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1. INTRODUCTION

All rings in this paper are assumed to be commutative with an identity, and
the undefined terminology is, in general, the same as that in [7].

In this paper a study is made of a special type of filtration on a ring A, an
essentially powers filtration (e.p.f.—see 2.3 for the definition). Such filtrations
have some interesting properties, and they are a useful and important concept
since, as briefly noted after 2.3, each filtration on A can be closely approximated
by them so knowledge about e.p.f.’s can be used to derive knowledge about more
general filtrations on A.

In Section 2 three characterizations of an e.p.f. f on a Noetherian ring A in
terms of the Rees ring % (4, f) are proved, and then some lattice theoretic properties
of such filtrations are given in Section 3. In Section 4 it is shown that with
each filtration g on an analytically unramified semilocal ring R there exist infinitely
many filtrations on R that are associated with g and all of these are ep.f’s if
and only if one of them is an e.p.f. Section 5 contains a number of characterizations
of an analytically unramified semilocal ring in terms of ep.f.’s, and in Section
6 it is shown that some of the results obtained in this paper are applicable to
the Chain Conjecture in altitude three.

I am indebted to the referee for several helpful suggestions.

2. ESSENTIALLY POWERS FILTRATIONS AND REES RINGS

In this section, after giving the basic definitions and known results that are
needed in the remainder of this paper, three characterizations of an e.p.f. f on
a Noetherian ring A are given in terms of the Rees ring % (4,f). We begin by
recalling the definition of a filtration.

Definition 2.1. A filtration f= {A,} on a ring A is a descending sequence
of ideals A, of A suchthat A,=A and A,A,, C A,,,,, for all n and m.

The next definition gives a partial order on the set of all filtrations on a
ring.
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Definition 2.2. Let f={A,} and g = {B, } be filtrations on a ring A. Then
[f=gin case A, C B, for all n.

We are mainly interested in this paper in a type of filtration that has a number
of the nice properties of filtrations of the form {I"}, where I is an ideal. This
specific type of filtration is defined in 2.3.

Definition 2.3. (cf. [1, Definition 2.14].) A filtration f= {A,} on a ring A
is said to be an essentially powers of an ideal filtration (e.p.f.) in case there exists

k

k>0 such that A, = > A,_,A,, foralln =1, where A, = 4, if j < 0.
1

Therefore, if I is an ideal in A, then f= {I"} is an ep.f. (Let 2 = 1 in 2.3.)

Since there are many useful and important filtrations on a ring A that are
not powers of an ideal (such as the symbolic powers of a primary ideal or the
integral closures of the powers of an ideal (see 4.6), and since every filtration
on A is a “limit” of a sequence of e.p.f.’s (that is, if f= {A,}, then the smallest
filtration f, on A whose first n + 1 terms are 4,4, ,A4,, ...,A,1s an e.p.f., by (2.4.1),
h=fi=..=f,=..=[f and “lim f, = f”), the study of such filtrations is impor-
tant.

A number of properties of an e.p.f. are given in [1] and [2]. Those properties
that are needed in this paper are summarized in the following remark.

Remark 2.4. Let f= {A,} be a filtration on a ring A. Then the following
statements hold:

(2.4.1) [2, Proposition 2.8]. f is an e.p.f. if and only if there exists n > 0 such
that f is the least filtration on A whose first n + 1 terms are A,A,, ...,A,.

k
(2.4.2) [1, (2.17), p. 26]. fis an ep.f. if and only if A, = z (H Af"), where
1

k is as in 2.3 and the sum is over all nonnegative integers e; such that
e, + 2e, + ... + ke, = n.

(2.4.3) If A is Noetherian, then f is an e.p.f. if and only if there exists m > 0
such that, forallj=m, A, ;= A, A;.

(2.4.4) [1, Corollary 2.21 and the proof of Theorem 2.17]. If A is Noetherian
and f is an e.p.f., then, for all n = 0 and for all large h, A,, = (A,)".

Proof. (2.4.1), (2.4.2), and (2.4.4) are proved in the cited references.

Proof of (2.4.3). If f is an ep.f., then the existence of such m is given by
[1, Proposition 2.18 and Theorem 2.20]. The converse follows from (2.3) with
k=2m.

Many of the results in this paper concerning an e.p.f. will either be concerned
with certain Rees rings of a Noetherian ring or will be derived using such rings
in an auxiliary role, so we next define such rings.

Definition 2.5. Let f= {A,} be a filtration on a ring A. Then the Rees ring
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of A with respect to f is the ring # = R(A,f) = A [tf,u] = A[u,tA,,t>A,,...],
where ¢ is an indeterminate and u = 1/¢.

Many facts about Rees rings are known. We will need only the three readily
seen facts listed in 2.6.

Remark 2.6. Let f= {A,} be a filtration on a ring A and let # = Z(4,f).
Then the following statements hold:

(2.6.1) £ is a graded subring of A [t,u] and each element in # can be written

in the férm 2 c;t’ with ¢, € A,.

(2.6.2) u is a regular element in # and u'# N A= A,, foralli = 0.
(2.6.3) If g is another filtration on A and f < g (2.2), then # (A,f) C #(A,g).

The following theorem is the main result in this section. Special cases of parts
of the theorem are given in [4] (where A is a Noetherian Krull domain), and
in [20] (where A is a local ring). Also, closely related results are given in [5,
Proposition 2.1] and in [19, Lemma 2] (which result is incorrect). Finally, (2.7.1)
< (2.7.4) is given in [2, Theorem 2.9].

THEOREM 2.7. (cf. [4, Theorem 2.2] and [20, Lemma 5.6].) Let f= {A,}
be a filtration on a Noetherian ring A, and let % = % (A, f) (2.5). Then the following
statements are equivalent:

(2.7.1) £ is Noetherian.

(2.7.2) #'= (tA,,t’A,,...) # is a finitely generated ideal.
(2.7.3) £ is finitely generated over A.

(2.7.4) fis an ep.f.

Proof. It is clear that (2.7.1) = (2.7.2) and that (2.7.3) => (2.7.1). Also, (2.7.4)
= (2.7.3), since (2.7.4) implies that #Z = A [u,tA,,...,t"A,] (by (2.4.1)), where
k is as in 2.3.

Finally, assume that (2.7.2) holds and let f,...,f,, be a basis of 4 Since ./~
is homogeneous and f; € 4; it may be assumed that f; = a;t° is homogeneous
and e; > 0. Let £ = max {e;i = 1,..., m}, so #/'=(tA,,...,t"A,)?. Let n >k and

a € A,,sox = at" € 4 hence x = 2 g:f;, for some g, € Z, and it may be assumed

that g, = b,t" "% is homogeneous. Therefore

n k
a=> ab €D A A, . CD AA,,
i=1 j=1

k
Thus 4, = z A;A, _;, for n > k, hence it follows from (2.3) that fis an e.p.f.
j=1

If #in (2.7.2) is finitely generated, then (#,u)% is finitely generated and
Z# 1s Noetherian, by 2.7. On the other hand, it follows from [20, Lemma 5.5]
that if (#ju) & is finitely generated, then &% need not be Noetherian.
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We continue to study e.p.f.’s in the next two sections, and 2.7 will be useful
in a number of results in these sections.

3. LATTICE PROPERTIES OF E.P.F’S

It is known [9] that the set # of all filtrations on a ring A is a lattice with
a multiplication (operations defined in 3.1), the three operations (v,A,:) are
compatible with the partial order f=g (2.2), and they are commutative and
associative. It is shown in 3.1 that the subset of all ep.f’s on A is closed under
joins and products, but does not form a sublattice of #.

THEOREM 3.1. Let f={A,} and g = {B,} be e.p.f.’s on a Noetherian ring
A. Then the following statements hold:

B.1.1) fvg= { > A,.Bj} is an e.p.f.

i+j=n
(3.1.2) f-g={A,B,} is an ep.f.
(8.1.3) fag={A, N B,} is not necessarily an e.p.f.

Proof of (3.1.1). It is easily verified that f v g is a filtration on A. Also, since
f and g are ep.f.’s, A [tf,u] and A [lg,u] are finitely generated over A, by (2.7).
Further, it follows from the definition that 2 (A, fv g) = A [tf,tg, u]. Therefore
Z(A,f v g) is finitely generated over A, so fv gis an ep.f., by 2.7.

Proof of (3.1.2). f-g is readily seen to be a filtration on A, so, by (2.4.3),
letm > OsuchthatA, ,,=A, A, forallj=m,andletp > 0OsuchthatB,, = B, B,
for all i = p. Then it follows from (2.4.3) that, for all j = max {m,p},

A B

mp+j

= (Am)ij (Bp)mng AmpB ABC Amp+ijp+j'

mp+j mpttj Iy =

Therefore, since mp = max {m,p}, 4,,,.;B,.,.; = A,.,B,,A,;B;, for all j = mp, so
[-gis an e.p.f., by (2.4.3).

Proof of (3.1.3). This follows from [11, Example 2.2] and [1, Theorem 2.51],
where it is shown that, even if f= {I"} and g = {J"} with I and J ideals in
A, f A g need not be an e.p.f.

4. ANALYTICALLY UNRAMIFIED SEMI-LOCAL RINGS AND E.P.F.’S

In this section, we show in 4.2 and 4.8 that if fis a filtration on an analytically
unramified semi-local ring R, then there are infinitely many filtrations on R that
are related to f and all of these are ep.f’s if and only if one of them is an
e.p.f. Then a number of related results are proved. We begin with a definition.

Definition 4.1. If f= {A,} is a filtration on a ring A, then, for each £ =1,
f® denotes the filtration {4,,}.

From the definition of f* in (3.1.2), it is clear that f* < f®.

With this definition, we now give two somewhat surprising characterizations
of an e.p.f. in an analytically unramified semi-local ring.
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THEOREM 4.2. Let R be an analytically unramified semi-local ring, and let
= {A,]} be a filtration on R. Then the following statements are equivalent:

(4.2.1) fisan ep.f.
4.2.2) For allk =1, f* (4.1) is an ep.f.
(4.2.3) There exists k = 1 such that f* is an e.p.f.

Proof. Let # =2 (R,f) and, for k> 0, let #Z, = R [u*,t*A,,t>* A,,,...]. Then
RB,=RR,f?). Also, # is integral over #,; for, u is a root of X* — u* and
if a€ A,, then a* € (4,)*C A,, and t"a is a root of X* — ¢t"*a*, hence the
generators of & are integral over £, so & is integral over %,

Assume that (4.2.1) holds, and let 2= 1. Then &% is finitely generated over
R, by 2.7, so & is finitely generated over Z%,, hence 4 is a finite 7,-algebra
(by the first paragraph of this proof). Therefore, since & is Noetherian, 4%, is
Noetherian, by [3, Theorem 2]. Hence, since #Z(R,f") = 2,, f* is an ep.f,
by (2.7), so (4.2.1) => (4.2.2).

It is clear that (4.2.2) = (4.2.3).

Finally, assume that (4.2.3) holds, so %, = % (R, f*’) is Noetherian and is finitely
generated over R, by 2.7. Now %, C £, [u] C &%, and %, [u] and £ have the
same total quotient ring, so, by the first paragraph of this proof, %, [u#] and
Z# have the same integral closure, say .. Also %, [u] is finitely generated over
R and is separably generated over R (since u is an indeterminate), so, since R
is analytically unramified, % is a finite %, [u]-algebra, by [12, Lemma 2.4].
Therefore % is Noetherian and is a finite #-algebra, so % is Noetherian, by
[3, Theorem 2]. Thus fis an e.p.f., by 2.7, so (4.2.3) > (4.2.1).

Remark 4.3. The proof of 4.2 shows that (4.2.1) = (4.2.2) = (4.2.3) in an
arbitrary Noetherian ring.

A number of corollaries of 4.2 will now be given. The first (which is more
precisely a corollary of 4.3) is concerned with monadic transformations of A with

respect to f*.

COROLLARY 4.4. Let f={A,} be an ep.f. in a Noetherian ring A. Then
for each k=1 and for each regular element a € A,, B=A[A,/a,A,,/a?...]
is finitely generated over A.

Proof. #,=A[u*t*A,,t*A,,,..1C A[t',u"] and K= (t"a — 1) A [t", u®]
is the kernel of the natural homomorphism from A [¢*,u*] onto A[1/a], so
B=2%,/(K N %,). Therefore, since f is an ep.f.,, f* is an ep.f, by 4.3, so
R, = R (A, f*) is finitely generated over A, by 2.7, hence B is finitely generated
over A.

(2.4.4) showed that if f is an ep.f., then, for all large A, f® consists of powers
of the ideal A,. The next corollary shows that the converse holds for analytically
unramified semi-local rings.

COROLLARY 4.5. Let R and f be as in 4.2. Then the following statements
are equivalent:

(4.5.1) fis an ep.f.
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(4.5.2) There exists k = 1 such that f* = {(4,)"}.
(4.5.8) For all large h, f™ = {(A,)"}.

Proof. 1t is clear that (4.5.3) = (4.5.2), and if (4.5.2) holds, then f*® is an
e.p.f., so fis an e.p.f.,, by 4.2, hence (4.5.2) = (4.5.1). Finally, (4.5.1) = (4.5.3),
by (2.4.4).

The following definition and remark will be used to give some further corollaries
of 4.2.

Definition 4.6. Let I be an ideal in a ring A and let f= {A,} be a filtration
on A. Then the integral closure I, of I in A is defined to be the set of elements
x in A which satisfy an equation of the form x” + a,x" ' + ... + a, = 0, where
a; € I, and the integral closure f, of fin Ais f, = {(4,),}.

Remark 4.7. [10, Section 6]. With the notation of 4.6, the following statements
hold:

(4.7.1) 1, is an ideal in A.

4.7.2) I— 1, is a semi-prime operation on A (that is: I C I,; I C J implies
I,cdJd,;1,,=1, and,I,J, C (IJ),), sof,is a filtration on A.

aa _—

The next corollary gives another characterization of an e.p.f. in an analytically
unramified semi-local ring.

COROLLARY 4.8. Let R and f be as in 4.2. Then the following statements
hold:

(4.8.1) If there exist k = 1 and a filtration g on R such that g, = (f*), and
g is an ep.f., then f is an e.p.f.

(4.8.2) If f is an e.p.f., then, for all k =1 and for all filtrations g on R such
thatg,= (f*),, gis an ep.f.

Proof of (4.8.1). Assume g is an e.p.f. such that g, = (f*'),.. Then #Z = Z (R, g)
is finitely generated over R, by 2.7, and is separable over R. Therefore the integral
closure #Z’ of # is a finite % -algebra, by [12, Lemma 2.4], so = %2 (R,g.)
is finitely generated over R (since R C #Z C &* C £'). Therefore, since

Rcoa=ZRf")C ZR, (")) =5,

& 1is finitely generated over .«. Hence, since %’ is integral over .« .«/is Noetherian,
by [3, Theorem 2]. Thus f* is an e.p.f,, by (2.7), and so f is an e.p.f., by 4.2.

Proof of (4.8.2). Assume that f is an e.p.f., let 2 = 1, and let g be a filtration
on R such that g, = (f*"),. Then & = f* is an e.p.f,, by 4.2, and g = g™. Therefore
h,=(g™), and A is an e.p.f,, so it follows from (4.8.1) that g is an e.p.f.

In particular, it follows from 4.8 that if I is an ideal in R and f= {4,} is
a filtration on R such that I" C A, € (I"),, for all n, then fis an e.p.f.

Remark 4.9. Let R and f be as in 4.2, and assume that f is an ep.f. For
each n=1 let I, be an ideal in R such that A, CI,C (4,),.
Then .# = R [u,tI,,t’1,,...] is finitely generated over R (as in the proof of (4.8.1),
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since Z (R,f) C £ C # (R,f,)). Therefore, even if {I } is not a filtration on R,
k

it still holds that there exists 2 > 0 such that I,, C Z (H I )
1

Remark 4.10. If f and g are filtrations on an arbitrary Noetherian ring A
such that f=g=f,, and if g is an e.p.f.,, then, for each filtration 2 on A such
that f=h <g, his an ep.f.

Proof. # =R(A,f)C #Z(A,h) C ZA,g) C ZA,[f,) C ', the integral clo-
sure of %, and % (A, g) is finitely generated over A, by 2.7, so is finitely generated
(and integral) over % (A,h). Therefore % (A,h) is Noetherian, by [3, Theorem
2], so & is an e.p.f., by 2.7.

The next corollary results from combining 4.2, 4.5, and 4.8.

COROLLARY 4.11. Let f and g be filtrations on an analytically unramified
semi-localring R such thatg,, = (f™),, for someh = 1. Then the following statements
are equivalent:

(4.11.1) fis an e.p.f.

(4.11.2) g is an e.p.f.

(4.11.3) There exists k = 1 such that g* is an e.p.f.

(4.11.4) There exists k = 1 such that g® = {(B,)"}, where g = {B,}.
(4.11.5) Forallk=1, g*® is an ep.f.

Proof. This follows immediately from 4.2, 4.5, and 4.8.

For a final corollary, we recall the following definition.

Definition 4.12. Let I be an ideal in a ring A. I is said to be normal in case
I",=I"foralln=1.

With this terminology, the following known result [18, Theorem 2] is an easy
corollary of (4.8.2).

COROLLARY 4.13. Let I be an ideal in an analytically unramified semi-local
ring R. Then, for all large k, (I*), is normal (4.12).

Proof. By (4.8.2) applied to f= {I"}, {(I"),} is an e.p.f. Therefore, by (2.4.4),
for all large &, (I**), = ((I*),)", for all n = 0, so (I*), is normal (see (4.7.2)).

5. CHARACTERIZATIONS OF ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS AND E.P.F.’S

In this section, a number of necessary and sufficient conditions for a semi-local
ring to be analytically unramified are given in terms of e.p.f.’s. We begin with
a needed definition.

Definition 5.1. If f is a filtration on a ring A, then Rad f is the common
radical of the ideals 4,,, for n > 0.

Concerning 5.1, it follows easily from the definition of a filtration {A,} that
Rad A; = Rad A, for all nonzero i and ;.
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To prove the first two characterizations, use will be made of the fact [17,
Lemma 1] that if there exists an open ideal @ in a semi-local ring R such that
(Q@™), C @™™ and m (n) tends to infinity with n, then R is analytically unramified.
(Actually, this was only proved for a local ring in [17], but the proof given there
continues to hold for the semi-local case.)

THEOREM 5.2. The following statements are equivalent for a semi-local ring
R:

(5.2.1) R is analytically unramified.
(5.2.2) For each filtration f on R which is an e.p.f., f, is an e.p.f.

(5.2.3) There exists a filtration f on R such that Rad f is the Jacobson radical
of R and f, is an ep.f.

(5.2.4) There exists an open ideal @ in R such that {(Q")_,} is an e.p.f.

Proof. (5.2.1) = (5.2.2), by (4.8.2) (with 2 =1 and g = f,), and it is clear that
(5.2.2) > (56.2.4) = (5.2.3).

Finally, assume that (5.2.3) holds and let f= {A }. Then, for all large & and
foralln=0,(4,), =4 na)s by (2.4.4) applied to f,, hence @ = A, is a normal
ideal. Also, Rad A, = Rad A, is the Jacobson radical of R, by hypothesis and
5.1, so (5.2.1) holds, by [17, Lemma 1].

The following corollary is interesting, since it shows that if there exists an
open ideal @ in R such that the Rees ring of R with respect to @ has finite
integral closure, then the integral closures of all the rings Z(R,f) (with f an
e.p.f.) are finite % (R, f)-algebras.

COROLLARY 5.3. The following statements are equivalent for a semi-local
ring R:

(6.3.1) R is analytically unramified.

(56.3.2) For each e.p.f. f on R, the integral closure #' of %# = % (R,f) is a finite
Z-algebra.

(5.3.3) There exists an e.p.f. f on R such that Rad f is the Jacobson radical
of R and # (R,f)’ is a finite % (R, [)-algebra.

(5.3.4) There exists an open ideal @ in R such that R [tQ,u]’ is a finite
R [tQ, u]-algebdra.

Proof. (5.8.1) > (56.3.2), by [12, Lemma 2.4] (see the proof of (4.8.1)), and
it is clear that (5.3.2) = (5.3.4) = (5.3.3).

Finally, if (5.3.3) holds, then % (R, f,) is finitely generated over R, since Z#Z (R, f)
is (by (2.7)) and Z(R,f) C Z(R,f,) C Z(R,f), so f, is an e.p.f., by 2.7. Therefore
(5.3.1) holds, by (5.2.3) = (5.2.1).

6. THE CHAIN CONJECTURE IN ALTITUDE THREE AND E.P.F.’S

In this section, we show in (6.5.1) that the Chain Conjecture, 6.4, holds for
altitude three local domains, if all filtrations of a special type in a Henselian
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local domain of altitude three are e.p.f.’s. Then in (6.5.2) (respectively, (6.5.3))
characterizations of analytically unramified (respectively, pseudo-geometric)
Henselian local domains of altitude three that satisfy the Chain Conjecture are
given in terms of e.p.f.’s.

Throughout this section, it will be necessary to use a number of facts concerning
a certain over-ring I of a local domain R. These facts were proved in [15], but
since this paper has not as yet appeared in print, we define I and summarize
the needed facts in the following remark. (As in Section 5, A’ will be used to
denote the integral closure of a ring A in its total quotient ring.)

Remark 6.1. Let (R,M) be a local domain, let a = altitude R=1, let
I=0(R):p € SpecR’ anddepthp =a — 1}, and let B be a ring such that
R C B C I Then the following statements hold:

(6.1.1) [15, (2.3.3) and (5.1)]. Altitude B = a.

(6.1.2) [15, (5.4)]. I=R' if and only if every height one prime ideal in R’
has depth = a — 1.

(6.1.3) [15, (9.7) and (4.4.1)]. For each height one prime ideal q in I, depth
g = a — 1. Moreover, for each @ € Specl such that height @ + depth @ = q,
height @ N B = height @ and depth @ N B = depth Q.

(6.1.4) [15, (4.4.2)]. If P € Spec B is such that height P + depth P = a, then

there exists @ € Specl such that @ N B = P, height @ = height P, and depth
@ = depth P.

(6.1.5) [15, (12.1)]. If a = 3, then height MI = 3.

Definition 6.3. If b is a nonzero nonunit in a local domain R, then
J(bR) =R, N Rg, where S=R — U {p € Spec R: pis a (minimal) prime divisior
of bR and depth p = altitude R — 1}, and 4" = " .Z(bR) N R, for each n = 0.

The facts concerning .7 (bR) and 5" that are needed in this section are given
in the following lemma.

LEMMA 6.3. LetR, b, and S be asin 6.2, let a = altitude R, and let T = 7(bR).
Then the following statements hold:

(6.3.1) RCTCI(6.1).

6.3.2) T={c/b"; n=1 and ¢ is in every depth a — 1 primary component of
b"R}.

(6.3.3) b"T=0"Rs N T, so b" T and b™ are finite intersections of depth a — 1
primary ideals.

(6.3.4) f= {b"} is a filtration on R.

(6.3.5) T=R[6M/b,...,.0b"/),...].

Proof of (6.3.1). Since depth a — 1 prime ideals in R’ lie over depth a — 1
prime ideals in R, it follows that

T=R,NRs;C N{R,;:q € Spec R, b & q, and height ¢ = 1} N Rg C N{R,:
g € Spec Randdepthg=a -1} C N{R,:p € SpecR’' anddepthp =a — 1} =1,
and it is clear that R C T.
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(6.3.2) follows readily from the definition of 7.

Proof of (6.3.3). b"T=0"R,NRg)=R,NO"RgC T, so b"T=b"R,NT.
Also, b" R is a finite intersection of height one primary ideals, so 4"T and 8"T N R
are. Finally, let p be a depth a — 1 prime divisor of dR and let p’ € SpecR’
such that p’NR=p. Then TCR;C R,C R,,. Also, depth p’'=a-—1,
so TCICR,,by(6.3.1) and the definition of 1, so

pPR,NT=(p'R,,NnI)NT.

Thus depthp’R). N I=a —1=depthpR, N T, by (6.1.3) and (6.3.1), hence it
follows that each prime divisor of 5" T and of " T'N R has depth = a — 1.

(6.3.4) is readily proved, and (6.3.5) follows from (6.3.2) and the definition
of b™ 6.2.

The following conjecture has been open since it was mentioned by M. Nagata
in 1956 in [6, Problem 3].

CHAIN CONJECTURE 6.4. The integral closure of a local domain is catenary.

For the history of this conjecture and a number of equivalences of it, see {16,
Section 4].

It is known that this conjecture holds for local domains of altitude at most
two, and it is not known if it holds for all local domains of altitude three. It
is also known [16, (4.4)] that to prove the conjecture in altitude three, it is sufficient
to prove that every Henselian local domain of altitude three is catenary. For
these reasons, we restrict attention to Henselian local domains of altitude three
in our last result, 6.5.

(6.5.1) shows that if all {*”} in every Henselian local domain of altitude three
are e.p.[.’s, then the Chain Conjecture holds for altitude three. A case when the
converse of (6.5.1) holds is given in (6.5.2), and a closely related result is given
in (6.5.3). (Concerning (6.5.3), it is somewhat startling to realize that it is not
known if the Chain Conjecture holds for pseudo-geometric Henselian local domains
of altitude three.)

THEOREM 6.5. Let (R,M) be a Henselian local domain of altitude 3. Let
(*) denote the statement: {b'"} is an e.p.f. Then the following statements hold:

(6.5.1) R is catenary if (*) holds for every nonzero b in M.

(6.5.2) If R is analytically unramified, then R is catenary if and only if (*)
holds for every nonzero b in M.

(6.5.3) If R is pseudo-geometric, then R is catenary if and only if (*) holds
for some nonzero b in M.

Proof of (6.5.1). It will be proved that if b is a nonzero element in M such
that {$"™} is an ep.f,, then every minimal prime divisor of bR had depth two.
From this and the hypothesis, it follows that every height one prime ideal in
R has depth two, so R is catenary (since altitude R = 3).

Therefore, fix a nonzero b in M and assume that {6} isan e.p.f. Then T'= Z(bR)
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is finitely generated over R, by (6.3.5) and 4.4. Therefore assume it is known
that there exists a minimal prime divisor N of MT such that height N = 3. Then,
since altitude T'= 3, by (6.3.1) and (6.1.1), N is isolated over M (that is, N is
maximal and minimal in the set of prime ideals in 7 that lie over M). Therefore,
since R’ is quasi-local (since R is Henselian), it follows from C. Peskine’s version
of Zariski’s Main Theorem [8, p. 119] that 7T is integral over R, and so T is
a finite integral extension domain of R. Also, every prime divisor of T has depth
two, by (6.3.3), so it follows from integral dependence that every minimal prime
divisor of bR has depth two, as desired. Therefore, it remains to show that MT
has a minimal prime divisor of height three.

For this, let N’ be a minimal prime divisor of MI, so height N’ = 3, by (6.1.5),
and so N=N’'N T is a height three maximal ideal in T, by (6.1.3). Therefore,
since MT C N, there exists a minimal prime divisor P of MT such that P C N.
If height P =1, then depth P = 2, by (6.3.3), so height MI < 3, by (6.1.4), and
this contradicts (6.1.5). If height P = 2, then depth P = 1, so again a contradiction
to (6.1.5) follows from (6.1.4). Therefore, P = N is a height three minimal prime
divisor of MT. )

Proofof (6.5.2). By (6.5.1) it suffices to prove that if R is analytically unramified
and catenary, then (*) holds for every nonzero b in M. For this, since R is catenary
every height one prime ideal in R has depth two, and so this holds for R’, by
[14, (2.6)]. Therefore, the ring I in 6.1 is the integral closure of R, by (6.1.2).
Also, since R is analytically unramified, I = R’ is a finite R-algebra. Moreover,
for each nonzero b in M, Z(bR) C I, by (6.3.1). Therefore,

"RC VM ="TNRC V'R NR=(b"R),,

for each n = 1, hence, since {b”R} is clearly an e.p.f., it follows from (4.8.2) that
{6} is an e.p.f.,, and so (*) holds for all nonzero b in M.

Proof of (6.5.3). Since a pseudo-geometric local domain is analytically unrami-
fied, by [7, (36.4)], it suffices, by (6.5.2), to show that if (*) holds for some nonzero
b in M, then R is unmixed (for then R is catenary). For this, let T'= Z(bR),
so T is a finite R-algebra and T C R’, by the middle paragraph of the proof of
(6.5.1). Therefore, to prove that R is unmixed, it suffices to prove that T is unmixed.
For this, let z be a prime divisor of zero in the completion 7* of T and let p*
be a minimal prime divisor of (z,5) T*. Then p* is a prime divisor of bT*, by
[21, Lemma 1, p. 394] applied to T:., so p=p* N T is a prime divisor of b7,
hence depth p = 2, by (6.3.3). Therefore 7T'/p is a pseudo-geometric Henselian local
domain of altitude two, so T'/p is unmixed, by [13, Remark 2.23(iii)]. Hence,
since p* is a prime divisor of pT*, by [7, (18.11)], it follows that depth p* = 2.
Therefore depth z = 3, hence T is unmixed.

In closing, it should be noted that by [13, Remark 2.23(i)] the conclusion of
(6.5.1) is equivalent to: R is quasi-unmixed. Also, if R is analytically unramified
(as in (6.5.2) and (6.5.3)), then R is quasi-unmixed if and only if R is unmixed,
so each of these conditions is equivalent to the equivalent conditions in (6.5.2)
and in (6.5.3).
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