A NON-NOETHERIAN TWO-DIMENSIONAL HILBERT DOMAIN
WITH PRINCIPAL MAXIMAL IDEALS

Robert Gilmer and William Heinzer

All rings considered in this paper are assumed to be commutative and to contain
an identity element.

A. V. Geramita (personal communication) has raised the question of whether a
Hilbert domain R is Noetherian if each maximal ideal of R is finitely generated.
This question arises naturally in at least two contexts. First, the question arises in
connection with the well-known theorem of 1. S. Cohen to the effect that a ring S is
Noetherian if each prime ideal of S is finitely generated [3, Theorem 2}; to wit, O.
Goldman introduced the term Hilbevt ving in [13, p. 136], and his definition of the
term was a ring in which each prime ideal is an intersection of maximal ideals. (W.
Krull independently considered the class of Hilbert rings in [18]; the terminology of
[18, p. 354] for such rings is Jacobsonsche Ringe. In different terminology, a Hil-
bert ring is a ring in which each prime ideal is a J-7adical ideal, or a J-prime
ideal [22, p. 631]; for yet another perspective of Hilbert rings, see Section 1-3 of
[17].) Second, the property that each of its maximal ideals is finitely generated is
inherited by each polynomial ring R[X], :--, X,] in finitely many indeterminates
over a Hilbert ring R [17, Exercise 8, p. 20]; a straightforward proof of this result
can be obtained from the fact that a ring S is a Hilbert ring if and only if M N S is a
maximal ideal of S for each maximal ideal M of S[X,, -+, X, ] (see [13, Theorem 5]
or [18, Section 2]), but an alternate proof would follow at once from the Hilbert
Basis Theorem if the answer to Geramita’s question were affirmative. In Example
1, we construct a Hilbert domain that shows that the answer to Geramita’s question
is negative. (We use the term Hilbert domain to refer to a Hilbert ring that is also
an integral domain.) Since a one-dimensional Hilbert domain (or a zero-dimensional
Hilbert ring) with finitely generated maximal ideals is Noetherian by Cohen’s theo-
rem, such a domain D must have (Krull) dimension at least 2. We show, in fact,
that there is a two-dimensional example Dy that is a Bezout domain (and hence max-
imal ideals of Dy are principal) and a subring of Q(X), the rational function field in
one variable over the rational field Q. (Examples of one-dimensional, non-Noether-
ian, Bezout, Hilbert rings with principal maximal ideals are fairly easy to obtain
from the well-known D + M construction of [5, Appendix 2]; such rings must contain
zero divisors, and a specific example of such a ring is mentioned in the paragraph
following Example 1.)

Throughout the remainder of the paper, we use the following notation. Let D be
a Dedekind domain with quotient field K, and for each element & in A, an infinite
set, let E¢ be an infinite family of maximal ideals of D, where E, N EB =@ if o

and B are distinct elements of A. Let {dy}yes be a subset of D such that
dg # dg for a # B, and for each @ in A, let V,, = K[X](X-da); thus, V, is a rank-

one discrete valuation ring of the form K+ M, , where Mg = (X - dp)K[X]x_q )
o
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is the maximal ideal of V. Finally, let Dy = ﬂ{DM: Me E,}, let

Jo =Dg + Mgy, and let J = naéA Jo - The structure of the domains Jy is well-

known (see Theorem A, Appendix 2, of [5]); we use this structure theorem to prove,
in results numbered 1 through 10, that J is a two-dimensional Priifer domain (hence,
J is not Noetherian) that is also a Hilbert ring. Then by making some additional as-
sumptions concerning the domain D and the sets Ey, we obtain in Example 1 do-
mains with the properties named in the title of the paper.

RESULT 1. The domain DI[X] is a subving of J, the quotient field of J is K(X),
and the valuative dimension of J is 2.

Proof. Clearly D is contained in J, and since X =d,, + [X - dg] is in J4 for
each «, it follows that D[X] is a subring of J; whence K(X) is the quotient field of
J. Since dim, D[X] =2 = dim, J, for each @, and since D[X]C J C J, it follows
that the valuative dimension of J is 2.

RESULT 2. If M € E,, then MJ is a maximal ideal of J of height 2. The
unique height-one prime of J contained in MJ is My N J. For each positive integer
n, the vesidue class rings J/M®J and D/M® ave isomorphic.

Proof. We establish first the last statement of Result 2. Since D is a Dedekind
domain, the ideal M" is invertible. Hence, M"J is also invertible, so that

M"J =MnJ( nB JB) = nB(MnJ)JB = nB M"Jg [9, Exercise 17, p. 80]. Since M"
is a subset of D,B for each B in A, it follows that

MnJﬁ = Mn(Dﬁ +M:3) = MnDﬁ+Mﬁ.

Because D is a Dedekind domain and the sets Eg are pairwise disjoint, we have
M" Dg = Dg for 8 # @, while M" Dy = (MDg)" [4, Theorem 4]. Returning to the

equality M"J = ﬂ g M"Jg, we conclude that

M J =MnJa ﬂ( ﬂ JB) =MnJa ng,
B+ a

Therefore M*J N D = (M"J, N J) ND=M"D, +Mg) N D =M"D, N D; because
D is a Dedekind domain and since Dyg = (Da)MDa is a rank-one discrete valuation

ring with maximal ideal MD,, = (MDa)(Da)MDa , it follows that

M"JN D = M?D, ND = M"Dy; ND = M".

Thus, to within isomorphism,

D/M" C J/M™J CJq /MPJg = Dg /M" Dy = (Dg)pp, /M” (Da)y,

= D, /M"D,, = D/M”,

and D/M" and J/M"J are isomorphic, as asserted. In particular, J/MJ ~ D/M so
[~ o}

that MJ is an invertible maximal ideal of J. Therefore, nn= ; M"J is the unique
maximal prime ideal properly contained in MJ [9, Theorem (7.6)]. As noted above,

ﬂ”n—ﬂ“n —ﬂ”n) =M, NJ;
f MPI=11, M JgNJ)= , M"J, ) N J =M, N J; moreover,
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My NJ # (0) —for example, X - dy is in My N J. Hence, MJ has height at least 2.
Since dim J < dim, J, which is 2 by Result 1, we conclude that dim J = 2 and that
MJ has height 2, as asserted.

Henceforth we use P, to denote the height-one prime ideal My N J of J, and

we use the letter E to denote UaeA Ey.

RESULT 3. No vank-one valuation ovevrving of J is centeved on an ideal of the
form MJ, for M in E.

Proof. If some rank-one valuation overring V of J were centered on MJ,
where M is in E,, then the equality n::l M"V = (0) would imply that
Py = ﬂ:ﬂ M"J = (0), contrary to Result 2.

RESULT 4. The equality Jpa =V holds for each a in A.

Proof. We clearly have Jp  C (Ja)Ma = Vg . Moreover, since M, N K = (0),
it follows that Py N D = (0) so that K[X] c Jp, » a one-dimensional quasilocal over-
ring of K[X]. Thus, Jpa is a rank-one discrete valuation ring contained in V., and

Jp_ =V, as we wished to prove.

o
The proof of the next result uses the following lemma.
LEMMA 1. Assume that R is a quasilocal domain with principal maximal ideal

o0
mR # (0) and that Q = nn:l m"R. Then QRn C R, and if Rg is a valuation ving,
then so is R.

Proof. Consider q € Q, s € R - Q. If s ¢ mR, then s is a unit of R and

o0
q/s € R. If s € mR, then s § Q = nl m"”R implies that there exists a positive
integer k such that s € (mXR - mX*1R). Thus s = mKt, where t is a unit of R, and
q/s = (q/mk)t-1, where q/mk € R since q ¢ Q C mKR; consequently, q/s € R and
QR C R, as asserted. Note, in fact, that QRp = Q since Q is prime in R. Thus if
Rg is a valuation ring, then R is a valuation ring, for R is the inverse image, under
the canonical homomorphism, of the rank-one discrete valuation ring R/Q on the
field Ro/QRg = Rp/Q [21, (11.4)].

RESULT 5. Fov each M in the set E, the ving Jyy ¢S a valuation ving.
Proof. Result 5 follows at once from Results 2 and 4 and from Lemma 1.

RESULT 6. If V is a nontrivial valuation overving of J that is not in the set
{Vataea U{Ipmg: M € B}, then V is of the form K[X](f(x)), where 1(X) is an ir-
veducible monic polynomial in K[X] distinct from each X - dy . Such a valuation
ving is a quotient ving of J, and hence J is a Prifev domain.

Proof. Let P be the maximal ideal of V and let D* = ﬂaeA Dy . Then
P N D* is prime in D* so that P N D* = (0) or PN D* = MD* for some M € E. In
the second case PN J contains MJ, so that V D Jy;5, a rank-two valuation ring.
Therefore, V =Jp;5 or V=V, where M € E, . It follows that the first case oc-

curs; that is, P N D* = (0). Thus K[X] C V, so that V = K[X](;(x)) for some irre-
ducible monic polynomial f(X) € K[X]. Since V # Vg = K[X](X-da) for each @ € A

by assumption, it follows that £(X) is not one of the polynomials X - d, .
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We have D* - {0} € J - P, and hence K[X] CJpny C V. Since V is a quo-
tient ring of K[X], it is also a quotient ring of J 7, and hence of J. From Results

4 and 5, it then follows that each valuation overring of J is a quotient ring of J;
whence J is a Priifer domain [5, p. 334).

According to the terminology of [10], a ring R has the n-generator property if
each finitely generated ideal of R can be generated by n elements. An outstanding
question in the theory of Prifer domains is whether a Priifer domain has the 2-
generator property (see, for example, [6], [12], [7], [8], [19], [1], [24], [16], [15], [2],
and [25]). Thus, each time a new construction of Priifer domains appears in the
literature, it is natural to ask if the construction yields Priifer domains without the
2-generator property. We therefore interrupt our main line of development to prove
that the Prufer domains J of this paper have the 2-generator property.

RESULT 7. If B is a nonzevo ideal of D, then 3/BJ is a homomorphic image
of D/B so that 3J/BJ is a principal ideal ving. Each finitely genevated fractional
ideal of J can be genevated by two elements. If J is a Bezout domain, then each

Dy is a principal ideal domain; if D* = n {DM: M € E} is a principal ideal do-
main, then J is a Bezout domain.

Proof. The ideal B is uniquely expressible in the form Bj) B2, where each
maximal ideal of D containing B, is in E, while no maximal ideal of D containing
B, is in E. An argument similar to that used in the proof of Result 2 shows that
B,J =J, and hence BJ = B,J. Since D/B; =~ (D/B)/(B] /B) is a homomorphic image
of D/B, the first statement of Result 7 will follow from the relation D/B;| ~ J/B, J,

] (5]
which we proceed to establish., Thus B; is a finite product Mll Mtt of distinct
e-
maximal ideals M; in E; moreover, the ideals M;

e e
mal so that D/B, ~ (D/M;) @ - @ (D/M,"). Similarly,

;, 1<i<t, are pairwise comaxi-

J/B,J =~ (J/MTIJ) @D (J/Mtet;l),

e e:
and since D/Mi1 ~ J/MilJ by Result 2, the relation D/B; ~J/B;J then follows.

Since K(X) is the quotient field of J, to prove that each finitely generated frac-
tional ideal of J is generated by two elements, it suffices to prove that if
{f,, ---, f,} is a finite set of nonzero elements of K[X], where t > 2, then
F = {fl y oty ft}J can be generated by two elements. Moreover, there is no loss of
generality in tassuming that the greatest common divisor of f;, -+, f, in K[X] is 1.

Thus, 1= 24;_; f;g; for some g, >+, g in K[X]. Choose nonzero elements
d;, dy of D such that d,f; and d,g; are in D[X] for each i. Then

t
d,d;, = El (d,£;)(d,g;) isin d; F, an integral ideal of J. Since J/d,; d,J isa
principal ideal ring, it follows that d; F can be generated by two elements (one of
which can be chosen to be d; d,), and consequently, F also can be generated by two
elements.

If J is a Bezout domain, then each overring of J is also a Bezout domain; in
particular, each D, + M, is a Bezout domain, and this implies that each D, is a
(Noetherian) Bezout domain [12, p. 148]; that is, a principal ideal domain (PID).

In proving that D* a PID implies that J is a Bezout domain, note that there is
no loss of generality in assuming that D = D*. This is true since {MD*: M ¢ E} is
the set of maximal ideals of D* and since
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D, = N {DypMe€ E,} = N {D*)yp*: M € E4}  for each o .

Thus, we assume that D is a PID and that E is the set of maximal ideals of D. To
prove that J is a Bezout domain, it suffices to prove that if f and g are nonzero
elemants in D[X] with greatest common divisor 1, then B = {f, g} J is principal.
As shown in the second paragraph of this proof, the ideal B contains a nonzero ele-

ment b of D. Then bD = MTI Mft is a finite product of maximal ideals of D and

el e
bd = (M; J) -+ (M J) t C B. It then follows easily from the fact that J/bJ is a
principal ideal ring with maximal ideals M; J/bJ, ---, M;J/bJ that there exist inte-
gers f;, .-+, f;, with 0 <f; < e; for each i, such that

B = (Ml J) b (MtJ) = Ml bl Mt J-

Therefore, B is principal since each M; is principal. This completes the proof of
Result 7.

The reduction in Result 7 to the case where D is equal to D* could have been
made initially; thus we could have assumed, without loss of generality, that
{Ea}ae A 1s a partition of the set of @/l maximal ideals of D, but the (apparently)
more general approach seemed advantageous to us. We remark that J may be a
Bezout domain although D* is not a PID; for example, if D* has finite class group,
then D* can be expressed as the intersection of two overrings D; and D, that are
principal ideal domains [9, Exercise 5, p. 505], and Theorem 3.6 of [8] implies that
J is a Bezout domain for this choice of D*, D;, and D, .

We have considered variations on the construction of J in attempting to provide
an example of a Priifer domain that does not have the 2-generator property. One
such variation is to replace the Dedekind domain D by a Priifer domain D' of dimen-
sion greater than 1 such that maximal ideals of D' are finitely generated; a diffi-
culty in this approach is in showing that the resulting domain (call it J') is a Priifer
domain. The question of whether each Priifer domain that is a subring of Q(X), say,
has the 2-generator property may be regarded as a test case for certain modifica-
tions in the construction; that is, any modification in the construction of J that
yielded an answer to the preceding question would be a significant step.

We return to the main theme of the paper, Geramita’s question. The initial as-
sumptions that the set A and each of the sets E, is infinite are used for the first
time in the proof of the next result. (For A finite, however, our construction is a
special case of Section 3 of [8].)

RESULT 8. The ving J is a Hilbert domain.

Proof. 1t suffices to prove: (a) each P, is an intersection of maximal ideals
of J, and (b) ﬂaeA Py = (0). Statement (a) follows since M, = ﬂ {MJy: M € Eg},
sothat Po, =M, N J = nMeEa(MJa nJ)= ﬂMéEa MJ, where each MJ is maxi-

mal in J. (The equality My = nMeEaMJa depends upon the assumption that E

is infinite.) Since {V4}yca is an infinite subset of the family of nontrivial valua-
tion overrings of the domain K[X], it follows easily that

(0) = N Ma=n(ManJ)= ﬂpa,
a

adeEA o
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and this is the content of (b).

Results 1 through 8 show that the domain J is a two-dimensional non-Noetherian
Hilbert ring that is also a Priifer domain with the 2-generator property. Moreover,
{MJ: M € E} is a family of finitely generated maximal ideals of J, and Result 6
shows that the other maximal ideals (if any) arise as the centers on J of the essen-
tial valuation rings K[X](¢(x)) of K[X] (where f(X) is monic irreducible and distinct
from each X - d,) that contain J; we point out later that (infinitely many) such
maximal ideals may exist. The next two results will be used in Example 1 to show

that suitable restrictions placed on the sets E, imply that no such valuation ring
contains J, and hence {MJ: M € E} is the set of maximal ideals of J.

RESULT 9. Assume that £(X) € K[X]. Then £(X) € J if and only if £(d,) € Dg
Sfor each a. If {(X) € J, then 1(X) is a unit of J if and only if £(da) is a unit of Dy
Jor each «.

Proof. 1t is clear that £(X) € J <> {(X) € Jy for each «, and that f(X) is a
unit of J <= £(X) is a unit of each J .

Now f(X) =(d,) + (X - dp) [(E(X) - £(dg))/(X - d,)], where
[(((X) - £(da))/(X - dg)]
is in K[X]. Therefore,
f(X) € Jg <> f(dg) € Iy <> f(dy) € Iy NK = Dy

If f(X) € Jo, then £(X) is a unit of J, <> f(dy) is a unit of D .

RESULT 10. Assume that {(X) € K[X] - K, that £(dy) # O for each o in A, and
that theve ave only finitely many elements o in A such that £(d,) is a nonunit of

Dy i this finite set is {a;}ioy, then £ = (X - dg )+ (X - dg)/E(X) is in J.

Proof. For each @ in A - {a;}.;, the element f(dy) is a unit of D, , so by
Result 9, the element £ isin J, for each such @. And since f(d, )# 0, £(X) is a
1

unit of Vafi so that £ € Mai C Jozi . Consequently, £ € naeA Jo = J, as asserted.

While it is possible to continue a structure theory of J in the general setting of
D, {Egtaea,and {dy}aea, We choose to pass now to a more concrete setting;
while D, A, and the elements d, are specified in Example 1, much flexibility re-
mains in the choice of the sets Eg .

Example 1, In the notation used up to this point, take D to be Z, the ring of in-
tegers, let A be Z1, the set of positive integers, and let d; =1 for each i in Z*.
We shall specify the elements of E;, E,, --- by means of their positive generators;
that is, each E; will be described as an infinite set of positive prime integers, and
for i # j, the sets E; and E; are to be disjoint. We use the symbol Z; instead of
D¢, but otherwise our notation—J., V;, M;, P;, K, efc.—is consistent with the nota-
tion already established. Our guiding principle in the choice of the sets E;, E,, ---
is to insure that for each polynomial f(X) in Q[X] that has no positive integer as a
root, f(t) is a nonunit of Z; for only finitely many integers t. We prove at once that
if the sets E; are so chosen, then no essential valuation ring Q[X](g(x)) of Q[X],
where g(X) is monic, irreducible, and g(i) # 0 for each i in Z%, contains J, and
hence the (Bezout) domain J provides an example showing that the answer to
Geramita’s question is negative. Thus, if g(t) is a unit of Z, for each positive
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integer t, then Result 9 implies that 1/g(X) is in J, but not in Q[X ] (x))- Other-

wise, let {t; }1 | be the finite set of positive integers t such that g(t) is a nonunit

of Z.; Result 10 implies that the element ¢ = (X - t}) -+ (X - t)/g(X) is in J, but £
is not in Q[X](g(x)). We therefore proceed to establish the existence of sets

E,, -, E,, -+ satisfying the required conditions.

Let {f (X) } -1 be the set of monic irreducible polynomials in Q[X] that are

distinct from X - 1, X - 2, :--, let II denote the set of prime integers, and for
p € II, denote by Vo the p-adic valuation on Q.

Consider fj(1). The set S; of prime integers p such that vp(fl(l)) # 0 is
finite. -Partition the set II - S; into two infinite sets E; and T;. Consider f;(2)
and f2(2). The set S, of primes p in T, such that v, has nonzero value on one of
these two rational numbers is finite. Partition T; - S, into two infinite sets E, and
T, . Then consider £;(3), £,(3), and £3(3). The set S; of primes p in T, such that
vy, has nonzero value on one of these rational numbers is finite. Partltlon T, - S3
into infinite subsets E; and T;, efc. We claim that for n, t € Z*, with n <t, £,(t)
is a unit of Z,. If p € E{, then p € T;_; - S;, and hence Vp(f (t)) =0. Therefore,

f,(t) is a unit of Z; since f,(t) is a unit of Z,7 and Z; = ﬂpeE Z,z - Since each

f;(X) has the property that f;(t) is a nonunit of Z; for only finitely many integers t,
1t follows that each nonconstant polynomial f(X) € Q[X] with no root in Z* has the
same property. Thus endeth the construction of the desired example.

As noted in the introduction, Cohen’s theorem implies that a one-dimensional
Hilbert domain is Noetherian if each of its maximal ideals is finitely generated. On
the other hand, examples of one-dimensional non-Noetherian Hilbert rings R in
which each maximal ideal is pr1nc1pal are fairly easy to come by. For instance, let
D = Z + XQ[[X]] and let Ry = D/X%D; that Rg is an appropriate example follows
from the well-known structure of the domain D. We remark that other such exam-
ples are easily obtained from the domains J of Example 1; for since J is a two-
dimensional Bezout domain in which each maximal ideal has height 2 (in alternate
terminology [23, p. 510}, [9, p. 383], the domain J satisfies the fivst chain condition
for prime ideals), each height-one prime P of J is not finitely generated [9, p. 289],
so that if y is a nonzero element of P, then J/yJ is an example of the kind of ring
under discussion. The rings J/yJ are, of course, more complex than the ring Ry
because of the theory needed to develop the structure of the domain J.

Do there exist examples of arbitrary dimension k > 2 showing that the answer
to Geramita’s question is negative? Yes, J[X|, ***, Xx_2]=J%"2) for J asin
Example 1, is a k-dimensional non-Noetherian Hilbert domain, and each maximal
ideal of J(k-2) has a basis of k - 1 elements. The domain J(k-2) js not a Priifer
domain (if k > 2); however, as an alternative to the explicit ring theoretic construc-
tion we give here, another way to obtain examples answering the Geramita question
is to make use of the construction given in [14]. This construction via partially
ordered abelian groups can be used to yield k-dimensional Hilbert, Bezout domains
in which all maximal ideals are principal for each positive integer k. (The con-
struction in [14] uses what Mott in [20] calls the Krull-Kaplansky-Jaffard-Ohm Pull-
back Theorem; a key point in obtaining the k-dimensional Bezout domain in question
is to start the construction in [14] with a group that is an infinite direct sum of
copies of Z, ordered lexicographically.)

Two questions that naturally arise in connection with Result 6 and Example 1
are the following.
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(Q1) In the notation of Result 6, is it, in fact, possible for J to have valuation .
overrings of the form K[X]x))?

(Q2) If the answer to (Q1) is affirmative, is it nevertheless possible that the
centey on J of each such valuation overrving K[X](f(x)) of J is finitely genevated, so
that J alveady provides a negative answer to Gevamita's question, with no addi-
tional restvictions imposed on D ov on the sets E, ?

In view of our further development of the paper after Result 6, the expected an-
swer to (Q1) is affirmative, and we substantiate this expectation in Example 2 below
by proving that even for D = Z, the domain J may have infinitely many valuation
overrings of the form K[X](fx)). While one might predict (correctly, as it turns

out) on the same basis that (Q2) has a negative answer, the actual situation in regard
to (Q2) is perhaps surprising:

RESULT 11. If a valuation ving V = K[X contains J, with V wnot in the
(£(X)) ’
set {Va}aeA , then the center of V on J is not finitely generated.

Proof. Let P be the center of V on J. Since V = Jp contains

J = n Jog = n [n{(Ja)MJa?MGEa}:I

aeA Q€eEA

N [n{JMJ:MGEa}:I: n{JMJ=M€E},

aeA

and since J is a Priifer domain, it follows from Proposition 1.4 of [11] that each
finitely generated ideal contained in P is contained in MJ for some M in E; since
P is maximal in J and is distinct from each MJ, it follows that P is not finitely
generated.

We conclude the paper with a concrete example that proves the answer to (Q1)
is affirmative.

Example 2. As in Example 1, we take D to be Z, A to be Z+, and we let
d;=1i for each i in Z+; similar conventions with respect to the symbols
{E,, E,, ---}, Z; and Dy, J, Vi, efc. also apply in this example. But for Exam-
ple 2, we first observe that if E;, E,, --- are infinite, pairwise disjoint subsets of
the set II of positive prime integers satisfying the following condition (n), then
Q[X](x+x) contains the domain J for each k > 0.

(n) For each k > 0, there exist infinitely many positive integers r such that r +k
has a prime factor in E,. .

Having made this observation, we then proceed to establish existence of such
sets E;, E;, ---.

Thus, assume that E,, E,, --- are infinite, pairwise disjoint subsets of II
satisfying condition (). We choose a nonzero element « in

J = ﬂ l: n {sz+(X - i)Q[X](X_i)3 p€ Ei} :I’
i=1

we choose k > 0, and we prove that @ is in Q[X](X+k) . Thus, we express @ in the
form (f, /g;) (X +k)™, where f, and g; are elements of Z[X] that do not vanish at
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+k, and m € Z; our object is to prove that m > 0. Since the family {E;};2; satis-
fies condition (7n), the set B of integers r satisfying the following four conditions is
infinite: f,(r) # 0, g;(r) # 0, r +k has a prime divisor in E,, and f,(-k) has no
prime divisor in E..

We write f;(X) as ag+a;(X +k) +--- +a,(X +k)", where each a; is an inte-
ger. Assume that r € B and that p is a prime divisor of r +k in E,.. Result 9
implies that [f;(r)/g;(r)](r + k)™ has nonnegative value in the p-adic valuation v

P
of Q. If m were negative, it would then follow that

f1(r) = ag +a;(r +k) +--- +a,lr + k)Y

has positive v,-value; since p divides r + Kk, this assertion would imply that p
divides ag = f}(-k), contrary to the choice of the set B. Consequently, m > 0 and
@ € QX]x+k), as We wished to prove.

We establish the existence of subsets E;, E;, --- of the set II of prime inte-
gers such that {E;}i>| satisfies condition (7). We describe each of the sets E; as

a union of subsets {Sji};io , as follows. We partition II into two infinite subsets
Ay and Bg, and then we partition Ag into a countably infinite family {So; }i=] of

infinite subsets. The sets {S;;} are then determined as follows. We partition By
into infinite subsets A; and B;; then S;; is {1} or ¢, according as i is, or is not,
in A). Now partition B; into infinite subsets A, and B,, and for i € 7%, define Sy
tobe {i+ 1} if i+1 isin A,, and @ otherwise. We continue this procedure by

[~}

induction, obtaining subsets E; , E;, :-- of II defined by E; = Uj:O Sji for each 1i.
o0

The family {E;};-; satisfies condition (7). The proof that E; N Ej=@ for i+ ] is
straightforward, and E; is infinite since Sp; is an infinite subset of E;. Finally, if
k > 0, then for each integer r > k in the infinite set A.;;, the integer r - k is such
that k + (r - k) =r has a prime divisor r in Sy, . ) € E;_x. This completes the
presentation of Example 2.
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