EQUIVARIANT MAPS WITH NONZERO HOPF INVARIANT
Theodore Chang

In this paper we will derive strong necessary conditions for the existence of
a torus equivariant map f: S*“~* — S?? with nonzero Hopf invariant. These condi-
tions are expressed in terms of the topological weight system, as defined by Wu-yi
Hsiang [6], of the torus actions on S**~* and S§*¢. They imply, for example: '

COROLLARY. Suppose a torus T acts almost effectively (that is, with discrete
ineffective kernel) on either S**~' or S*. If an equivariant map f: S** '— §*¢
exists with nonzero Hopf invariant, then either:

(i) F(T,8*" ') ~S¥ ' and F(T,8*%) ~8%,0 < r < d, and, except when r = 0
andd=1,2, rankT=d —r,

or (i) F(T,8*"') = p and F(T,8%") ~ S or F(T,5"™") ~ S* " and
F(T,8*)~S8%0<r=d andrank T=3ifr=1,2, rank T=<2 if r = 3.

Here F(T,X) denotes the fixed point set of T acting on X and X ~ Y means
H*(X;Q) = H*(Y; Q). All cohomology will be with rational coefficients.

1. When f£: 8**~' — 8?7 has nonzero Hopf invariant, its mapping cone M (f)
will be a rational cohomology projective plane whose cohomology is generated
by an element of degree 2d; such a space will be called a P?(2d). When f is
equivariant with respect to a torus 7' acting on S**~! and S*¢, M (f) will inherit
a T action. The cohomology structure of the possible fixed point sets of the T
action on M (f) are well known (see, for example, [2, p. 393]) and it follows:

PROPOSITION 1. If T acts on S*" and on S*® and if f:8* ' — §* is
equivariant with nonzero Hopf invariant, then either

G F(T,8** ") ~8S* 'and F(T.S*) ~8*",0=<r=d,

or (i) F(T,8* ') = p and F(T,S*%) ~ 8* or F(T,S8** ") ~ S and
F(T,S*)~S8%0<r=d.

When case (i) of Proposition 1 occurs we will say the T actions are of type
(i); otherwise the 7 actions are of type (ii). Case (i) occurs when F(T,M (f)) ~ P*(2r)
and case (ii) occurs when F (T, M (f)) ~ pt + S*; these are the only two possibilities.

If T acts on a sphere 8" with F(T,S")~S" (r = —1 when F(T,S") = ¢) a
(topological) weight is a corank 1 subtorus H so that F(H,S") ~ S? with ¢ > r.
Its multiplicity is (g — r)/2 which is always integer. The Borel formula states
that the sum of the multiplicities of the weights is exactly (n — r)/2; in particular
the collection of weights is finite. A local weight H can be identified with an
element w € H?(B,) which is defined up to multiplication by a nonzero rational
constant. We simply choose o to be any generator of the kernel of the restriction
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map H*(B,;)— H*(By). This relationship will be written H = »". In complex
linear representation theory, a linear weight can be thought of as an element
of H?>(B,;Z); when T acts on S™ linearly, the linear weight system coincides with
the topological weight system when linear weights which are rational multiples
of each other are identified as the same topological weight.

Return now to the situation of a T-equivariant map f: S**~'— S? of nonzero
Hopf invariant. If the actions are of type (i) with r > 0, the weight systems of
the T actions on S**~" and S?? are easily understood. In fact if H C 7, the H-actions
on S*“~' and S*? must be of type (i). It follows that

PROPOSITION 2. If f:S* '— 8> is equivariant with nonzero Hopf in-
variant and if the T actions are of type (i) with r > 0, then the weights of the
T action on S8**™* coincide with the weights of the T action on S**~'; each weight
appearing on S**~" with twice the multiplicity it appears on S*°.

Actions of type (ii) are studied in Section 2. Section 3 deals with corollaries,
including that of the introduction. Section 4 gives examples.

2. Let f:S*“"' > §%¢ be equivariant with nonzero Hopf invariant and with
the T actions of type (ii). Let H be a corank 1 subtorus of 7. If F (H,S**™') ~ §*~!
and F(H,8%%) ~ S, then r < k = d and we call H a weight of type o with
multiplicity 2%. If F(H,S**"') = ¢ and F(H,S%*?) ~ S* or if F(H,S*™') ~ §%*!
and F(H,S8%%) ~ S°® with r < k < d, we call H a weight of type v with multiplicity
k—r.

Let F(T,M (f)) = F' + F? with F' ~ pt and F? ~ S¥. In terms of local weights
as defined by Hsiang, a weight of type w with multiplicity 2% is a local weight
at F' with multiplicity 2k and at F® with multiplicity 2k — . A local weight
of type v with multiplicity 2 — r is a local weight at F* with multiplicity z — r.

THEOREM 3. Suppose f:S**™'— 8%? is equivariant with nonzero Hopf in-
variant with the T actions of type (ii). Let {w;} be the weights of type o and
let 2d; be the multiplicity of w;. Let {v;} be the weights of type v with k, the
multiplicity of v;. Then there exist nonzero rational numbers c, so that

ro_. k
Ze]]oi=1]

i k£ J

(1) and

z Cn 1_[ w7 is divisible by o ™" for each .

m#i k#i,m

(These equations take place in H*(B,) which is polynomial on rank T number
of generators.)

Example. LetT?actlinearly on S'>by 40 + 22, + 2z, + 2%z5 + 2525, abed # 0,
and on S®by 6 + 2z, + 2z, where 0 is a one (real) dimensional trivial representation
and z, and z, are the obvious representations of 7% on C = R® Then F(T?,8") = §°
and F(T?%S%) = 8% sor=2.
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In H*(B;) = Q [t,,t,] the local weights are ¢,, ¢,, atf, + bt,, and ct, + dt,.
F(t7,8*)=S8" and F(t;,8%) = 8" so t,— and similarly ¢,— is a local weight
of type o with multiplicity 4.

F((at, + bt,)*,S*®) = S®> and F((at, + bt,)",S®) = S°,

so at, + bl,— and similarly ct;, + dt,— is a local weight of type v with multiplicity
1.

If an equivariant map f: S'>— S°® exists with nonzero Hopf invariant, Theorem
3 asserts that there are constants c,, ¢, both nonzero so that

ety + ey tt = (at, + bt,)(ct, + dt,) = act® + (ad + be) ¢, ¢, + bde?.

Thus f can only exist when ad + bec = 0.

The remainder of this section is devoted to the proof of Theorem 3. Let
X =M(f) ~ P*(2d),
F=F(T,X)=F'+ F* F'~pt, F* ~S8”, and let
i*H*(X)—> H* (Fy) = H*(F) ® H*(By)
be induced by inclusion. If p € H? (Br), let F(p.). = F(pn*,X) and let
h*:H*(X;)—> H*(F(r) ) and j*:H*(F(p)p)—> H*(Fp)
be induced by inclusions. 2* and j* depend on p, of course, but the context will

always be sufficiently clear to remove the ambiguities.

The Serre spectral sequence of X — X ,.— B, degenerates for dimension reasons
and it follows that H*(X ;) is generated as a H*(B,)-module by 1, x, x> for an
appropriatex € H>?(X ,), see for example [6, pp. 50-51].Lety € H* (F?) generate;
then by subtracting from x a suitable element of H*(B,), we can assume that
t* (x) = (Q,Ty) € H*(By) ® (H*(B;) ® H*(F*)) = H*(F;) ® H*(F7) = H*(F,),
where Q and T are in H*(B,). Then i*(x*(x —Q)) =0 and it follows that
2%(x — Q) = 0. Thus H* X7)=H*B,)[x]/x*(x —Q). Since i*(x*) = (Q 2,0) and
t*(x(x — Q)) = (0,-T'Qy), using [5, Theorem 3.6] we deduce

0 = q: I_I “’?di
q. (H w fd"_r) (H vf!) , q.,q, some rational constants.
' J

ro

By multiplying x and y by suitable nonzero rational constants, we can assume

a=[Jot ana v = ([ or) (IT+4).

J
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For each p € H>(B,), F(u) = F (), X B, . with the inclusion
j:FX BT/.LJ- X B‘L..L = th BT_) F(}L)T

breaking up as the product of the inclusion F X By, .— F(u),. and the
identity on B, .. It follows, again from [5, p. 316], that for each w; we can find
a generator x;, € H** (F (0,);) so that j*(x,) = (0, c,0{* "y) for some nonzero
rational c;. Let A* (x) = o, x; + B,x; + v, where «;, B;, v; € H*(B,). Then

a0 +Bofi+y, =0

d,—r

c;B;w;* =TI and ~,=0.

Accordingly

aiw?‘ + cl (1—[ w,fk_r) (H vfi) = H w:"

i \ELi j k£

Letting o; = 3, | | @+~
¥

(2) c,-Siwf" + l_I vff = c,-I_I wy,
J ki
We claim that (2) is possible only if

E c; H 0y 1—[ vf! and

i E#i J

S0l = — 2 Cn I I w, for each i,

m#i k#Em,i

I

2

which is the assertion of the theorem.

To prove the claim, let s be the number of w,. Let ¢;, w;, be thought of as
fixed and let A, € H**"®"(B,) and B € H>** V" (B,) be any solution to

3) A,.m:+B=c,.l_[w; i=1,..,s.

k#E

If A!, B’ is another solution to (3), then
A,—A))w;+(B-B")=0 i=1,..,s.

Therefore B — B’ is divisible by »],...,w, and since H*(B,) is a polynomial ring,
a degree argument yields B=B’, so A, = A!. Now
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B = E Hmk and A—-——z Hwk

k#m m#i k#Em,i

is one solution to (3), so (2) follows.

Remark 4. The proof of Theorem 3 remains true for the 7-equivariant map
[ F(H, S* 'y F(H,S?*) for any subtorus H whose actions are of type (i).
Accordingly, equations (1) hold when {w;} and {v;} are the weights of type w
and v respectively which are zero on H, thatis H C w; and H C v; .

3. COROLLARY 5. Suppose an equivariant f: S** ' — 8** of nonzero Hopf
invariant exists where the T actions are of type (ii). If v, is a weight of type v
with multiplicity k, and », is a weight of type o with multiplicity 2d,, then the
linear span L (vy,0,) of v, and v, has at least r weights of type v and max (d, — r
+ 2,k + 1) weights of type o. If w, and w, are two weights of type v, there is
a weight v, of type v in L(w,,w,), 50 L(w,,w,) = L{w,,v,).

Proof. Let H be the connected component of 1 in v; N wy;. Then a weight
i € L(vy,w,) if and only if H C p*. By Remark 4, if w,,...,0, and v,,...,v,
are the weights of type w and v in L (v,,®,)

0 > ] oi=]+

i=0 k#i

5) > ¢ [ ] @nis divisible by w3~
j=1 k#0j
Write each weight o, (after multiplying by a suitable nonzero constant) in
the form o, = v, + a;p, where p € Lin(w,,v,) is not a weight of type w. Then

(4) implies

_ i=0 kEL — -
f) = 2 N

r—+
0=Ff®0) =(-D'————D ciaj"*, 0=k<k,.

The Van der Monde determinant tells us the 2, X (r + 1) matrix whose
(i + 1, j + 1)th entry is a;’~" has maximum possible rank. Since none of the
¢,s is zero, m + 1 = k, + 1. Similarly equation (5) implies that m = d, — r + 1.
Thus m + 1 = max(k, + 1, d, — r + 2) as claimed.
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Let K = max k;. Then (4) impliesm -r = K(n + 1).Sincem =K, n + 1 = r.

O=<i=n
Finally applying Remark 4 to the connected component of 1 in w; N w;, we
see that L (wy,»,) must contain some weight of type v.

COROLLARY 6. Let T act almost effectively on either S**~* or S*¢ and sup-
pose there is an equivariant f: S**~*— 8*¢ with nonzero Hopf invariant.

(1) If the actions of T are type (i), then rank T'< d — r, except when r = 0 and
d=1,2.If d,r) = (1,0), rank T < 2; if (d,r) = (2,0), rank T' < 3.

(ii) If the actions of T are type (ii), then rank T=3 if r = 1 or 2, rank 7' < 2
if r=3.

Proof. (ii) First of all, the weights of type o and v together span H?*(B,).
For letting H be the connected component of 1 in N w; N v;, we have by the

Borel formula dim F/(H, S**~') = 4d — 1 and dim F (H,S>*) = 2d. Using [1, pp. 13,
81], F(H,S*™ ") = S* " and F(H,S8%) = 8*¢. Therefore H = {1}.

Now if rank 7'= 3, a theorem of Sylvester-Gallai ([7, p. 451]) implies that
there are two weights w, and o, of type w so that L(w,,»,) has no other weight
of type w. Using Remark 4, there are rational constants ¢, and ¢, so thatc, wg + ¢, w]
splits completely in L (w,,®;). This is equivalent to ¢,x” + ¢, splitting completely
in @ [x]. This latter is only possible if r = 1,2,

If r=1,2 another application of Sylvester-Gallai’s theorem together with
Corollary 4 shows that rank 7'< 3 ([8, p. 10]).

(i) As in (ii) above, the weights span H?(B,). Using Proposition 2, if r >0
the weights for the 7T action on S>? span H?(B,), so let w,,...,w,, s =rank T,
be a collection of linearly independent weights. Then

F(L(0,,...0,)") C FLw,,...0, ;)*)C ...C F(L(0,,0,)")
C Fwy) c 8™

is a sequence of spaces whose dimension, by the Borel formula, increases by at
least 2 at each step. Hence s=d — r.

If r =0, let p be any weight for the T' action on S**. Then applying (i) or
(ii) to the p* actions on S**~* and S”? we see that (rank 7') — 1 is at most equal
to the larger of d — 1 and 3. Thus (i) is proven except when d = 1,2, or 3 and
r = 0. These cases are easily handled separately.

4. This section deals with examples. The first two are summarized from [4];
the fourth is a variation of an example given there.

Example 7. Let SO (2d) act on S*>? and on D?? linearly in the usual way.
The map A: D?**— S§** = D?*?/8%¢"! which collapses S**"" into a fixed point of
S?? is equivariant. Let SO (2d) act on D?*? x D>’ by the diagonal action. The map
[: 8 = 9(D* x D?*) = 8% ' x D* U D* x 8% ' - S§® defined by
F(x,y) = h(x) on D** x 8% and f(x,y) = A(y) on S**7 ' x D*? is equivariant
and has Hopf invariant two. If 7 is a maximum torus of SO(2d), its rank is
d, and subtori of T¢ can be found acting with all the possibilities for r of type
(i) actions, and with the maximum ranks given by Corollary 6.
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Example 8. If 0 = r = d, there is a map S**™' — §*® with nonzero Hopf
invariant which is equivariant with respect to a linear free S* action on S*¢!
and a linear S' action on S** fixing S%".

If 0 < r = d, there is a map S** ' — §>? with nonzero Hopf invariant which
is equivariant with respect to a linear semifree S' action on S**™' fixing S* !
and a linear S* action on S fixing S°.

Example 9. Let w,,...,0, be distinct integers. Let c,,...,c; be integers so that
2 cw:=0,0=s=d-2, and 2 c;0 {71 # 0. The existence of such integers is
guaranteed by the nonsingularity of the d X d matrix (a;) = (o)), i=1,...,d,

Jj=0,...,d—1. Then 2 ¢t =p )t — 1) wherep(l) # 0.

Let ¢: S' — U (d) be the map ¢(z2) = diag (2, ..., 2"¢) where diag(a,,...,a,) is
the d X d diagonal matrix with entries a,,...,a,. Let S' act on U(d) by inner
automorphism via ¢, s0 2+ A = ¢(2)Ap(27"). Let S* act on S**7' linearly and
semifreely fixing S'; denote this action by z* x for 2 € S* and x € S**~*. Let
z - x denote complex scalar multiplication by z on x € C%. By [3, Theorem 1],
the map g: S'— U(d) defined by g (z) = diag (z°, ..., z2°¢) extends to an equivariant

map, also denoted by g, S**~'— U(d) with [g] # 0 in H (U@d)) = Z.

2d—1

Now let f: 827! x 827! — S~ ! be given by f(x,y) = g(x)y. Then if S* X S'
acts on S*7' x §*™ by (2,,2:)(x,y) = (2, * x,2,¢ (2,)y) and on g2t by
(z,,2,) x = z,¢ (2,) x it follows that f is equivariant. Applying the Hopf construc-

1 2 1
tion gives a map f:8* "' =871« 8% 5 8§82 = §%¢ which is equivariant
with respect to a S' X S! action on S**' fixing S' and an S' X S' action on

S fixing S°. Since [g] # 0 in H (U (d)), the Hopf invariant of f is not zero.
2d—1

Suppose there exist two sets of d integers whose first d — 1 symmetric functions
agree, but whose d-th symmetric functions disagree. If d = 10, two such sets do
exist but if d > 10 the existence of such a pair of sets is completely unknown.
Using Theorem 1’ of [3], we can construct a map S**™* — S?¢ of nonzero Hopf
invariant which is equivariant with respect to a fixed point free S' X S' action
on S**7' and a 8' x 8" action on S? fixing S°. Such an example is constructed
in Example 7, but in Example 7 all the subtori of 7' have actions which are
of type (i). In this example, however, there is a S C §' X S' which fixes S2?7!
in $*"' and 8° in S

Example 10. Let T*=8'x 8'x S' x S* and let ¢, ¢,, ¢, be maps T* — U (4)
defined by

¢1(21,25,25,2,) =diag(2,2,252,,2,25,252,,2,252324,2,22252,)
¢, (21,25,25,2,) = diag(z,2,232,,2,2,24524, 2, 252324,2,25252,)

. 2 2 2 2
¢3(2,,25,25,2,) = diag(zi,2;,25,2)
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Let f: S” X S — S’ be Cayley multiplication which is given in terms of 4-tuples
of complex numbers by

—-"1-_1 _r’1_ —rlrll_rzf“;_i":irs_r,‘;?‘;j

p r, ry rory+rr,—rhr,+rr,
ry r B ror, —ryF,+r,f, —r,r,
_r4_j,_r;_ | rory — Pty —rar'y |

Then f is equivariant with respect to the 7* actions on S” X S” and on S’ given
byz - (x,y) = (¢,(2) x,¢,(2) y) and z : x = ¢,(2) x. Accordingly, the Hopf construction
yields an equivariant map S'® — S® with Hopf invariant 1.

Taking various subtori of 7" will yield actions of type (ii) with r = 1,2, or 3.
For example, the subtorus H = {(z,,2,,25,2,):2,2,25 2, = 1}has F(H,S) = S' and
F(H,S®) = S°. Thus rank T = 3 is possible in (ii) of Corollary 6.

Since the weights of a torus action are elements of H?(B,; Q) defined only
up to multiplication by a nonzero rational, they are naturally considered as points
in a projective space over the rationals of dimension rank 7'— 1. The weights
of type v and o for the H actions of Example 10 have the following configuration
in the projective plane.

w
which is projectively (4)

equivalent to

7 : °N

Figure 1.

For any torus action of type (ii), the weights Q of type w and N of type v satisfy:
1. The sets Q and N are aisjoint, finite, and not all colinear.
2. Given v,,w, € () there is a weight of type v in L(w,,»,).
3. Given w; € Q and v € N, there is a w, # w, of type w in L(w,,v,).

It is known [8] that there are no such configurations of points Q and N in
a projective 3 space. In the projective plane, the only configuration with rational
coordinates known is the configuration (4). There is a configuration constructed
by Bredon from a regular pentagon with real coordinates. Should (4) be the only
possible configuration in the projective plane over the rationals, Corollary 5 can
be used to strengthen (ii) of Corollary 6 and arrive at: Under the hypotheses
of Corollary 6, (ii)’ If the 7 actions are of type (ii) then rank 7T'= 2 with the
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sole exception of r =1, d = 4, rank T = 3, which is constructible as in Example
10.
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