L°? MULTIPLIERS ON THE HEISENBERG GROUP

Leonede de Michele and Giancarlo Mauceri

1. INTRODUCTION

The Heisenberg group is the simplest example in the class of stratified groups.
On these groups one can define a one-parameter family of anisotropic dilations
and an homogeneous norm. Hence it is possible to extend to them many of the
standard constructions of Euclidean spaces: singular integrals, homogeneous dif-
ferential operators, Lipschitz classes etc. ([4], [10], [9]). However, except for a
few instances where the representations of the group play a peripheral role, the
noncommutative Fourier transform has not been so far a tool in this kind of
harmonic analysis. More recently an attempt to make the Fourier transform on
the Heisenberg group a usable tool in the study of the Schwartz space and of
homogeneous differential operators has been made by Geller [6].

In this framework, using the theory of singular integrals on homogeneous spaces
developed by Coifman, De Guzman and Weiss [2], we extend to the three-dimensional
Heisenberg group the classical multiplier theorem of Hormander.

We recall that Héormander’s theorem is stated in the following way [8].

n
THEOREM 1. Let M be a function of a class C*in R™\\ {0}, % = —5- + 1. Assume

that
i) M € L°(R")
ii) sup RZel-» S 0" M ()|*dE < C
Re [0, +x) R<|E|=2R

for all differential monomials 9" of order |a| < k. Then the linear operator Ty
defined by

Tyfx) = S e O M) F(e)dE

is bounded on L* (R"), 1 < p < co.

This theorem has already been extended to SU(2) by Coifman and Weiss [1]
and to the group of Euclidean motions by Rubin [11].

In the next section we review some basic tools of the harmonic analysis on
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H and we state our main result. In the section 3 we prove the multiplier theorem
and in the last section we give some applications to several multipliers on H.

This paper grew out of several discussions with Guido Weiss and Ronald Coifman
during a visit of the authors to Washington University. It is a pleasure to thank
them both for their warm hospitality and their suggestions.

2. PRELIMINARIES

The Heisenberg group H is the Lie group whose underlying manifold is R X C
and whose composition law is given by

t2)t,z2")=@t+ ¢t +2Imzz",z+ 2") t,t €R,z,2 €C.

The Haar measure on H coincides with the Lebesgue measure dV on R X C. H
is endowed with a one parameter family of anisotropic dilations {3,:e > 0} defined
by 8, (t,2) = (¢°t,e2). A function f on H will be called homogeneous of degree d
if fod, = e’f for every € > 0. The Heisenberg Lie algebra §) is the algebra of
the left invariant vector fields on H generated by T =24, Z=9,+ i29,,
Z =98, — izd,. The only nonzero commutation relation is [Z,Z] = —2iT. The irre-
ducible unitary representations of H split into two classes. The one-dimensional
representations are just the usual characters of C lifted to H. Since these representa-
tions form a set of zero Plancherel measure we will not be concerned with them
further. The infinite dimensional representations are classified by a parameter
A € R*, the set of nonzero real numbers, and may be realized as follows. For
every A > 0 let /# be the Bargmann space of holomorphic functions F on C such
that

IF]* = @\ /) S | F(0)]* exp (—2\[¢]*) d{d T <o

[0}

Then #; is an Hilbert space and an orthonormal basis for #; is given by the
monomials F, () = (V 2\ {)*/Val,a =0,1,....For A € R* the representation II,
acts on #|,, by

I, (t,2) F({) = exp(iN t + 2N (L2 — |2)?/2) F({ — 2) ifA>0

IL, (¢, 2) F({) = exp (INt — 2N ({2 — |z|?/2)F (¢ — 2) if A <O.

For f € L' (H) set f' \ = f(t 2)I1, (¢,2) dV, where the integral is defined in the

H
weak sense. Then the operator valued function A — f()\), A € R* is the Fourier
transform of f. For (\,m,a) € R X Z X N define as in [6], the partial isometry
W2 (\) on #, by
WiNF,, =178, ,pF,, for m=0,A>0
WiMNF, =38, 3F, ., for m<O,A>0
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and for negative A by W' (\) = [WZ (—\)}*. Since {W(\):(m,a)EZ XN}is a
orthonormal basis for the Hilbert-Schmidt operators on ], given a function

f € L?(H) such that f(¢,2) = 2 f.(t,r)e™, z = re®, we have

FO) = Z,(0m,0) WIN)
where

(1) R\, m,q) = S f.. @z e 27 2N |2|?)dV

H

and /7! is the Laguerre function of type |m| and degree o [6]. Denoting by
|| # Ol zzs the Hilbert-Schmidt norm of f(\) we have the Plancherel formulae

o0

Az ==* S 17 MlzsINdx  fe€ L' n L*(H)

—o0

that enables us to extend the Fourier transform as an isometry from L?(H) onto
the Hilbert space of the operator valued functions A — A(\), A € R* such that

i) A (M) is an Hilbert-Schmidt operator on #;, for almost every A € R*.
ii) (A (M) §,m) is a measurable function of A\ for every & n € #,

+o

iii) A2 = = S AW s N d < +eo

—a0

Definition. Aleftinvariant multiplier of L” (H), 1 < p < =, is an operator valued
function M: X\ - M(A\), A € R* such that

a) for every A € R*, M(\) is a bounded operator on #,

b) the operator T, defined by (T}, f)  (\) = M(\) f\), f € L' N L? (H), extends
to a bounded operator on L” (H).

It is well known that M is a left multiplier of L”(H) for some 1 = p =< o if and

only if T,, is a right invariant operator on L”(H). From Plancherel formula it

follows immediately that M is a left L*>-multiplier if and only if sup |M(\)|| < +.
: AER”*

Since H is amenable, by a result of Herz [7], every left multiplier of L”(H),
1 =<p =< o, is a left multiplier of L?(H). We also remark that everything we say
for left multipliers may be translated for right multipliers similarly defined, because
the group is unimodular.

Our next step is to define certain difference-differential operators on the dual
of the Heisenberg group which play the role of the differential monomials in
Hormander’s theorem. These operators will be defined as the Fourier transform
of the multiplication by homogeneous polynomials on H. Given a polynomial P
in the variables ¢, z,Z1et A, be the operator on the space of functions #Z = #Z (\,m, o),
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(A\,m,a) € R* X Z X N such that & = %, for some f in the Schwartz space ' (H),
defined by

BN =D A, & (\,m,0) WI'(\)

By means of the Laguerre transform formula (1) and the classical relations between
Laguerre functions, it is not hard to obtain an explicit expression for the operator
A,. It is obviously enough to derive it for the operators A,, A, A;. Introducing
the translation operators

0, %Z N\m,a) =% \,m + k,a)
T, Z N\, ma) = Z N\, ma + k) A\,ma)E R*XZ XN,keE Z,

where the undefined terms in the above formulas are intended to be zero, one
has

A, = —iak—z—l}\—(¢0+ Val + |m| 'r_l—\/(a + D + |m|+ 1)7,)

A = —(2|)\])_1/2 (\/a +17, —Va+|m|r,)o_,;
A, =CA\)"PVa+|m|+17g—VarT_)o,.

By the above formulas we can extend the operators A, as formal difference-differen-
tial operators acting on functions defined on R* X Z X N. If

MO = B(\,m,a) WI' ()

we denote by A, M (\) the operator 2 A, B\,m,a) W7 (M).

To reproduce on H the decomposition of the dual of R" into dyadic annuli,
which amounts to a partition of the identity into spectral projections of the Laplace

1 -
operator, we consider the subelliptic Laplacian ., = — E— (ZZ + ZZ). The Fourier
transform of ., is the operator valued function

Lo =D [2o + DAl W2 (M), N € R*,

o

Thus we introduce the partition of the identity I = Z I, kg, R > 0, where II,

keZ
is the spectral projection of .#, corresponding to the multiplier

L= >  win.

s<(ZA+1}|A]|=2s
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The multiplier theorem can now be stated in the following way.

THEOREM 2. Let M be an operator valued function such that
(2) sup | M| < +oo
AER*

+o0

2" sup R S 1A p ML) [l7s M AN < +oo

Re {0,+wx)

— o0

for every normalized monomial P, homogeneous on H of degree < 4. Then M is
a multiplier of L” (H), 1 < p = 2, and is weak type (1,1).

Remark. The corresponding theorem for L” (H), 2 < p < +x, follows from the
facts that the boundedness of the operator T, on LY (H) is equivalent to the
boundedness of its adjoint 7% on L?(H), p~' + ¢~ ' = 1, and that T, is the operator
defined by the multiplier N(\) = [M(\)]*.

3. PROOF OF THE MULTIPLIER THEOREM
According to the theory developed in [2, ch.3] the main steps in the proof
of the multiplier theorem are two. The first one is the construction of a well
behaved approximate identity {d,: 0 < r <}, which allows us to decompose the
operator T, as the sum of a series of singular integrals on H. The second step

consists in proving uniform estimates for the L” norms of the partial sums of
the series. To obtain this one has to prove the following inequality:

3) S|TMl!J,(t,z)|2|p(t,z)l2dV<Cr 0<r<w
H

where .=, — b,,, and p(f2) = t> + |z]* is the usual pseudodistance on the
homogeneous space H.

LEMMA 1. Let %, (\,0,a) =exp [-r(2a + 1)°A\*], A € R*, a € N. Then
$,(\) = 2 R 4, (\,0,0) Wo () is the Fourier transform of a function ¢, in &(H).

Moreovera{cb,: 0 < r < «} is an approximate identity on H satisfying
(i) S |, (£,2)] (1 + p(t,2)/r)"dV < C
H
(ii) S 6,dV=1
H
(iii) &, * b, =, * ¢,

@iv) S |¢r((t,z)(t0,20)_l) - ¢r(tyz)| dv<Clp (tov"'o)/l"yrl
H

) ¢,(42) = b, (¢, —2) for somen > 0.



366 LEONEDE DE MICHELE and GIANCARLO MAUCERI

Proof. By [6, Th. 1] ¢,(\ is the Fourier transform of a function ¢, € J(H).
It follows immediately from the Fourier transform formula (1) that

b, (8,2) =r7 o, (r T r T 2),

From this (i) follows for every m > 0 and (iv) will follow for q = 1/4 once we
have proved it for r =1. Let L € ) the normalized generator of the one pa-
rameter subgroup through (0,2) ~'. We have:

|z0|

S |, ((£,2)0,25) ") — &, (8,2)[ AV = X S |L &, ((¢,z)(exp (sL))| dsdV
H H

(1)

= P(Oszo)l/4l|L¢1"1

by the right invariance of the Haar measure and the fact that p(0,z,) = |z,|*.

In general, if g = (¢,2), we choose a unit vector 2’ € C and write g = g,8,8.81 &2,

where g, = (0,2), g, = (0,iVt2/2),and g, = (0,V't2'/2). Since p(g,) = |2*| =< p(g)
t 2

and p(g,) =p(g.) = e = p(g), we can write ,((£,2)(t,2,) ") —d,(£2) as a

sum of five differences and apply the result just established to complete the proof
of (iv). Since lim %2, (\,0,a) = 1 by (1) and the Lebesgue dominated convergence
A—0 r

theorem we have (ii). Properties (iii) gnd ) follows from the facts that the d): N\
are simultaneously diagonalized and &,(\) = ¢,(—)\).

Now, since for f € S(H) Z,,(\,m,a) = A, Z ;(\,m,a), we have the weighted
Plancherel formula

-+o00

S | pf|2dV = S S 14, 2,(,m, )| *\] dA.

— m,a

Thus (3) is implied by

+o
) S 2 IAp%Tanr(}\sm’a)lzl)\Id)\SCI', O<r<ow

— m,a

To prove (4) we need a Leibniz formula for the operator A,. Set 3(¢,2) = ¢ + i|z|2,
then:
p(t,2) = p((62)(t",2") 7)) + p(t',2") + 8((,,2)(,2") ") 8 (¢, 2")
+ 3 ((,2)(¢,2') " )8(t,2") — 2i(z — 2") 8 ((t,2)(t",2") ")z’
— 2i(z—2")2'8(t",2') + 2 (z—2 )8 (L) ,2 ) ")
+2i(@z—2) 28, 2)+4|z—2 |||

for all (¢,2), (¢t’,2') € H. Hence
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A, (M NG, (A) = (A,MMN) G\ + M4, 50N) + A, M0 A; ()
+ As M) AP, (N) — 20A,, M(N) A §,(\)
- ZiAzMO\) Az'a "ﬁr \) + 2iAz“aM()\) Az q"r ()
+ 2IA, M) A8, (N + 4ALMNAL:E, 0.

Condition (2’) in the hypothesis of the multiplier theorem may be used now to
prove that the integral of the Hilbert-Schmidt norm squared of each summand
in the Leibniz formula is bounded by Cr. For this we need the following lemma.

LEMMA 2. For every polynomial P homogeneous of degree < 4 one has the
following estimate |

(5) sup {|A, Z, (\,m,a)| m € Z, R < (2a + 1)|\| < 2R} < C,r*R* 7 f, (rR?)
where f, € L' (R). Moreover

Cor2a + D?*|N|?  forrA®(2a + 1)?=<1
(6) |-%.p, (A, 0,0)] = 2 2 :

1 forrh“Ca +1)°">1
Proof. The last inequality is obvious. As for (5) we prove it only for

P(t,z2) = |z|?,

because the proof carries over to the other cases with only minor modifications.
We have

AL 2, (\0,0) = (27! [2a + 1) exp (—rA* (20 + 1))
— (a + 1) exp (—rA\* 2a + 3)?) — exp (—rA*(2a — 1)%)]

= (2|\]) texp (—rA\*(2a + 1)*) [(2a + 1)
— (o + 1) exp (—8r\% (o + 1)) — aexp (8r\ a)].

Setting (2« + 1)|\| = o, we have

Alzlz.%’d,r()\, 0,0) = (4\*) ' exp (—ro?)[20 — (o + IA])
X exp (—4r|\|[ (o + [A])) — (e — |A])
X exp (4r|X| (e — |\])].

Since 4|\ |jo — |\|| < 8/90” using the Taylor formula it is easily seen that:
|A 22, (N,0,a)| = Croexp (—=ra®)[1 + ro® + ro%exp(8/9rc?)].

The conclusion for A, . %, readily follows.

Now consider
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+o0
I= S > 18,2 1,0, N\, m,0)| *IN] d.

— m,a

Since {5 (\) is a diagonal matrix

I= S DA MM W2 Mllis| 2, (0, 0,0)|* | di

=

J<0

A, MM (A s ®| 2, (N 0,0)| ? |\ dX

—_ 21'(,.)—1/2

+2X 1A, MM O s 2, 1,0,0)]* \] dX

j=0 2J(r)-1/2

=1, +1,.
Inequality (6), combined with the hypothesis (2’) for P = p, yields

I=C > 29r=0C,r.

j <0

On the other hand I, = 2 277r = C,r. Next consider

J>0

J= S 2 |ApM ALY, N, m,a)|® I\ | dA

—© m,o

for P, @ homogeneous polynomials such that deg P + deg @ = 4. By (5) of lemma
2 and the fact that A, %wr()\,m,a) = 0 except for just one value m, of m, one
has

Q(
Il

S S 1AM Q) W2 Nz | A g, O mq, 0| * X[ dA

—o0 o

~+00 +oa
= E S A M) IL,; (A) [5is Cor® 2747989 £, (r2%7)

J=—o0 —aa

+oo

= Cr D r2/4 s (r2¥) 270790 < O f ||, r.
J=—c
This proves (4) and hence the multiplier theorem.

Remarks. From the proof of the theorem it is easily seen that one has to
verify condition (2’) only for those operators A, which actually act on M(\) in
the Leibniz formula.

Both the tools we use in the proof of the theorem for the three-dimensional
Heisenberg group H, i.e. the theory of singular integrals on homogeneous spaces
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and the machinery of the Fourier tranform, are available in the more general
case of the 2n + 1-dimensional Heisenberg group H". However the increased number
and complexity of the difference-differential operators arising as Fourier transforms
of the multiplication by homogeneous monomials on H", would make an extension
of the proof to the general case prohibitively long and involved.

The following corollary is a straightforward consequence of the multiplier
theorem and simplifies considerably its application to multipliers associated with
the sub Laplacian .%,.

COROLLARY 1. Let f be a function of class C* in C\{0}. Assume that for
every differential monomial 9" =09"9}%, with |y|=v,+v,=<4 one has

|0¥f(@)]| < Clz| ™"\ Then the multiplier M) = D f(2a + 2)\) W),z € C

is bounded on L” (H), 1 < p < w, and is of weak typea(l,l).

4. APPLICATIONS

Among the multipliers that in the classical case fall under the domain of
applicability of Hérmander’s theorem are the imaginary powers (—A)*, (I — A)¥,
t € R, of the Laplacian and the second derivatives of the fundamental solution
of the Laplace equation. In this section we show that our theorem may be used
to prove analogous results for a family of hypoelliptic operators on H. Some of
the multipliers we consider here were studied previously by other authors. However
we discuss them because they serve the purpose of illustrating which multipliers
fall under the scope of the theorem.

For z € C consider the left invariant differential operator ., = ., + izT. The
operator ., was studied by Folland and Stein [5], who showed among other things
that for z admissible, i.e.,, z # +1, +3,...,.%, is hypoelliptic and has a fundamental
solution E,. From the result of Folland [3] it follows that .#, generates a symmetric

diffusion semigroup on L°(H), 1=p =<o. Let .& = AdE (\) be the spectral

0
resolution of .%. Then, according to the Littlewood-Paley-Stein theory [12], if

oo

(7 fQ\) = S e M db(s)ds

¢]

=]

for some ¢ € L™(0,), the operator f(.%) = S f(\)dE (\) is bounded on L”(H),
0
1<p<oa

An easy computation shows that the operator
L= Qa+1-iz)]A\[WoQ)

is the Fourier transform of .#,. Hence the Fourier transform of f(.%)) is
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f(Z0)) =D f(Ra+1—2)\)WIR),

and since (7) implies |f ™ (r)] < C,r™" for every n > 0, we may consider Corol-
lary 1 as a sharpening of the result in [4, Lemma 3.13] in the case of the
three-dimensional Heisenberg group. In particular one obtains that the fractional
operators (.£,)%, I + .£)", t € R, are bounded on L”(H), 1 < p <« and of weak

type (1,1).

Consider next the second derivatives ZZE ,, ZZE ,, TE , of the fundamental solution
E, of .&Z,. Their Fourier transforms are

A 2a
ZZE)) (\) = —|— )W
(ZZE.)" M) 2 (2a+1_iz) <)
_ - 2 1
(ZZE,)"(\) = > - (——u) W2
- 20+ 1—12
- 1
Te,)  (\) = ign(\) —————— W/ (\
(Te,)” (\) ZSlgn()2a+1-—iz <)

Thus it is a straightforward consequence of the multiplier theorem that ZZE,,
ZZE,, TE, define bounded convolution operators on L”(H), 1 < p < » which are
also weak type (1,1). This result, for all admissible 2z, has been obtained by Folland
and Stein [5], without using the Fourier transform.
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