ON A UNIQUENESS THEOREM IN CONFORMAL MAPPING

Albert Pfluger

Let $f(z) = z + b_0 + b_1 z^{-1} + \cdots + b_n z^{-n} + \cdots$ be univalent and holomorphic in $D^* = \{z \colon |z| > 1\}$, up to the simple pole at ∞ . The set $B = \mathbb{C} \setminus f(D^*)$ is a compact continuum whose diameter we denote by d. According to [3, Abschnitt IV, Aufgabe 141, S.25 und S.199], d satisfies the inequalities $2 \le d \le 4$. Moreover, d equals 4 if and only if B is a straight segment of length 4, and d equals 2 if and only if B is a disc; that is, if $f(z) = z + b_0$. But a proof that d equals 2 only if $f(z) = z + b_0$ was missing. In 1969, J. A. Jenkins [2] closed this gap with a proof based on the following facts: if d = 2, then B is bounded by a rectifiable Jordan curve of length at most 2π ; hence, f' belongs to the Hardy class H_1 , the function $f(e^{i\theta})$ is absolutely continuous, and $df(e^{i\theta})/d\theta = ie^{i\theta} f'(e^{i\theta})$ almost everywhere. It is the purpose of this note to give an elementary proof.

THEOREM. The diameter d of B satisfies the inequality $d \ge 2$, and equality occurs if and only if $f(z) = z + b_0$.

Let C_r denote the circle $\{z: |z| = r\}$ oriented in the positive sense. For r > 1, let $\Gamma_r = f(C_r)$. Let d_r denote the diameter of Γ_r and L_r the length of Γ_r .

The proof of the inequality $d_r \geq 2$ is elementary (cf. [3]). From the relation

$$f(z) - f(-z) = 2z + 2b_1 z^{-1} + 2b_3 z^{-3} + \cdots, |z| > 1,$$

it follows that

$$2 = \left| \frac{1}{2\pi i} \int_{C_{\mathbf{r}}} (f(z) - f(-z)) \frac{dz}{z^2} \right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{i\theta}) - f(-re^{i\theta}) \right| \frac{d\theta}{r} \leq \frac{1}{r} d_{r}, \quad r > 1;$$

and this implies d > 2.

We now give three lemmas that we need for the proof of the uniqueness part of the theorem.

LEMMA 1. For r > 1, $d_r < rd$.

Proof. Let z_1 and z_2 be two points on C_r such that $|f(z_1) - f(z_2)| = d_r$, and let $\Phi(z) = f(z_1 z/z_2) - f(z)$. Then, for $\rho > 1$, it follows from the relations $\max_{|z| = \rho} |\Phi(z)| \le d_\rho$ and $\lim_{\rho \to 1} d_\rho = d$ that

$$\limsup_{|z| \to 1} |\Phi(z)/z| \le d.$$

By the maximum modulus principle, $|\Phi(z)| \le |z| d$. Because $\Phi(z_2) = f(z_1) - f(z_2)$, it follows further that $d_r \le rd$.

Received May 28, 1975. Revisions received March 24, 1976 and October 18, 1976.

Michigan Math. J. 23 (1976).

It will be shown later that equality holds in Lemma 1 for some r > 1 if and only if d = 2 and $f(z) = z + b_0$.

LEMMA 2. If B is convex, then Γ_r , r > 1, is a convex curve.

Proof. The set B is convex if and only if $\Re\{1+zf''(z)/f'(z)\}>0$, |z|>1; see [4, p. 47]. Thus the lemma follows from the maximum principle.

LEMMA 3. If the curve Γ is convex and of diameter d, then its length L satisfies the inequality $L \leq \pi d$.

Proof (cf. [1, p. 65]). If h(φ) is the supporting function of Γ, then the length L is given by $L = \int_0^{2\pi} h(\phi) d\phi$. Because $h(\phi) + h(\phi + \pi)$ is the width of Γ in the direction ϕ , it follows that $h(\phi) + h(\phi + \pi) \le d$, and finally

$$L \leq \int_0^{\pi} h(\phi) d\phi + \int_0^{\pi} (d - h(\phi)) d\phi = \pi d.$$

Observe that equality holds if and only if Γ is of constant width d.

We now turn to the uniqueness part of the proof of the theorem: If d=2, then f is a translation. From the formula $f'(z)=1-b_1z^{-2}-2b_2z^{-3}-\cdots$ for |z|>1, it follows that

(1)
$$2\pi = \left| \int_{C_{\mathbf{r}}} f'(\mathbf{z}) \frac{d\mathbf{z}}{\mathbf{z}} \right| \leq \frac{1}{\mathbf{r}} \int_{C_{\mathbf{r}}} \left| f'(\mathbf{z}) \right| \left| d\mathbf{z} \right| = \frac{1}{\mathbf{r}} L_{\mathbf{r}}.$$

Assume now that the continuum B is not convex and has diameter d. Then its convex hull B_c still has diameter d, and there is a mapping

$$f_1(z) = az + a_0 + a_1 z^{-1} + \cdots, \quad a > 1,$$

taking D* onto $\overline{\mathbb{C}} \setminus B_c$. This shows that the continuum $B_c = B(f_1)$ has diameter d and transfinite diameter a > 1, and we conclude that the univalent function $a^{-1}f_1(z) = z + b_0 + b_1 z^{-1} + \cdots$ takes D* onto a domain $\overline{\mathbb{C}} \setminus B_0$, where B_0 has diameter d/a < d. Hence, if d = 2, the continuum B must be convex. Lemmas 1, 2, and 3 show that equality occurs in (1). This implies f'(z) = |f'(z)| for $z = re^{i\theta}$, and this holds only if f' is a constant; that is, if f'(z) = 1 and $f(z) = z + b_0$. This completes the proof of the theorem.

Remark 1. Equality holds in Lemma 1 for some r>1 if and only if $f(z)=z+b_0$. This follows from the proof of Lemma 1 and from the theorem. If $d_r=dr$ for some r>1, then $\left|z_2\right|d=\left|f(z_2)-f(z_1)\right|=\left|\Phi(z_2)\right|$ for suitably chosen z_1 and z_2 . Hence, for some $\alpha\in {\rm I\!R},\ \Phi(z)=(e^{i\alpha}-1)z+\cdots\equiv zd$. This implies d=2 and $f(z)=z+b_0$.

Remark 2. If B is convex and of diameter d, then $L_r \leq \pi rd$ for r > 1. This follows immediately from the Lemmas 2, 3, and 1. Equality occurs for some r > 1 only if $d_r = rd$, hence only if $f(z) = z + b_0$.

Remark 3. Let 2 < d < 4. Then the preceding remarks show that for r > 1 we have $\underline{d_r} < rd$ if f is any univalent function $f(z) = z + b_0 + b_1 z^{-1} + \cdots$ mapping D* onto $\overline{\mathbb{C}} \setminus B$, where B has diameter d. Moreover, $L_r < \pi rd$ if the continuum B with

diameter d is convex. Which are the mappings maximizing d_r and L_r , respectively, for a fixed r>1?

The author is very much indebted to the editors of this journal for their suggestions and their criticism.

REFERENCES

- 1. T. Bonnesen und W. Fenchel, *Theorie der konvexen Körper*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 3. Springer-Verlag, Berlin, 1934. 164 pp.
- 2. J. A. Jenkins, A uniqueness result in conformal mapping. Proc. Amer. Math. Soc. 22 (1969), 324-325.
- 3. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Bd. II. Springer-Verlag, Berlin, 1925.
- 4. Ch. Pommerenke, *Univalent Functions*. Studia Mathematica, mathematische Lehrbücher. Bd. 25. Vandenhoeck & Ruprecht, Göttingen, 1975.

Mathematisches Seminar Eidgenössische Technische Hochschule CH-8006 Zürich, Switzerland