo + — log w do
r 2 r
1 1
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Since 9} is smooth, a conformal mapping argument applied to the classical
Szegd’s theorem shows that if f € H?(|dz|), f# O then log|f| € L'(|dz|). Hence
v =0 in Q and thus in H. This completes the proof.

Proof of Theorem 1. Recall that . satisfies (*) and that p,(I'°) > 0. We will
show that (C) => (B) => (4) => (C).

If (B) fails then L?(u|.) C H?(u). Choose any closed subarc I', of T'° with
w,(T,) > 0. Since o(I'° — I',;) > 0 we consider Xr, and see that (C) fails.

For g € C(D) with closed support in I'°, a version of Mergelyan’s theorem
[5, p. 51] shows that g can be uniformly approximated on the support of p by
rational functions with poles off the support of . If (A) fails, by Lemma 1 such
rational functions are in H?(n). Hence by Lusin’s theorem [6, p. 53], (B) fails.

Suppose that (A) holds and (C) fails. Since (C) fails there is an f € H?(n)
satisfying f restricted to I'° is not zero oa.e. on I'°, but log |f| & L'(do [r,) where
T, is any closed subarc of I'°.

dv
Consider the new measure dv = | f|*dp. Since S log ;i— = —oo, v has no b.p.e.’s
r, o

in H by Lemma 2. Using Mergelyan’s theorem and arguing as in (B) => (4)
we conclude that x,, € H?(v) or

) Xr,f € H*(n).

LetS, = {x €T,:|f(x)| = 1/n}.We may choose msothat ¢ (S,,) > Osince f #Ooca.e.
on I'°. Since I', is compact and properly contained in 8D we may use the
Hartog-Rosenthal theorem [5, p. 47] and Lusin’s theorem to choose a bounded
sequence of polynomials p, so that

(5) DPr—> Xs, /fpointwise g -a.e. onT .

Combining (4) and (5) we see that p,x, f € H ?(w) so the dominated convergence
theorem gives x5 € H?(p). For any A € H a similar argument shows that

Xs, /(@ =\ € H*(p).

By Lemmas 1 and 2, we may choose polynomials p, approximating 1/(z — A) in
H*(dp|p-s,). Then p,(1 —xs)+xs, /(z—\) € H*(4) and we conclude that
1/(z—1\) € - H 2(n). By Lemma 1 this contradicts (B). This completes the proof.

Additional Remarks: Assume that p satisfies (*), (1) holds, and p. | =0. In
a preliminary version of this paper a question was raised concerning whether
functions in H”(n) have other local properties on I' similar to those of classical
Hardy spaces. (One example is part (C) of Theorem 1.) J. Thompson and R. Olin
have informed the author that this is the case. For some related work confer
[9]. Also it should be noted, as pointed out by J. Brennan, that the implication
(A) => (C) of Theorem 1 can be established by the methods used in Lemma 2.

The author wishes to thank T. L. Kriete and the reviewer for many helpful
suggestions. Also special thanks are given to J. Brennan for allowing us to include
his nice proof of Lemma 2.
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