ON A UNIQUENESS THEOREM IN CONFORMAL MAPPING
Albert Pfluger

Let f(z) = z +byt+b, z-l 4+ + b,z ™+ :-- be univalent and holomorphic in
D* = {z: |z| > 1}, up to the simple pole at ©. The set B = €\ {(D*) is a compact
continuum whose diameter we denote by d. According to [3, Abschnitt IV, Aufgabe
141, S.25 und S.199], d satisfies the inequalities 2 < d < 4. Moreover, d equals 4
if and only if B is a straight segment of length 4, and d equals 2 if and only if B is
a disc; that is, if f(z) =z +by. But a proof that d equals 2 only if f(z) =z +b,
was missing. In 1969, J. A. Jenkins [2] closed this gap with a proof based on the fol-
lowing facts: 'if d = 2, then B is bounded by a rectifiable Jordan curve of length at
most 27; hence, f' belongs to the Hardy class Hj, the function f(eif) is absolutely
continuous, and df(eif)/d6 = ieif f'(eif) almost everywhere. It is the purpose of
this note to give an elementary proof.

.THEOREM. The diameter d of B satisfies the inequality d > 2, and equality
occurs if and only if f(z) =z +bg. -

Let C, denote the circle {z: Izl = r} oriented in the positive sense. For
r>1,let I'. ={(C,). Let d,. denote the diameter of I'. and L, the length of T'..

The proof of the inequality d. > 2 is elementary (cf. [3]). From the relation
f(z) - f(-z) = 2z +2byz L +2b3z 3+, |z| > 1,

it follows that

z=—LS ((z) - £(-z)) & <La, r>1;
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and this implies d > 2.

We now give three lemmas that we need for the proof of the uniqueness part of
the theorem.

LEMMA 1. For r > 1, d,. <rd.

Proof. Let z; and z, be two points on C, such that |f(z;) - f(z,)] =d,, and
let ®(z) = f(z; z/z) - £(z). Then, for p > 1, it follows from the relations
max |<I>(z)| <dp and lim d, =d that
|z]=p, p—1

lim sup |<I>(z)/z| < d.

z|—1

By the maximum modulus principle, ]ri’(z)l < Iz] d. Because ®(z,) = f(z;) - f(z,), it
follows further that d, < rd.
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It will be shown later that equality holds in Lemma 1 for some r > 1 if and only
if d=2 and f(z) =z +bg.

LEMMA 2. If B is convex, then I'., r > 1,is a convex curve.

Proof. The set B is convex if and only if ®{1 +zf"(z)/f'(z)} >0, |z| > 1;
see [4, p. 47]. Thus the lemma follows from the maximum principle.

LEMMA 3. If the curve T is convex and of diameter d, then its length L
satisfies the inequality L < 7wd.

Proof (cf. [1, p. 65]). If h(¢) is the supporting function of T, then the length L
2m
is given by L = ‘S‘ h(¢) d¢. Because h(¢) + h{¢ + 7) is the width of I'" in the direc-
0

tion ¢, it follows that h(¢) + h(¢ + 7) < d, and finally
w T
L< { n@ ap+ " @-n) s = ma.
0 0

Observe that equality holds if and only if I' is of constant width d.

We now turn to the uniqueness part of the proof of the theorem: If d = 2, then f{
is a tvanslation. From the formula £'(z) =1 - byz-2 - 2b,z-3 - -+ for |z| > 1, it

follows that
CI‘

(1) 27 =

1 , 1
s—SCr 1@ Jaz| = 2L,

Assume now that the continuum B is not convex and has diameter d. Then its
convex hull B still has diameter d, and there is a mapping

f,(z) = az+ag+ta;z-1+--, a>1,

taking D* onto €\ B.. This shows that the continuum B = B(f;) has diameter d
and transfinite diameter a > 1, and we conclude that the univalent function

a-1f,(z) =z+bg+by;z-! +--- takes D* onto a domain C\ By, where Bg has di-
ameter d/a < d. Hence, if d = 2, the continuum B must be convex. Lemmas 1, 2,
and 3 show that equality occurs in (1). This implies '(z) = |[f'(z)] for z = reif, and
this holds only if f' is a constant; that is, if £'(z) =1 and £(z) = z + bgy. This com-
pletes the proof of the theorem.

Remark 1. Equality holds in Lemma 1 for some r > 1 if and only if
f(z) =z + by . This follows from the proof of Lemma 1 and from the theorem. If
d,=dr for some r > 1, then |z,|d = |f(z,) - {(z])| = |®(z,)| for suitably chosen
z, and z,. Hence, for some a € R, &(z) = (el® - 1)z + --- = zd. This implies
d=2 and f(z) =z + by.

Remark 2. If B is convex and of diameter d, then L. < nrd for r > 1. This
follows immediately from the Lemmas 2, 3, and 1. Equality occurs for some r > 1
only if d,. = rd, hence only if f(z) =z +bg.

Remavk 3. Let 2 <d < 4. Then the preceding remarks show that for r > 1 we
have d,. <rd if f is any univalent function f(z) = z + by + b; z-1 + :-+ mapping D*
onto E\ B, where B has diameter d. Moreover, L, < 7rd if the continuum B with
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diameter d is convex. Which are the mappings maximizing d,. and L., respective-
ly, for a fixed r > 1?

The author is very much indebted to the editors of this journal for their sugges-
tions and their criticism.
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