BOUNDEDNESS AND ASYMPTOTIC BEHAVIOR OF
SOLUTIONS OF A VOLTERRA EQUATION

Olof J. Staffans

1. INTRODUCTION

We investigate the boundedness and the asymptotic behavior of the solutions of
the nonlinear Volterra integral equation

(1.1) x'(t) +§ gx(t - 8)) du(s) = £t}  (t € RY)
[0,¢]

(we write R* for the interval [0, «)). Here, g and f are given real functions, and
i is a given real (Radon) measure. A solution x is required to be locally absolutely
continuous and satisfy (1.1) a.e. on R*.

We suppose throughout that
(1.2) L is positive definite,
£
(1.3) g € C(R), inf G(§) > -«, where G(§) = Y g(n) dn.
EeR Y0
If, in addition, one has
(1.4) fe LYRY),

(1.5) lim sup [g(®)] (1 + [G&x)])"! < o,

|| =
then it is easy to show that every solution x of (1.1) satisfies

(1.6) sup G(x(T)) +Qgox, T, u) < =,
TeRT

T
where Q(¢, T, ) = S 8(t) S o(t - s) duls) at (¢ € C[o, T]).
0 0,t]

The proof of this claim proceeds as follows: one multiplies (1.1) by g(x(t)) and
integrates over [0, T], getting

T
(1.7) Gx(T) + Qg o x, T, 1) = G(x(0)) + § g(x(t)) £(t) dt.
0
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T
By (1.2), Q(go x, T, p) > 0. Thus G(x(T)) < G(x(0)) + S g(x(t)) f(t) dt. This to-
0
gether with (1.3) through (1.5) and Gronwall’s inequality gives g o x € L™(R), and
(1.6) then follows from (1.4), (1.7).

The conclusion (1.6) has very important consequences. Because of (1.2) and
(1.3), both terms in (1.6) are bounded from below. Thus, if (1.6) holds, then also

(1.8) sup G(x(T)) < «,
TeRrRt
(1.9) sup Qlgox, T, u) < .
TeRr?

Of course, if moreover

(1.10) lim sup G(£) = «,
' E—+

then it follows from (1.8) that x is bounded; hence, so is g o x. (Actually, the
boundedness of g o x follows directly from (1.5) and (1.8) without (1.10), but in the
sequel we do not suppose (1.5), and then (1.10) is needed.) The fact that go x is a
bounded function satisfying (1.9) can then be used to draw quite detailed conclusions
about the asymptotic behavior of g o x (see [18]).

We want to find alternative conditions on g, f which imply that every solution x
of (1.1) satisfies (1.6). These should not include (1.5), and they should permit a
larger asymptotic size of f than (1.4) does. Part of the motivation comes not from
(1.1) but from a generalization of (1.1) to a Hilbert space, where (1.5) is quite un-
realistic, at least in its most immediate interpretation (see however [21] for a more
realistic version). For simplicity, we limit this study to (1.1), but the results that
we get are formulated in a way which makes the generalization to an equation in a
Hilbert space quite easy.

The basic idea is simple. Instead of dropping Q(g o x, T, i) in (1.7), we use
(1.3) to get

T
(1.11) Qgox T, 1) < K+ | g dt,
0

where K is a fixed constant. Note that Q(g o x, T, u) is quadratic in g o X, whereas
T
S g(x(t)) £(t) dt depends linearly on g o x. Suppose for the moment that p domi-
0
nates f in the following sense:
T
Theve exists a € R" such that | S o) £t) dt|? < aQlo, T, 1)
(1.12) 0
for every T € RT, ¢ € C[0, T].

Then it clearly follows from (1.7) and (1.11) that (1.6) holds.
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Summarizing the preceding argument, we have

THEOREM 1.1. Let (1.2), (1.3) and (1.12) hold. Then every solution X of
(1.1) satisfies (1.6). If in addition (1.10) holds, then the solutions of (1.1) are
bounded.

When the kernel includes a constant term, then an additional perturbation,
which need not satisfy (1.12), can be allowed. We discuss this in Section 2.

Condition (1.12) as well as the preceding proof of Theorem 1.1 is partly moti-
vated by a result due to Levin and Nohel [6]. They study (1.1) when du(t) = a(t) dt
(t € RY), and a, f satisfy

ae Cl0, =), -DFa @) >0 (0<t<o; k=0, 1,2), fe clo, =) nclo,«);
(1.13) there exists c € C[0, =) N CL(0, ») such that 1%(t) < a(t)c(t) and
(@)% <a'te't) (0 <t <)

(they also include another perturbation in (1.1) satisfying (1.4)). The original proof
of [6, Theorem 1] does not involve (1.12), but a later proof due to MacCamy and
Wong implicitly contains (1.12) (see [11, pp. 28-29] and Section 7 below).

The condition (1.13) has the big disadvantage that it can be applied only when the
kernel is a convex function. In addition, it has the unpleasant feature of being quite
implicit, and given a, f it is not always easy to construct the function ¢ in (1.13).

When one only has p positive definite but not convex, then it is much more na-
tural to work with Fourier transform conditions on p, f, and not with pointwise
conditions like (1.13). The following formal computation is made precise in Section
3. Write Q(¢, T, 1) in the equivalent Fourier transform form (hats denote Fourier
transforms)

Q, T, 1) = 37§ 182(0) [ R @) do,

where ¢, = x[O’T]qS, and X|o,T] is the characteristic function of the interval [0, T]
(here we suppose for simplicity that % i is a function). Also rewrite the integral on
the left hand side of (1.12) using Fourier transforms:

T —_
(1.14) S ¢(t) £(t) dt = %E $p(w) f(w) dw.
0 R

Multiply and divide by Stfl (which is positive because u is positive definite), and
use the Schwarz inequality to get

T ~ . ~ ~
{ s0t0 a2 < en?| [ o 2@ie) ! do || (150200 d
0 R R
Thus we observe that (1.12) is implied by

(1.15) ) (R (w)"1/2 € L2R).



80 OLOF J. STAFFANS

The main part of this paper is devoted to a study of (1.15).

Some comparisons with earlier results are found in Sections 4 to 6.

2. A KERNEL WITH A CONSTANT TERM

When p contains a constant term, then one can perturb (1.1) by an additional
function of bounded variation:

THEOREM 2.1. Let (1.3) hold. Let p, f be of the form duf(t) =dp;(t) + B dt,
f(t) = £,(t) +£,(t) (t € RT), where B> 0, py and f; satisfy (1.2), (1.12) with p, £
veplaced by (1, f,, and £, is of bounded variation. Then every solution X of (1.1)
satisfies (1.6). If moreover (1.10) holds, then the solutions of (1.1) are bounded.

The proof of Theorem 2.1 given below is \a straightforward modification of an
argument in {3].

Proof. We multiply (1.1) by g(x(t)) and integrate over [0, T], getting (1.7).
Note that
2

B T
Qlgox, T, u) = Qgox T, u)) +5 S g(x(t)) at
0

Substitute this and (1.12) (with u, f replaced by i, f;) into (1.7), and use (1.3) and
the positive definiteness of p; to obtain

T 2 T
(2.1) B g at | <X, + | gx®)L,) dt,
[ roa] <o § o

where K; = G(x(0)) - infz e G(£) + a/4. Redefine f, if necessary so that it is con-
tinuous from the right, and integrate by parts in the right hand side of (2.1) to get

ST ()L, () dt = £,(T) ST (x(s) ds - { " e(x(s) ds dt, ()
0 ¢ 2 2 0 ¢ [o,T] 0g 2

t T
Define @(T) = sup, ¢[o,T] ]S g(x(s)) ds|. Then clearly S‘ g(x(t)) £,(t) dt <K, &(T),
0 0

where K, is the sum of sup, _p+ [£,(t)| and the total variation of f, on Rt . Substi-

tute this into (2.1), and use the fact that the right hand side becomes nondecreasing
to obtain B(&(T))2/2 < K| + K, $(T). Thus, sup. .+ 2(T) <=, soalso

T
(2.2) sup ]S gx(t) i, @) dt]| < .
TerT Y0

To complete the proof of Theorem 2.1, one substitutes (2.2) into (1.11), and con-
tinues as in the proof of Theorem 1.1.
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3. A FOURIER TRANSFORM CONDITION

In this section, we explain how (1.15) should be interpreted if 8 is not a func-
tion and prove that (under an additional technical assumption) (1.15) implies (1.12)
(Theorem 3.1 below).

We begin with some notations and conventions which remain valid throughout the
paper.

Hats denote Fourier transforms. If u is a tempered distribution, then so is u,
the distribution Fourier transform of u (¢f. [13]). If a function a and a measure pu

induce tempered distributions, then 4 and [ are defined to be the (distribution)
Fourier transforms of the corresponding distributions. It is well known that, e.g.,

when a € LI(R), then the distribution 2 is (induced by) a continuous function, which
we also denote 2. We normalize the Fourier transform so that in the preceding

case, a(w) = S e-iwta(t) dt (w € R).
R

Another well-known fact is that the Fourier transform maps L2(R) onto itself.

Unless a specific statement is made to the contrary, functions and measures de-
fined on some interval I are extended to R by zero outside I, and their Fourier
transforms are by definition the transforms of the corresponding extensions (this, of
course, only makes sense if the extensions induce tempered dis_tributions).

The characteristic function of an interval I is denoted Xj .

All functions and measures are real-valued, except those that are defined to be
the Fourier transforms of other functions and measures (or, to say it in another way,
functions and measures on the time domain are real-valued, whereas functions and
measures on the frequency domain are complex-valued).

It is known that if p is positive definite, then the distribution induced by p is

tempered, and R is (induced by) a positive measure [17, Corollary 1.1]. More-
over, one has

QT ) = g; § [ a{si} ),

where ¢ = X[o,T]% (see [17, Lemma 1.1] and [18, Lemma 4.1]). Thus, in particu-
lar,

(3.1 Q6 T, 1) 2 5 § 18p(@ 22 do,
R

where X is (the Radon-Nikodym derivative of) the absolutely continuous part (with
respect to the Lebesgue measure) of the measure R[i.

THEOREM 3.1. Let p be positive definite. Let f be the invevse Fourier
transform of a function f € L1 (R) + L2(R), and suppose that

(3.2) S () |2 Mw)! do < =,
R

where \ is the absolutely continuous part of R.. Then p dominates f in the sense
of (1.12).
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Henceforth, when we say that u dominates f, then we mean that pu, f satisfy
(1.12).

It follows from the hypothesis on f that f € L2(R) + L™(R), and that the given
function f actually is the (distribution) Fourier transform of f. An equivalent con-
dition is to ask f to induce a tempered distribution (so that the Fourier transform f

exists) together with the earlier f ¢ L1(R) + L2(R). Note that f need not vanish on
(_003 0)°

Proof of Theovem 3.1. By (3.1) and (3.2), the only step in the formal proof of
Theorem 3.1 given in Section 1 which is still questionable is (1.14).

By the hypothesis, one can writeé f in the form f = r, +r,, where r; € Ll(R),
r, € L%(R). Let f; and f, be the inverse Fourier transforms of r; and r,, re-
spectively. Then f =f, +{,, and to verify (1.14) it clearly suffices to show that

(3.3) S ST M) at = ;}5 5 sr@rw) do  G=1,2)
R R

(¢ = ¢, because ¢ is real). When i = 1, then (3.3) is an immediate consequence
of Fubini’s theorem (note that r;, ¢ € LY(R), and f;, $ € L°(R)). When i = 2,

then (3.3) is a special case of Parseval’s identity. Thus (1.14) holds, and the proof
is complete.

4. A “STRONGLY” POSITIVE DEFINITE KERNEL

As a first application of Theorem 3.1, we study the case when y is “strongly”
positive definite in the following sense (let n be a nonnegative integer, and recall
that 9 [i is a positive measure if 4 is positive definite):

Theve exists € > 0 such that the measure d(% 1) (w) - £(1 + ©2) ™ dw
(4.1)
(w € R) is positive.

Taking n =1 in (4.1), one gets MacCamy’s and Wong’s [11] strong positivity.

PROPOSITION 4.1. Let p be a positive definite measure satisfying (4.1) for
some ne {0, 1,2, -+ }, and let

(4.2) £, 1) ¢ LARY),

wheve £ is the nih (distribution) devivative of f on (0, ©). Then u dominates f.

The two most interesting cases are n=0 and n = 1. We discuss these after the
proof of Proposition 4.1.

Proof of Proposition 4.1. The first step in the proof consists of extending f to
R in an appropriate way. If n = 0, then we use our standard extension f(t) =0
(t <0), and get (4.3) below. If n> 1, then it follows from (4.2) that f (redefined on
a set of measure zero) is n - 1 times continuously differentiable on R’. In particu-
lar, the right-derivatives £(1(0) (i =0, ---, n - 1) exist. Let n be an arbitrary
C”-function with compact support such that 7 ()(0) =£{i}(0) (i=0, ---, n - 1), and
define f(t) = p({t) (t < 0). Then it follows from the construction that
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(4.3) ‘ f, 10} ¢ LR),

where f™) is the n:th (distribution) derivative of f on R (and not only on (0, )).
One can now use (4.3) and standard properties of the Fourier transform to con-

clude that S |f(w)|? dw < «, and S |w” f(w) | dw < =. Clearly then
R R

(4.4) S (1+ w2)? |H(w) |2 do < .
R

Let A be the absolutely continuous part of ®#t. Then, by (4.1), Aw) > (1 + w?2)n
a.e. on R, and together with (4.4) this yields (3.2). Thus Theorem 3.1 applies, and
the proof of Proposition 4.1 is complete.

By Theorem 1.1 and Proposition 4.1, if u, f satisfy the hypothesis of Proposi-
tion 4.1, g satisfies (1.3), and x is a solution of (1.1), then (1.6) holds. If moreover
(1.10) is true, then '

(4.5) x e L°R")."

In the special case n = 0, the estimates that we obtain are very similar to those
used, e.g., by Barbu in [2, Section 4]. The assumption (4.2) simply becomes

T
f € L2(R"). Condition (4.1) with n = 0 implies Q(¢, T, p) > € S lo(t) |2 dt (this

0 .
follows from (3.1) and Parseval’s identity). Thus (1.9) yields

(4.8) g ox € LZ(RY).
Now, suppose in addition that

(4.7) inf  g(£)/&¢ > 0 for each y € R'.
0<|E|<y

Then it follows from (4.5) and (4.6) that
(4.8) x € LZ(RY).

If the kernel yu has a finite total variation, then one can in addition get a pointwise
convergence to zero of x(t) and g(x(t)), because in this case (1.1), (4.2), (4.6) and a
standard theorem on convolutions imply x' € LZ(R"). In particular, x is uniformly
continuous. Combining this with (1.3), (4.7) (which imply g(0) = 0) and (4.8), one has

(4.9) x(t) = 0, gx(t)) =0 (t— ).

Remark 4.2. Using the continuity of g, one can easily show that (4.7) is equiva-
lent to

Eg(£) > 0 (£+ 0), lim inf g(&)/¢ > 0.
£—0

The case n =1 in Proposition 4.1 enables us to improve a result due to Mac-
Camy [10, Theorem I(i)]. For simplicity we only discuss Theorem A below, which
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is a scalar analogue of [10, Theorem I(i)], and leave the obvious generalization to
MacCamy’s vector-valued equation to the reader.

THEOREM A. (i) Let (1.3) hold. Let du(t) = a(t) dt (t € RY), where
(4.10) ae C2(RY, t3ak@) e LIRY (=0, 1,2),

and suppose that (4.1), (4.2) hold with n = 1. Then every solution x of (1.1) satis-
fies
(4.11) x' e L2 N LPRY).

(ii) If in addition (1.10), (4.7) hold, then so do (4.5), (4.8) and (4.9).

(The statement of Theorem A differs substantially from the statement of [10,
Theorem I(i)]. MacCamy writes his assumption on a in a different but equivalent
way. The hypotheses on f and g in Theorem A are weaker than the corresponding
ones in [10]. However, a careful examination of [10, Section 4] shows that Mac-
Camy’s proof applies under the hypothesis of Theorem A. The conclusions (4.5),
(4.8), and (4.11) are given not in [10, Theorem I(i)] but in [10, Lemma 4.1}. In the
Hilbert space version of Theorem A one should drop the claim g(x(t)) — 0 (t — «).)

Proposition 4.1 enables us to weaken the assumption on a in Theorem A:
THEOREM 4.3. Theovem A is true if (4.10) is replaced by

(4.12) ae LIRY), a'eL!nBV(RY.
Here, BV stands for the set of functions of bounded vdriation, and a' is the

(distribution) derivative of a on (0, «).

Proof of Theorem 4.3. (i) By Proposition 4.1 and Theorem 1.1, every solution
x of (1.1) satisfies (1.6), hence also (1.8), (1.9). It follows from (1.9) and two in-
equalities due to Staffans (see [17, Lemma 6.1] and [19, Lemma 1 and Theorem
2(ii)]) that a * g o x € LZ N L*(R"), where

t
axgox(t) = S g(x(t - s))a(s) ds (t € RY).
0

By the hypothesis, f € L% N L®(R") also (f' e L2(R*) implies that f is (a.e. equal
to) a uniformly continuous function, and this together with f ¢ L%(R') yields
f € L®[R")). Thus by (1.1), x' € L% n L°(R"), and this completes the proof of (i).

(ii) The first claim (4.5) clearly follows from (1.8), (1.10).

If necessary, redefine f on a set of measure zero so that it becomes absolutely
continuous, and (1.1) holds everywhere on RY. Write (1.1) in the form

t
x'(t) + S alt - s)g(x(s)) ds = £(t) ,
0

and differentiate:

(4.13) x"(t) + a(0) g(x(t)) + v(t) = £'(t),
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t
where v(t) = S a't - s)g(x(s)) ds (t € RY). We claim that
0

(4.14) v e L2RY).
Define ¢ = X[o0,T]8 ° % and compute

T T t
@l2dt = 't - s)o(s) ds|? at
{7 vl § 15 1) ds|

0

t
< S | S a'(t - s)¢(s) ds|2 dt = ZL S |$(w) (2" (0) |2 dw.
+ m
R 0 R
It follows from (4.12) that |(a")” (w)]|2 < (1 + w2)-! (w € R) for some positive con-
stant y. Combining this with (3.1) and (4.1) (with n = 1), we get
T

S 'v(t)lzdt S%Q(g ox, T, i),
0

and (4.14) is a consequence of (1.9).
Multiply (4.13) by x(t), and integrate over [0, T]. This yields

T T T

2(0) S x(t) g(x(t)) dt = x(0)x'(0) - x(T)x'(T) + 5 ') 2 dt + S <) €'@) - v() dt .
0 0 )

Use (4.2), (4.5), (4.11), (4.14) and the Schwarz inequality to conclude that

T T 1/2
(4.15) a(0) S x(t) g(x(t)) at < K, +K2[ S |x(s) | % ds:l ,
0 0]

where K; and K, are constants independent of T. By (4.1) and the fact that
a(0) =[ S R a(w) dw:l/ﬂ (cf. [11, line (6.12)]), a(0) > 0. Together with (4.5),
R

(4.7), and (4.15), this implies (4.8).

The final claim (4.9) follows from (4.8), the uniform continuity of x, the continu-
ity of g, and the fact that g(0) = 0.
5. A FINITE NUMBER OF ZEROS IN %[

In this section, we generalize Proposition 4.1 by allowing a finite number of
zeros of finite order in ®{i. More precisely, we define

(5.1) 7(w) = w21 +w?) ! (w €eR),
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and suppose that there exist a finite distinct set of points {wl s 0, wm}, a corre-
sponding set of positive integers {ql y qm}, and constants € > 0,
n e {0, 1, 2, --- }, such that

the measure (R 1) (w) - Y(w) dw (w € R) is positive, where
m

yw) = e +w2) 0 I (o - w)hi.
j=1

(5.2)

Note that the zeros of y are exactly {w;, -+, w,,}, and that the order of each zero
w: is 2q:;.
J

j
PROPOSITION 5.1. Let (1.3), (4.2) and (5.2) hold. Moreover, suppose that for
each j =1, ---, m, theve exist a function h; € L2(R") and constants @5 5
(p=0, -, qj - 1) such that

t ~ -1
co1l i
(5.3) g (t- )87 e (s) ds = hj() + 20 @ P (t € RY).
~0 p=0 ’
Then u dominates f.
Proposition 5.1 contains Proposition 4.1.

" Remark 5.2. A sufficient condition for (5.3) to hold is

(5.4) 1+t 1t) e L3R,

q;-1

where q = max {qj}. This one can show, e.g., by expanding (t - s) , writing

t ©0 <]
S = S - S , and using Hardy’s inequality (see [22, p. 272]) to verify that
0 0 t

o .
P S B P 05 s6) ds € L2(RT) (0<p< -1
t

However, (5.4) is by no means necessary for (5.3) to hold. For instance, every non-

negative and nonincreasing f € LZ(R") satisfies (5.3) whenever w;# 0 and q;=1

w -
(j =1, ---, m) (integrate by parts to show that IS e 3% 1(s) ds| < 2 |w ;] LE()).
t

Pyoof of Proposilion 5.1. We begin by extending f to R as$ in the proof of
Proposition 4.1. In particular, (4.3) holds, and the support of { is bounded to the
left.

It follows from (5.3) that for some new constants 3j,p ,

t . qj-1
(5.5) g t - )M e W% i(s) ds = hit) + 2 B ot (teR
. !

— o0
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- t 0 t
(write S = 5 +S , and expand (t - s)qj_1 in the first integral). Moreover, by
-0 —00 0 .

adding a suitably chosen C*-function with compact support contained in (-, 0) to f,
we can without loss of generality suppose that all the constants §; , vanish (this

function can, e.g., be chosen as a linear combination of smooth approximations of the
functions x[_z’_l](s)speles (Gj=1,--, mp=0, -, qj - 1)). Extend each h;j to R
so that (5.5) holds also for negative t:

t .
(5.6) {7 t-9U e ™ %9 s = 0 (e R).

Then h; € L%(R) (j =1, *--, m).

Differentiate (5.6) ¢; times in the distribution sense, and then take the Fourier
transform of each side to get

(g5 - D1 @ +w;) = (iw) Thjw)

~ "q 2 A
a.e. on R. Together with h; € L%(R), this implies (w - w;) Jf(w) € LAR). As this
is true for each j =1, ---, m, and (4.3), (5.1) and (5.2) hold, we find that (3.2) is
satisfied. Thus Theorem 3.1 applies, and the proof of Proposition 5.1 is complete.

Taking n=0, m =1, w; =0, q; =1 in Proposition 5.1, we get a result which
overlaps Londen’s [9, Corollary 1]. Londen studies a vector-valued equation, but
reformulating his result for the scalar equation (1.1) we get (here LAC stands for
the set of locally absolutely continuous functions)

THEOREM B (Londen). (i) Let a € LACR"),
(5.7) alt) > 0 (teRY), a'lt)<0ae onR', and a(0)>o0.

Let h € LACRY), h' € LZ (RY), and

o ntl 1/2
(5.8) El: S |t () |2 ds} < oo,
n=0 n
Let g satisfy (1.3). Then every solution X of
t
(5.9) x(t) +5 alt - s)gx(s)) ds = h(t) (t € RY)
0
satisfies
t+1
(5.10) sup 5 |g(x(s))|2 ds < oo,
teRT Yt :
and
(5.11) x' € L2RY).

(ii) Let the hypothesis of (i) hold, except that (5.8) is weakened to h' € L2(R").

In addition, suppose that a(©) > 0. Then every solution x of (5.9) satisfies (4.6) and
(5.11).
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(For simplicity we take g to be continuous, which is not required by Londen.
Part (i) is a reformulation of [9, Corollary 1}, and part (ii) a reformulation of [9,
Corollary 2].)

To see the connection between Proposition 5.1 and Theorem B, one must first
differentiate (5.9):

t

(5.12) 2'(t) + a(0) g(x(®)) + 5 a't - s) g(x(s)) ds = h'(t).
4]

This differentiated equation is equivalent to (1.1) if one defines f = h!',
dp(t) = a(0) A6, (t) + a'(t) dt (t € RY), where 6, is the Dirac measure at zero.
Compute

o0

(5.13)  Rh(w) = a(0) + S cos(wt) a'(t) dt = ale) - S (1 - cos(wt)) a*(t) dt .
0 0

Now one should distinguish between two cases: either a(®) > 0, or a(«) =0. If
a(«) > 0, then, by (5.13), Ri{w) > a(~) > 0 (w € R) and Proposition 4.1 applies with
n =0, £ = a(o). The discussion of the case n = 0 in Section 4 yields exactly part (ii)

of Theorem B. Inthe case a(~) = 0, one has %[ (0) = 0, and thus (4.1) cannot possi-
bly hold. However, we claim that (5.2) is satisfied with n =0, m =1, w; =0,
q, = 1. It follows from (5.13) and the Riemann-Lebesgue lemma that

lim %R0(w) = al0) > 0.

'w — 0

Moreover, since 1 - cos(wt) > 0 a.e. in R whenever w # 0, we have % [L(w) > 0
(w # 0). Thus, in order to verify (5.2), it suffices to show that

(5.14) lim inf w2 R (w) > 0.
w—0

Since a(0) > 0 but a(~) = 0, one can find some T < « such that a(0) > a(T). Then
for w #0,

w2Ri(w) = -w-2 S°° (1 - cos(wt)) a'(t) dt
o

T T ..
> 02 (" (1-cosaw at = (S (o) - a(r) at .
0 0

By the Lebesgue dominated convergence theorem,
T _. T
im SO oy - am) at = (7 tatw) - a(m) et > 0.
w—0 Yo 0

This verifies (5.14), and shows that (5.2) holds with n=0, m=1, w; =0, ¢; = 1.

Proposition 5.1 and Theorem 1.1 yield the following modification of Theorem
B(i):
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THEOREM 5.3. Theovem B(i) is true if (5.8) is veplaced by

(5.15) h' € L2(RY), lim h(t) = h(o) exists, and h - h(«) € L2(R?*).

t-—o0

Proof of Theovem 5.3. By the preceding argument, one can apply Proposition
5.1 and Theorem 1.1 to the differentiated version (5.12) of (5.9). This means that
every solution x of (5.9) satisfies (1.6), hence also (1.9) (where p is defined as in
the lines following (5.12)). Now we use Londen’s second identity [9, line (4.2)]

T At
A, T, w) = -5 | | 2@ 60 - ot - 5)2 ds at
0 -0

T T
+3 50 a(T - 1) ($()2 dt + SO alt) (o(1))? dt,

(1.9) and (5.7) to conclude that

+

T
(5.16) sw | Jexn]?at < «,
T €eR T-6

where 6> 0 is chosen so that a(t) > 0 in [0, 8). But (5.16) is equivalent to (5.10),
so we have shown that (5.10) holds.

The claim (5.11) follows from (1.9), (5.12), (5.15) and the inequality

T t
S [a(0) g(x(D) + S a'(t - 8) glx(s)) ds]? dt < 4a(0)Qlg o x, T, )
0 0

(see [19, Lemma 1 and Theorem 2(i)]). This completes the proof of Theorem 5.3.

Neither of Theorems B(i) and 5.3 implies the other, because (5.8) and (5.15) are
overlapping; e.g., h(t) = (1 +t)-1/2 satisfies (5.8) but not (5.15), and

ht) = (1 +t)! cos(t)

satisfies (5.15) but not (5.8).

Theorems B and 5.3 overlap Levin’s [5, Theorem 1]. In [5], the hypotheses are
(here m is the Lebesgue measure)

(5.17) a is nonnegative and nonincreasing on R*, and a(0) < o,
(5.18) h e C n BV(RY,
(5.19) g€ C(R), m{feR:g(f) <0} <=,

Clearly (5.17) is weaker than (5.7) combined with a € LAC(R™), (5.18) is weaker
than (5.8) and overlaps (5.15), and (5.19) overlaps (1.3). The conclusion of [5, Theo-
rem 1] is that the solutions of (5.9) are a priori bounded.
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6. A CONVEX, NONINTEGRABLE KERNEL

We next turn to the case when the function f in (1.1) is comparatively large at
infinity. Note that in Sections 4 and 5 we have throughout used conditions on f which
imply f € L2(R%). Thus, the only one of our previous results which applies to (1.1),
e.g., when f(t) = (1 +1)~1/2, is Theorem 2.1 {with f = f,). In this particular case,
Theorem 2.1 roughly says that if the kernel g contains a constant term, then every
solution x of (1.1) satisfies (1.6).

A similar result holds when the kernel not necessarily contains a constant term,
but is (or contains) a convex, nonintegrable function. The fact that (1.13) implies
(1.12) provides us with one such example (see Section 7, and the illustration in [6,

p. 433]). Here we develop a somewhat different result, which is based on Theorem
3.1:

PROPOSITION 6.1. Let duf(t) = alt) dt (t € RY), wheve
a is nonnegative, nonincreasing and convex on (0, =),
(6.1)
a e L0, 1), and a(x)=0.

Let f € BV(RY), f(«) =0, and let V(t) be the total variation of f on [t, ). More-
over, suppose that

2 -1
(6.2) : Sl Sl/w V(t) dt S t2 da'(t) do < .

0 0 (0,1/w]

Then | dominates f.

., At the end of this section we give an example which illustrates Proposition 6.1.
We beéin the proof by stating and proving two lemmas: ‘
LEMMA 6.2. Let a satisfy (6.1), and define

6.3) Mw) = lim ST cos(wt) a(t) dt (Q # 0) .
T =% Y0

(this limit exists because a is monotone and tends to zevo). Then

(6.4) Mw) > % [S | tzda'(t)] (w# 0)..
(0,1/w . . .

Proof of Lemma 6.2. It follows from (6.1) that
(6.5) tat) - 0, tZa't)—0 (t— 01

(¢f. [4, Lemma 1]). Fix w € R, w # 0,- Integrating by parts twice in (6.3) (this is
possible because of (6.5)), one can show that

(6.6) ~ hi(w) - w2 S (1 -cos(wt)) da't). - | ;
(0, ) o



SOLUTIONS OF A VOLTERRA EQUATION 91

Use the Taylor expansion of cos(wt) to check that 1 - cos(wt) > 11(wt)? /24
(0<t<1/|wl|). Clearly 1 - cos(wt) >0 (1/|w| <t < ). Substituting this into
(6.6) and using (6.1), one gets (6.4).

LEMMA 6.3. Let f € BV(R'), (o) =0, and define

(6.7) flw) = lim S e i) dt  (w # 0)

T —>

(this limit exists because f is the sum of two monotone functions tending to zevo).
Then

~ 1/ |w[
(6.8) [fw)] < 2 S Vit)dt  (w # 0),
0]

where V(t) is the total variation of f on [t, =).

Different versions of (6.8) have been used by Hannsgen [4] and by Shea and
Wainger [15].

Proof of Lemma 6.3. Integrate by parts to show that

(e ¥t - 1) aft) (w =+ 0).
R+

(6.9) flw) =

It is easy to see that |e-i®t - 1| < 2h(|wt|), where

t, 0<t<1,
(6.10) h(t) =
1, t>1.

Substituting this into (6.9) and integrating by parts, one gets (6.8).

Proof of Propositiorn 6.1. The proof is based on Theorem 3.1. The first fact
which we need is that the function A in Theorem 3.1 is the same as the function X in
(6.3). This follows from (6.4) (which yields A > 0) and [20, Lemma 1.1] (integrate
by parts to show that

M) = % {j e ne)al®) de g | et mi a) at }

R rY
where h is the function defined in (6.10)). In particular, the function A in (6.3) is
locally integrable.

Next we have to show that the distribution Fourier transform fof f belongs to
L!(R) + L2(R). For this we use (6.2) and Lemmas 6.2 and 6.3. Define

1/|wl|
(6.11) r(w) = zS Vi) dt (0 €R).

We first claim that
1
(6.12) r e L .(R).
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Clearly
(6.13) r(w) < 2v(0) o]t (Jo]>1),

so (6.12) follows if one can prove that r € L!(-1, 1). Using the Schwarz inequality
one gets (first multiply and divide by al/2)

2

1 1 1
 r@an | <| § 2o aw (] 2w a
-1

-1 -1

1
But S AMw) dw < 0, and by (6.2), (6.4) and (6.11) also Sl (r(w))? ((w))™! dw < .
-1 -1

This shows that r € Ll(—l 1), and verifies (6.12).

Define = 2([0 nJ f. Then f — f in the space of tempered dlstr1but1ons as
n — o, so also £, — f in the same space. On the other hand, we claim that fn - f
in the distribution sense. Let V,(t) be the total variation of f, on [t, ). Then
V,(t) < V() (t € R") (because f(oo) = 0). Now use Lemma 6.3 “and (6.11) to conclude
that each function f, satisfies |f,(w)] < r(w) (w € R). Together with (6.7) (which
shows that f, converges pointwise to ), (6.12), and the Lebesgue dominated con-
vergence theorem, this implies that fn — f in LllO c (R), hence also in the distribution
sense.

~ ~

By the uniqueness of a distribution limit, f =f. From (6.8), and (6.11) through
(6.13), we then get

(6.14) f=feLl(R) +L2R).
It follows from (6.2), (6.4), (6.8) and (6.14) that Theorem 3.1 applies, and the proof

of Proposition 6.1 is complete.

To illustrate Proposition 6.1, we investigate what (6.2) means in the particular
case when a is of the form a(t) = (1 +t)"%®, where 0 < @ < 1. For simplicity we
' 1 - 1/w
also take f nonincreasing. Then (6.2) becomes S wl- a[ S f(t) dt:l dw <
0 0

(here we have used the fact that

1/w 2
lim w!-% S t d2t+ -1 0) .
® — 0+ o (Q+p2fe  l-o

In particular, we notice that if £(t) = O@t™P), where 8 > @/2, then (6.2) holds.

It is interesting to observe that we get the same relation between the exponents
a@ and B as Levin and Nohel [6, p. 433] do by using (1.13).
7. ON LEVIN’S AND NOHEL’S CONDITION

The following result was announced in Section 1:
LEMMA 7.1. Let (1.13) hold, and define du(t) = a(t) dt. Then p dominates f.
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Pyoof of Lemma 7.1. Fix Te RT, ¢ € C [0, T]. Integrating by parts, one gets

T T
S $(t) £(t) at = £(T) &(T) 5 £1(0) 3(t) dt,
0

0]

t

where ®(t) = 5 ¢(s) ds. By (1.13) and the Schwarz inequality (note that ¢ is non-
0

negative and nonincreasing),

[#(T) &(T)|? < ¢(0) a(T) [&(T)]2,

T T
| 5 ) e at|? < —c(O)S a'(t) [()]? dt ;
0 0

so altogether

T T
| S $(t) £(t) dt[2 < 2| [H(T)&(T)|? + ]S £'(t) & (t) dt|?
0] 0

T
< 4c(0)| = a(T) [EMPE-s\ a®ew]Pa
0

The estimate (1.12) now follows from Londen’s first identity [8, line (2.4)]

{ o) Xt ot - s)a(s) ds at = 2am@@P -1 (T a0 pOR @
0 0

0

_}. T 1 - - 2 l Tt " - - 2
3 ), 2OBM - e -Pa+s § - § ane (26 - o - 9 as at,

and the proof of Lemma 7.1 is complete.

8. ADDED IN PROOF

Theorem 3.1 can be sharpened. By weakening the Fourier transform condition
on f used in Theorem 3.1, one can make it equivalent to a strengthened version of
(1.12).

We denote by L2(R; Re ﬁ) the set of Radon measures on R which can be writ-
ten in the form dv{w) = h(w)d{Re 1 }(w), with h square-integrable with respect to
Re i (h is the Radon-leodym derivative of v with respect to Re [1). It follows
from (3.2) together with f € L (R) that

(8.1) f € L2(R; Re u)

(because f € L2(R; A) € L2(R; Re 11)).
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Replace (1.12) by

theve exists o € R such that

. 2
(5.2) I S, vooa) <o § vo § v,

for every ¥ € L7(R) with compact support.

Putting Y = X[, |$, We observe that (8.2) is stronger than (1.12). The crucial

difference between (1.12) and (8.2) is not the fact that ¥ is less smooth than
X[o T]¢’ but the fact that in (8.2) we integrate over negative values of t as well as

positive values.

THEOREM 8.1. Let u be posztwe definite, and let t e Lloc(R) induce a tem-
peved distribution. Then (8 1) and (8.2) ave equivalent.

That (8.1) implies (8.2) is shown in approximately the same way as in Theorem
3.1 (first take ¥ to be a C™-function so that the analogue of (1.14) does not cause
any difficulties, and then complete the proof using.a density argument).

The proof of the converse part is omitted.
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