FOURIER-STIELTJES TRANSFORMS OF STRONGLY CONTINUOUS MEASURES

L. Thomas Ramsey and Benjamin B. Wells, Jr.

1. INTRODUCTION AND PRELIMINARIES

Let G denote throughout a compact abelian group and Γ its dual. For μ belonging to M(G), the space of regular bounded Borel measures on G, the Fourier-Stieltjes transform of μ is given by $\hat{\mu}(\gamma) = \int_G \overline{\gamma(g)} \ d\mu(g)$, $\gamma \in \Gamma$.

Let $0 \le \varepsilon \le 1$. We shall be concerned with measures μ whose transforms satisfy the following separation condition:

(1, ϵ) For every $\gamma \in \Gamma$, either $|\hat{\mu}(\gamma)| \geq 1$ or $|\hat{\mu}(\gamma)| < \epsilon$.

We shall call μ strongly continuous if

(2) $|\mu|(g+H) = 0$ for all $g \in G$ and all closed subgroups H of G such that G/H is infinite.

The main result of this paper may be stated qualitatively as follows. For each C>0, there is some $\epsilon=\epsilon(C)>0$ such that if μ satisfies $(1,\epsilon)$, (2), and $\|\mu\|\leq C$, then $\Lambda=\left\{\gamma\in\Gamma\colon \left|\hat{\mu}(\gamma)\right|\geq 1\right\}$ is a finite set. It will turn out that $\epsilon=\epsilon(C)$ may be chosen independently of G. An alternative formulation of our main result is the following. There is some constant A independent of G such that $\|\mu\|\geq -A(\log\epsilon)^{1/5}$ for all $\mu\in M(G)$ satisfying $(1,\epsilon)$ and (2), if Λ is infinite.

Previous versions of this theorem include de Leeuw's and Katznelson's [2, p. 221] for the case G = T (the circle group). Ramsey [5] has proved the theorem for those Γ whose torsion subgroup is finite. He also obtained quantitative bounds on the size of Λ . In the general case treated here, such bounds do not exist. To see that, let G be the familiar Cantor group $\prod (\mathbb{Z}/2\mathbb{Z})$, and let Λ be a finite subgroup of Γ of order 2^n . Define μ to be the trigonometric polynomial $\sum_{\gamma \in \Lambda} \gamma(g)$ on G. Since μ is the normalized Haar measure on the compact subgroup Λ^{\perp} of G, we have that $\|\mu\| = 1$. It is clear that μ satisfies $(1, \epsilon)$ for every $\epsilon > 0$ and (2); however, the order of Λ can be arbitrarily large.

An alternate expression of (2) is possible using the canonical homomorphism ϕ of G onto G/H. Define $\phi(\mu)$ to be that measure in M(G/H) determined by the equation $\phi(\mu)$ (B) = $\mu(\phi^{-1}(B))$ for all Borel subsets B of G/H. The equation

$$\int_{G/H} f d(\phi(\mu)) = \int_{G} f \circ \phi d\mu$$

Received November 22, 1976.

The work of both authors was supported in part by NSF Grant MCS76-06449.

Michigan Math. J. 24 (1977).

holds for all $f \in C(G/H)$, and from this it follows that $\phi(\mu)^{\hat{}} = \hat{\mu} \mid_{H^{\perp}}$. The strong continuity of μ is equivalent to the continuity of $\phi(\mid \mu \mid)$ for all closed subgroups H whose index in G is infinite. Since a given Haar-measurable function on G may be approximated in measure by trigonometric polynomials, it follows that the strong continuity of μ is equivalent to the continuity of $\phi(\gamma\mu)$ for all closed subgroups H whose index in G is infinite and for all $\gamma \in \Gamma$.

If $\mu \in M(G)$, then μ^{\sim} denotes the measure defined by the equation $\mu^{\sim}(B) = \overline{\mu(-B)}$ for all Borel subsets B of G. For a bounded Borel function h on G, h μ denotes that measure in M(G) satisfying $\int_G f d(h\mu) = \int_G fh d\mu$, $f \in C(G)$. If Λ is a subset of Γ , then $\overline{\Lambda}\mu$ denotes the set $\{\overline{\lambda}\mu \colon \lambda \in \Lambda\}$. Note that $(\overline{\lambda}\mu)^{\hat{}}(\gamma) = \hat{\mu}(\lambda + \gamma)$ for all $\gamma \in \Gamma$.

The following is a characterization of strong continuity in terms of the Fourier-Stieltjes transform.

LEMMA 1. Let $\mu \in M(G)$. Then μ is strongly continuous if and only if for every infinite subgroup X of Γ and $\gamma \in \Gamma$, 0 is the unique constant function in the weak closure of the convex hull of the set of translates by elements of X of $|\phi(\gamma\mu)^{\hat{}}|^2$. (ϕ denotes the canonical projection from M(G) onto $M(G/X^{\perp})$.)

Proof. Suppose that μ is strongly continuous. Equivalently, suppose that $\phi(\gamma\mu)$ is a continuous measure on G/H for every closed subgroup H of infinite index in G and every $\gamma \in \Gamma$. By Wiener's theorem [6, p. 118], 0 belongs to the weak closure of the convex hull of the set of translates of $|\phi(\gamma\mu)^{\hat{}}|^2$ by elements of H^{\(\perp}\). Since $|\phi(\gamma\mu)^{\hat{}}|^2$ is the Fourier-Stieltjes transform of a measure on G/H, it is a weakly almost periodic function on H^{\(\perp}\) (see [3], Theorem 11.2). By a theorem of Eberlein ([3], Theorem 5.3), 0 is the only constant function in the weak closure of the convex hull of the set of translates of $|\phi(\gamma\mu)^{\hat{}}|^2$.}}

Conversely, if for all infinite subgroups X of Γ , 0 is the only constant function in the weak closure of the convex hull of the translates of $|\phi(\gamma\mu)^{\hat{}}|^2$ (here ϕ : M(G) \rightarrow M(G/X $^{\perp}$)), then Wiener's theorem implies that $\phi(\gamma\mu)$ is a continuous measure on G/X $^{\perp}$; *i.e.*, μ is strongly continuous.

The following technical lemma is contained in [5] (see Theorem 1 and the proof of Theorem 2). It is based on an idea of Davenport [1].

LEMMA 2. Let G be a compact abelian group, and let $\mu \in M(G)$. Suppose that for an integer r>16, there are elements γ_0 , $\left\{\gamma_{k,j}\right\}_{j=1}^r$, $1\leq k\leq r^2$, in Λ such that if $P_0=\left\{\gamma_0\right\}$ and

$$\mathbf{P}_{k} = \mathbf{P}_{k-1} \cup \left\{ \gamma_{k,i} \right\}_{i=1}^{r} \cup \left\{ \bigcup_{i < j} \mathbf{P}_{k-1} + \gamma_{k,i} - \gamma_{k,j} \right\},\,$$

we have for $1 \le k \le r^2$,

(3, k)
$$(P_{k-1} + \gamma_{k,i} - \gamma_{k,j}) \cap \Lambda = \emptyset, \quad 1 \leq i < j \leq r.$$

Set $\varepsilon = 2^{-1} r^{3/2} r^{-2r^2}$. If μ satisfies (1, ε), then $\|\mu\| \ge 4^{-1} r^{1/2} (1 - e^{-2})$.

Proof. Assume on the contrary that $4^{-1} r^{1/2} (1 - e^{-2}) > \|\mu\|$. We define trigonometric polynomials $\phi_0, \cdots, \phi_{r^2}$ inductively as follows:

$$\phi_0(\cdot) = \overline{\sigma}(\hat{\mu}(\gamma_0))(\gamma_0, \cdot),$$

where $\sigma(x) = \text{signum } x = x |x|^{-1}$ for $x \neq 0$, and $\overline{\sigma}(x) = \overline{x} |x|^{-1}$;

$$\begin{split} \phi_{\mathbf{k}}(\,\cdot\,) \, &= \, \left\{\, \mathbf{1} \,-\, \mathbf{2} \mathbf{r}^{-2} \,-\, \mathbf{r}^{-3} \, \sum_{\mathbf{i} \,<\, \mathbf{j}} \, \overline{\sigma}(\boldsymbol{\hat{\mu}}(\boldsymbol{\gamma}_{\mathbf{k},\mathbf{i}})) \,\sigma(\boldsymbol{\hat{\mu}}(\boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}})) \,(\boldsymbol{\gamma}_{\mathbf{k},\mathbf{i}} \,-\, \boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}},\, \boldsymbol{\cdot}\,) \,\right\} \,\phi_{\mathbf{k}-\mathbf{l}} \,(\,\cdot\,) \\ &+ \, \mathbf{r}^{-5/2} \, \sum_{\mathbf{j}} \, \overline{\sigma}(\boldsymbol{\hat{\mu}}(\boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}})) \,(\boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}},\, \boldsymbol{\cdot}\,) \,\,. \end{split}$$

Note that if P_0 , ..., P_{r^2} are defined as in the statement of Lemma 2, each ϕ_k is a P_k -polynomial. By [1, Lemmas 1 and 2], $\left|\phi_k(g)\right| \leq 1$ for all $g \in G$. Let $I_k = \int_G \phi_k(g) \ d\mu(-g)$. Then $I_0 = \left|\hat{\mu}(\gamma_0)\right| \geq 1$. Moreover,

(4)
$$\Re (I_k) \ge (1 - 2r^{-2}) \Re (I_{k-1}) + 2^{-1} r^{-3/2}$$
.

To verify (4), we write

$$\begin{split} \mathbf{I}_{k} &= (1 - 2\mathbf{r}^{-2})\mathbf{I}_{k-1} + \mathbf{r}^{-5/2} \sum_{j} \left| \hat{\mu}(\gamma_{k,j}) \right| \\ &- \mathbf{r}^{-3} \sum_{\gamma \in P_{k-1}} \sum_{i < j} \hat{\phi}_{k-1}(\gamma) \, \overline{\sigma}(\hat{\mu}(\gamma_{k,i})) \, \sigma(\hat{\mu}(\gamma_{k,j})) \, \hat{\mu}(\gamma + \gamma_{k,i} - \gamma_{k,j}) \\ &= (1 - 2\mathbf{r}^{-2})\mathbf{I}_{k-1} + \mathbf{r}^{-5/2} \sum_{j} \left| \hat{\mu}(\gamma_{k,j}) \right| - \mathbf{r}^{-3} \mathbf{A} \; . \end{split}$$

In view of (1, ϵ) and (3, k), we observe that each term of A is bounded in modulus by $2^{-1} \, r^{3/2} \, r^{-2r^2}$, and that the number of terms in A is at most

$$[r(r-1)/2] \operatorname{card}(P_{k-1}) \le r^2 \operatorname{card}(P_{k-1}) \le r^{2k}$$
.

Note that $\operatorname{card}(P_0) = 1 \le r^{2 \cdot 0}$ and that

$$\begin{split} \operatorname{card}(P_{k+1}) &= \operatorname{card}\bigg(P_k \cup \left\{\gamma_{k+1,j}\right\}_{j=1}^r \cup \left[\bigcup_{i < j} P_k + \gamma_{k+1,i} - \gamma_{k+1,j}\right]\bigg) \\ &\leq \operatorname{card}(P_k) + r + \left[r(r-1)/2\right] \operatorname{card}(P_k) \\ &\leq (1 + r + \left[r(r-1)/2\right]) \operatorname{card}(P_k) \leq r^2 \operatorname{card}(P_k); \end{split}$$

hence, $card(P_k) \le r^{2k}$.

It follows by induction from (4) that

$$\mathfrak{R}\left(I_{k}\right) \, \geq \, 4^{-1} \, r^{1/2} \, \text{--} \, (1 \, \text{--} \, 2r^{-2})^{k} \, (4^{-1} \, r^{1/2} \, \text{--} \, 1) \, .$$

For $k = r^2$, we conclude that

L. THOMAS RAMSEY and BENJAMIN B. WELLS, JR.

$$egin{aligned} \left| I_k
ight| & \geq \Re \left(I_k
ight) \geq 4^{-1} \, \mathrm{r}^{1/2} - (1 - 2 \mathrm{r}^{-2})^{\mathrm{r}^2} (4^{-1} \, \mathrm{r}^{1/2} - 1) \ & \geq 4^{-1} \, \mathrm{r}^{1/2} - \mathrm{e}^{-2} (4^{-1} \, \mathrm{r}^{1/2} - 1) > 4^{-1} \, \mathrm{r}^{1/2} (1 - \mathrm{e}^{-2}) > \| \mu \| \, , \end{aligned}$$

although $|\phi_k(g)| \leq 1$ for all $g \in G$. This contradiction establishes the lemma.

2. THE MAIN RESULT

THEOREM. Let G be a compact abelian group, and let $\mu \in M(G)$. Set $\epsilon = 2^{-1} r^{3/2} r^{-2r^2}$, and suppose that r > 16 is an integer such that $4^{-1} r^{1/2} (1 - e^{-2}) > \|\mu\|$. Then if μ satisfies $(1, \epsilon)$ and (2), it follows that Λ is a finite set.

Proof. Suppose on the contrary that Λ is infinite.

It will be convenient to begin by reducing to the case of metrizable G. This will allow us to work with sequences instead of nets in the dual group Γ . To this end, select a countably infinite subset of Λ and let Γ' be the (discrete) countable subgroup of Γ generated by that countable set. Let $\phi(\mu)$ be the canonical image of μ in $M(G/\Gamma^{1\perp})$. Since μ satisfies (1, ϵ), and since $\phi(\mu)^{\hat{}} = \hat{\mu} \mid_{\Gamma'}$, it follows that $\phi(\mu)$ also satisfies (1, ϵ). Suppose that H is a closed subgroup of $G/\Gamma^{1\perp}$ of infinite index; then $\phi^{-1}(H)$ is a closed subgroup of infinite index in G, and therefore $\phi(\mid \mu \mid) (g + H) = \mid \mu \mid (\phi^{-1}(g + H)) = 0$. This last equality shows that $\phi(\mu)$ also satisfies (2). Since $\|\phi(\mu)\| \leq \|\mu\|$, it clearly follows that $4^{-1} r^{1/2} (1 - e^{-2}) > \|\phi(\mu)\|$. Therefore, we may and shall assume for the remainder of the proof that G is metrizable.

Choose some weak* cluster point ν of $\overline{\Lambda}\mu$ of minimal norm. Since $|(\overline{\lambda}\mu)^{\hat{}}(0)| = |\hat{\mu}(\lambda)| \geq 1$ for $\lambda \in \Lambda$, we must have $\nu \neq 0$. Now, since μ satisfies $(1, \varepsilon)$, either $|\hat{\nu}(\gamma)| \leq \varepsilon$ or $|\hat{\nu}(\gamma)| \geq 1$ for all $\gamma \in \Gamma$. Let E denote $\{\gamma \in \Gamma: |\hat{\nu}(\gamma)| \geq 1\}$. In the next paragraph we shall prove that $\overline{E}\nu$ is contained in the weak* closure of $\overline{\Lambda}\mu$. As a consequence, the weak* closure $(\overline{E}\nu)^{\hat{}}$ consists of measures all of whose norms are $\|\nu\|$. Hence, the weak* and norm topologies agree on $(\overline{E}\nu)^{\hat{}}$ ([4], Lemma 2.1). Therefore, $(\overline{E}\nu)^{\hat{}}$ is compact in the norm topology.

Suppose that $\overline{\lambda}_n \mu$ converges weak* to ν , where $\lambda_n \in \Lambda$, and let $\rho \in E$. Then $\overline{\rho\lambda}_n \mu$ converges weak* to $\overline{\rho}\nu$, and $|(\overline{\rho}\nu)^{\hat{}}(0)| = |\hat{\nu}(\rho)| \geq 1$. Thus, for large n, we have $|\hat{\mu}(\rho + \lambda_n)| \geq 1$, since μ satisfies (1, ϵ) with $\epsilon < 1$. Thus $\rho + \lambda_n \in \Lambda$, for large n, and $\overline{\rho}\nu$ is a weak* cluster point of $\overline{\Lambda}\mu$.

We now proceed to show as in [4] that E is a finite union of cosets of some subgroup of Γ . We define an equivalence relation on E: $\lambda_1 \sim \lambda_2$ if and only if $-\lambda_1 + E = -\lambda_2 + E$. Note that $\|\overline{\lambda}_1 \nu - \overline{\lambda}_2 \nu\| < 1 - \varepsilon$ implies that $\|\widehat{\nu}(\lambda_1 + \gamma)\| \ge 1$ if and only if $\|\widehat{\nu}(\lambda_2 + \gamma)\| \ge 1$ for $\gamma \in \Gamma$, since either $\|\widehat{\nu}(\gamma)\| \le \varepsilon$ or $\|\widehat{\nu}(\gamma)\| \ge 1$ for all $\gamma \in \Gamma$; *i.e.*, $\lambda_1 + \gamma \in E$ if and only if $\lambda_2 + \gamma \in E$, so $-\lambda_1 + E = -\lambda_2 + E$. Thus,

$$\|\overline{\lambda}_1 \nu - \overline{\lambda}_2 \nu\| < 1 - \varepsilon$$

implies that $\lambda_1 \sim \lambda_2$. Since $(\overline{E}\nu)^-$ is compact in the norm topology (and $\overline{E}\nu$ is dense in that set in the norm topology), some finite number of neighborhoods $U_{\lambda} = \left\{\omega \in M(G): \left\|\omega - \overline{\lambda}\nu\right\| < 1 - \epsilon\right\}$ with $\lambda \in E$ cover $(\overline{E}\nu)^-$. Thus, E consists of

a finite number of equivalence classes E_i , $1 \leq i \leq m,$ under the equivalence relation ~ .

We now prove that there is a subgroup X of Γ such that $E_i = \tau_i + X$ for some τ_i . First, let $\tau_i \in E_i$. We show that $-\tau_i + E_i$ is a subgroup of Γ .

Let λ_1 , $\lambda_2 \in -\tau_i + E_i$. It will be shown that $\lambda_1 - \lambda_2 \in -\tau_i + E_i$. To do this, it suffices to show that $(\tau_i + \lambda_1 - \lambda_2) \sim \tau_i$. Now,

$$-(\tau_{i} + \lambda_{1} - \lambda_{2}) + E = -\tau_{i} + (\lambda_{2} + \tau_{i}) - (\lambda_{1} + \tau_{i}) + E$$

$$= -\tau_{i} + (\lambda_{2} + \tau_{i}) - (\lambda_{2} + \tau_{i}) + E = -\tau_{i} + E.$$

Since $0 = -\tau_i + \tau_i$ is in $-\tau_i + E_i$, $0 - \lambda_2 = -\lambda_2 \in -\tau_i + E_i$ for all $\lambda_2 \in -\tau_i + E_i$. Hence, $\lambda_1 + \lambda_2 = \lambda_1 - (-\lambda_2) \in -\tau_i + E_i$ for all λ_1 , $\lambda_2 \in -\tau_i + E_i$. This shows that $-\tau_i + E_i$ is a group.

We now show that $-\tau_i + E_i = -\tau_j + E_j$. Let $\lambda \in -\tau_i + E_i$. We show that $\lambda + \tau_j \sim \tau_j$, which implies that $\lambda \in -\tau_j + E_j$. Write λ as $-\tau_i + \lambda'$ for some $\lambda' \in E_i$. Then

$$\begin{aligned} -(\lambda + \tau_{j}) + E &= -(-\tau_{i} + \lambda' + \tau_{j}) + E &= -\tau_{j} + \tau_{i} - \lambda' + E \\ &= -\tau_{i} + \tau_{i} - \tau_{i} + E &= -\tau_{j} + E. \end{aligned}$$

Hence, $-\tau_i + E_i \subseteq -\tau_j + E_j$. Likewise, $-\tau_j + E_j \subseteq -\tau_i + E_i$. Thus, there is some subgroup X of Γ such that $E = \bigcup_{i=1}^m (\tau_i + X)$. For future reference we note that, since $|\hat{\nu}(0)| \geq 1$, one of the cosets in the union is X itself.

The next step in our proof is the verification that X is infinite. We suppose on the contrary that X is finite. We shall construct inductively $\left\{\gamma_0\right\}$ and $\left\{\gamma_{k,i}\right\}_{i=1}^r \in \Lambda$ satisfying (3, k), $1 \leq k \leq r^2$. By Lemma 2, we have that $4^{-1} r^{1/2} (1 - e^{-2}) \leq \|\mu\|$, which contradicts our hypothesis, thus proving that X is infinite.

The choice of $\gamma_0 \in \Lambda$ may be arbitrary. Let k be fixed; in general, we choose $\gamma_{k,j} \in \Lambda \setminus (P_{k-1} - E)$ such that

$$\left|\left(\bar{\gamma}_{k,j}\,\mu\right)^{\widehat{}}-\hat{\nu}\,\right|\,<\,1\,-\,\epsilon\qquad\text{on }\bigcup_{j\,<\,q}\,\left(P_{k-1}\,-\,\gamma_{k,q}\right).$$

In choosing $\gamma_{k,j}$, proceed inductively in reverse order (note that (5, k, r) is vacuous). Since X is finite by assumption, so is P_{k-1} - E. And, since ν is a weak* cluster point of $\overline{\Lambda}\mu$, the choice of $\{\gamma_{k,j}\}_{j=1}^r$ satisfying (5, k, j) is assured.

It remains to check that the γ 's chosen above satisfy (3,k). Note that $\gamma_{k,j} \not\in P_{k-1}$ - E implies that $(P_{k-1} - \gamma_{k,j}) \cap E = \emptyset$, and hence that $|\hat{\nu}(\gamma)| \leq \epsilon$ for $\gamma \in P_{k-1} - \gamma_{k,j}$. If i < j and $p \in P_{k-1}$, we have by (5,k,i) that

$$\begin{aligned} \left| \hat{\mu}(\gamma_{k,i} + p - \gamma_{k,j}) \right| &= \left| (\bar{\gamma}_{k,i} \, \mu)^{\hat{}} (p - \gamma_{k,j}) \right| \\ &\leq \left| ((\bar{\gamma}_{k,i} \, \mu)^{\hat{}} - \hat{\nu}) (p - \gamma_{k,j}) \right| + \left| \hat{\nu}(p - \gamma_{k,j}) \right| \\ &\leq (1 - \varepsilon) + \varepsilon = 1. \end{aligned}$$

Since μ satisfies (1, ϵ), we have that $p + \gamma_{k,i} - \gamma_{k,j} \notin \Lambda$, as desired. This completes the proof that X is infinite.

We next show that, for any finite union of cosets of X, $F = \bigcup (\zeta_j + X)$, $\lambda_n \notin F$ for large n. Recall that $\overline{\lambda}_n \mu$ converges weak* to ν . We suppose on the contrary that there is some subsequence of $\{\lambda_n\}$ (still called $\{\lambda_n\}$) such that $\lambda_n \in F$ for all n. Since F is a *finite* union of cosets of X, we may assume, by dropping to a further subsequence if necessary, that $\lambda_n \in \zeta_j + X$ for some j and all n.

Now, since $\overline{\lambda}_n \mu$ converges weak* to ν , we see $\overline{\lambda}_n(\overline{-\zeta_j})\mu$ converges weak* to $(\overline{-\zeta_j})\nu$; *i.e.*, $(\overline{\lambda}_n - \zeta_j)\mu$ converges weak* to $(\overline{-\zeta_j})\nu$. Hence, $(\overline{\lambda}_n - \zeta_j)(\overline{\zeta}_j \mu)$ converges weak* to ν . Since $\lambda_n - \zeta_j \in X$, we see that $(\overline{\lambda}_n - \zeta_j)\phi(\overline{\zeta}_j \mu)$ converges weak* to $\phi(\nu)$, where ϕ is the canonical map from M(G) to M(G/X^{\(\delta\)}).

Recall that $|\phi(\nu)^{\hat{}}|^2$ and $|\phi(\overline{\zeta}_j \mu)^{\hat{}}|^2$ are weakly almost periodic functions on X, since they are the Fourier-Stieltjes transforms of measures on G/X^{\perp} . Therefore, by Theorem 5.3 of [3], there are unique constant functions in the weak closures of the convex hulls of the set of translates (by elements of X) of $|\phi(\nu)^{\hat{}}|^2$ and $|\phi(\overline{\zeta}_j \mu)^{\hat{}}|^2$. Since $|\phi(\nu)^{\hat{}}| \geq 1$ on X $(\hat{\nu}|_X = \phi(\nu)^{\hat{}})$, this constant function for the former must be at least 1. Since $|\mu|$ $(g+X^{\perp})=0$ for all $g \in G$, we have that $\phi(\overline{\zeta}_j \mu) \in M_c(G/X^{\perp})$. By Lemma 1, this constant for the latter function is 0.

We shall show that in fact $|\phi(\nu)^{\hat{}}|^2$ lies in the weak closure of the convex hull of the set of translates of $|\phi(\overline{\zeta_j}|\mu)^{\hat{}}|^2$. This contradicts the above paragraph. To see this, recall that $(\lambda_n - \zeta_j)\phi(\overline{\zeta_j}|\mu)$ converges to $\phi(\nu)$ in the weak* sense as $n \to \infty$. Since the convex hull of the set of translates of $\phi(\overline{\zeta_j}|\mu)^{\hat{}}$ is weakly relatively compact, the sequence $\{(\overline{\lambda_n} - \zeta_j)\phi(\overline{\zeta_j}|\mu)\}^{\hat{}}$ has a weak cluster point which belongs to the weak closure of that set. Since the sequence $(\overline{\lambda_n} - \overline{\zeta_j})\phi(\overline{\zeta_j}|\mu)$ already converges weak* to $\phi(\nu)$, that cluster point must be $\phi(\nu)^{\hat{}}$ itself. Thus, $\phi(\nu)^{\hat{}}$ belongs to the weak closure of the convex hull of translates of $\phi(\overline{\zeta_j}|\mu)^{\hat{}}$. Since

$$(\overline{\lambda_{\rm n}-\zeta_{\rm j}})\left\{\phi(\overline{\zeta}_{\rm j}\,\mu)*\phi(\overline{\zeta}_{\rm j}\,\mu)^{\sim}\right\}\ =\ \left\{(\overline{\lambda_{\rm n}-\zeta_{\rm j}})\phi(\overline{\zeta}_{\rm j}\,\mu)\right\}\ *\ \left\{(\overline{\lambda_{\rm n}-\zeta_{\rm j}})\phi(\overline{\zeta}_{\rm j}\,\mu)^{\sim}\right\},$$

it follows from the joint weak continuity of multiplication (see Lemma 12.1 of [3]) that $|\phi(\nu)^{\hat{}}|^2$ lies in the weak closure of the convex hull of the set of translates of $|\phi(\overline{\zeta_j}|\mu)^{\hat{}}|^2$. This now establishes the claim that $\lambda_n \not\in F$, a finite union of cosets of X, for large n.

The proof of the theorem will now be completed by the inductive construction of γ_0 and $\left\{\gamma_{k,j}\right\}_{j=1}^r$, $1\leq k\leq r^2$, contained in Λ and satisfying (3, k) for $1\leq k\leq r^2$. This is, of course, a contradiction. We let $\gamma_0\in\Lambda$ be arbitrary, and we choose $\left\{\gamma_{k,j}\right\}_{j=1}^r$, $1\leq k\leq r^2$, satisfying (5, k, j) as before, with $\gamma_{k,j}\in\Lambda\setminus(P_{k-1}-E)$. This can be done, because, at each stage of the induction, $P_{k-1}-E$ is a finite union of cosets of X, and thus $\lambda_n\not\in P_{k-1}-E$ for large n. This completes the proof of the theorem.

REFERENCES

- 1. H. Davenport, On a theorem of P. J. Cohen. Mathematika 7 (1960), 93-97.
- 2. K. de Leeuw and Y. Katznelson, The two sides of a Fourier-Stieltjes transform and almost idempotent measures. Israel J. Math. 8 (1970), 213-229.

- 3. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217-240.
- 4. I. Glicksberg, Fourier-Stieltjes transforms with an isolated value. Conference on Harmonic Analysis. Lecture Notes in Mathematics, Vol. 266, pp. 59-72, Springer-Verlag, Berlin-New York, 1972.
- 5. L. T. Ramsey, Fourier-Stieltjes transforms of measures with a certain continuity property. J. Functional Analysis, to appear.
- 6. W. Rudin, *Fourier analysis on groups*. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers, New York-London, 1962.

Department of Mathematics University of Hawaii Honolulu, Hawaii 96822