SUBORDINATION AND INSUPERABLE ELEMENTS
Louis Brickman and Donald Wilken

1. INTRODUCTION, NOTATION, AND OUTLINE OF RESULTS

Given a family of holomorphic functions on the unit disk, we wish to investigate
the subset of functions that are maximal with respect to the relation of subordination.
A little more explicitly, we are interested in those functions f which are subordinate
to no other function in the family except for any “rotations” of f that may be present.
We shall refer to these maximal functions as the insuperable elements of the family.
In Section 2 of the paper we describe the basic domination properties of the set of
insuperable elements in a compact family. The most fundamental of these proper-
ties (Theorem 1) is the expected result that every function in the family is subordi-
nate to some insuperable element. The other properties, which will be stated in de-
tail in Section 2, are roughly described by the statement that certain extremal prob-
lems are solved by the insuperable elements. Two very different types of problems
are discussed.

General results aside, we would like to identify the insuperable elements in
certain specific families. On this project, however, we can only record a few ob-
vious conclusions, list the outstanding problems, and partially solve two of the lat-
ter. Section 3, the longest and most difficult part of the paper, is devoted to these
partial solutions. The families that interest us are obtained from the most familiar
classes of univalent functions either by differentiation or by division by z. An exam-
ple of the first possibility is the family of derivatives of (normalized) starlike func-
tions. The problem of determining the insuperable elements of this family is a na-
tural one as a result of the disproof of the Marx conjecture by J. A. Hummel [6]. We
shall not investigate this problem, but we partially solve the corresponding problem
for the family C' of derivatives of close-to-convex functions. We are concerned
here also with an example of the second mentioned possibility, the family C/z of
close-to-convex functions divided by z. Perspective for our study of this family
comes from two well known subordination facts: If f and g belong to the simpler
families K/z and S*/z respectively (classes of convex and starlike functions
divided by z), then f(z) < 1/(1 - z) and g(z) < 1/(1 - z)2 . With obvious notation for
sets of insuperable elements, we note that these results imply the equations

(K/z) = {1/(1 - y2): |y| =1} and LS*/z) = {1/(1 - y2)?: |y| = 1},

while the converse holds by our Theorem 1. These old theorems together with the
information in [2] on extreme points have led W. E. Kirwan and one of the present
authors to ask whether every function in C/z is subordinate to some function in

E(co C/z), the set of extreme points of the closed convex hull of C/z. (Since
E(co(C/z)) = (E(co C))/z = E((co C)/z), we need not be careful with parentheses.) In
Section 3, we answer this question negatively by means of a specific example. It then
follows from Theorem 1 that I(C/z) is not contained in E(co C/z). We prove, how-
ever, that the reverse containment is correct, that is, that E(co C/z) C I(C/z).
Similarly, we show that E(co C') C I(C'). Actually, we obtain general results that
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imply E(G) C I(G), where G denotes either ¢o C/z or ¢o C'. Incidentally, we ob-
tain strong evidence for the conjecture that the set of support points of C coincides
with E(co C). Here, the paper [5] is of major importance.

Our notation and terminology is as follows. We shall let € denote the set of
complex numbers, IR the set of real numbers, A the unit disk {z € C: Izl <1},
and I" the unit circle {z € C: ]zl = 1}. We denote by H(A) the linear space of
complex-valued functions holomorphic in A. We shall let € denote the collection of
functions w in H(A) satisfying |w(z)| < |z| for each z in A. As usual, S denotes
the class of univalent functions f in H(A) satisfying f(0) = 0 and £'(0) = 1. The sub-
classes of convex, starlike, and close-to-convex functions are denoted by K, S*, and
C respectively.

For f € H(A) and le < 1, fy is the function (in H(A)) defined by fx(z) = f(xz).
If |x| =1, we call f, a rotation of f. The notation f < g means that f, g € H(A) and
f is subordinate to g in A; that is, there exists w € € suchthat f =g o w. If
F C H(4), F' denotes the set of derivatives of functions in #; and &/z is the set of
functions in #, each divided by z. All topological notions (for example, “compact?”
or “f, — £”) refer to the usual topology of uniform convergence on compact subsets
of A. For & C H(A), co # denotes the closure of the convex hull of #, and E(co &)
is the set of extreme points of co #. A support point of a family F is a function
g € F for which there exists a continuous linear functional J on H(A) such that ® J
is nonconstant on #, and % J(g) > % J(f) for every f e #.

2. GENERAL RESULTS

The principal definition of the paper is the following.

Definition 1. Let ¥ C H(A), and let f € . Then f is insuperable in F if
he# and f<h imply that h is a rotation of f. The set of insuperable elements
of ¥ is denoted by I(F).

Examples, 1(S) =S, I(K/z) = {1/(1 - yz): |y| = 1}, and
I(K') = I(s*/z) = {1/(1 - y2): |y| = 1}.

For classes of spirallike functions divided by z, the insuperable elements are anal-
ogous to those of S*/z. (See, for example, [7], p. 506.) To the best of our knowledge,
the following are unknown: I(S/z), I(S'), I((S*)'), I{(C'), and I(C/z). We investigate
the last two of these in Section 3. Regarding (S*)', the Marx conjecture can be stated
as the equation

I((s*)") = {% (l—zyz)g |yl =1 }
As mentioned earlier, this was disproved in [6], so I({S*)') is larger than the indi-
cated set of derivatives. (If g(z) = _c(ll_z [z/(1 - yz)2], then g € I({(S™)'), because
Ig'(O)[ is maximal.)

We shall establish the fundamental dominating property of I(#), for a compact
family #, immediately after the following simple lemma. The lemma asserts that
subordination is preserved upon passage to the limit.

LEMMA 1. retf,<h, (n=1,2, --), let £, — £, and let h, = h. Then f <h.
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Proof. Let f, = h, © w,, With w, € Q. After passing to a subsequence of
{wn}, we can assume w, — w € £. Then the required result that h, © w, 2 how
follows easily from the inequality

IhHOwn-hOwl < |hn0wn-h0wn|+|h0wn—h0w|.

THEOREM 1. Let % C H(A), where F is compact. Then for each f € ¥,
theve exists g € I(F) such that f < g.

Proof. Let fe€ & andlet F¢={he &:f <h}. We shall show that ¥ con-
tains an insuperable element of #. In the (trivial) case where #¢ contains only
constant functions, f must be constant, and #¢= {f}. Therefore f € I(#), and we
can choose g =f. If #¢ contains nonconstant functions, we define m to be the
smallest positive integer n satisfying h{®)0) # 0 for some h € F;. Now, by
Lemma 1 and the compactness of ¥, ¢ is compact. Therefore we can choose
g € F¢ with Ig(m)(())| > |h{m)(0)| for all h € F¢. We claim that g € I(¥) ‘as re-
quired. To prove this, we assume g =h o w, where h € ¥ and w € @, and we show
w(z) = Az, with |x| = 1. Since f <g and g <, it follows that h € F¢. Thus the
equation g = h o w implies that g{™)(0) = h{m)(0) w'(0). By our choice of g, we con-
clude that |w'(0)| > 1. But then Schwarz’ lemma yields the desired result that
w(z) =Az with || =1.

The second dominating property of I(#) that we shall describe requires that
¥, besides being compact, be rotation invariant in the following sense.

Definition 2. A family & C H(A) is votation invariant if f € F and |x| =1
imply that f, € #.

Examples. Let G equal S, S*, K, C, or any other subset of H(A) with the
property that g € G and [x| =1 imply that x-! g, € G. Then both G' and G/z are
rotation invariant. More generally, the operator z"-1(d/dz)® (n=0, 1, 2, :--) takes
G into a rotation invariant family.

THEOREM 2. Let F be a compact and votation invariant subset of H(A). Let
29 € A\ {0}, and let F be entive and nonconstant. Then each of the functionals
f — N F(f(zg)) and f — |Flt(zo))| achieves its maximum over F only on UF ).

Proof. We generalize an idea of T. H. MacGregor [7, Theorem 3]. Suppose
fe F\I(F). Then there exists g € F such that f < g and g is not a rotation of f.
It follows that g is nonconstant, and therefore so is Fo g. Let f =g o w with
w € Q. Then |w(zg)| < |z¢|. Hence the maximum principle gives

R (Fo g)(w(zg)) < max R(Fo g) (xzg) = R(F o g)(yzo)

xi=1

for some y with |y| = 1. Rewriting this inequality, we obtain 8 F(f(zg)) < % Flgy(z0))
with gy € % . This completes the proof for the first of the two described functionals,
and the proof for the second is the same.

Rewmark. All the rotation invariant families mentioned earlier have the following
stronger property: f € ¥ and le <1 imply that fx € . It follows that for any
fe #F\ I(F), F(f(zg)) is an interior point of {F(h(zg)): h € F }.

COROLLARY 1. Let # be a compact, rotation invariant subset of H(A) con-
taining some nonconstant functions. Let zo € A\ {0} and ¢ € C\ {0} Then the
Sfunctions in F which maximize the functional f — % cf(zg) over ¥ ave both in-
supevable elemenits and support points of F.
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Proof, The first assertion follows from Theorem 2 with F(w) = cw. The second
assertion is valid by definition, provided that the linear map f — cf(zy) has noncon-
stant real part on . But if this is not true, the rotation invariance of ¥ implies
that for each f € #, % cf(xzy) is independent of x, |x| = 1. It follows by routine
reasoning that f is constant, contradicting the hypotheses.

Theorem 3 below, expressing the final dominating property to be mentioned, is
an immediate consequence of Theorem 1 and Littlewood’s subordination theorem [4,
pp. 10-11].

THEOREM 3. Let ¥ be compact in H(A), and let £ € F. Then theve exists
g € F) such that

2T 27
S |£(reif)|P do < S |g(reif)|P do
0 0

for all v between 0 and 1, and for all p > 0.

3. THE INSUPERABLE ELEMENTS OF C/z AND C'

We begin this section with some joint examples of extreme points and insuper-
able elements. By [2], the extreme points of ¢o K, co S*, and co C are given by

{z/(1 - y2): |y| =1}, {2/(1 - y2)2: |y| =1}, and
{lz - 1 +x)yz2/2]/(1 - yz)2: |x| = |y| =1, x = 1}
respectively. As mentioned in the introduction,
I(K/z) = {1/(1 - yz): |y| =1} and XS*/z) = {1/(1 - yz)?: |y| = 1}.

These examples make the following question a natural one. Is it true that for each

f € C, there exists x with |x| =1, x # 1, and #(z)/z <[1 - (1 +x)z/2]/(1 - 2)2? 1t
is not difficult to show that the last written function maps the unit disk A univalently
onto the “outside?” of a parabola, that for different values of x the parabolas have
different directions, and therefore that none of these functions is subordinate to any
other. As a result of this and of Theorem 1, an affirmative answer to our question
is equivalent to the equation I(C/z) = E(co C/z). In this section, however, we exhibit
a function f € C for which the subordination described does not hold for any x.
Therefore I(C/z) ¢ E(co C/z). On the other hand, we subsequently prove that

E(co C/z) Cc I(C/z). Similarly we show that E(co C') C I{C"). (Here we have not at-
tempted to disprove the possibility of equality, but we consider this possibility un-
likely.) The exact determination of I(C/z) and I(C') appears to be a difficult
problem.

Before presenting our counterexample (Theorem 4), we require a preliminary
definition and lemma. These will be needed later also.

Definition 3. Let g € H(A). Then g is a Brannan-Clunie-Kirwan (or BCK)
Junction if h << g implies that h(z) = S g(yz) du(y) for some probability measure
r

¢ on the unit circle T
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A theorem of D. A. Brannan, J. G. Clunie, and W. E. Kirwan [1], to which we
shall refer as the BCK theorem, asserts that [(1 + c¢z)/(1 - 2z)]P is a BCK function
if |c| <1 and p> 1. We observe that if g is a BCK function, ag +b is a BCK
function for any a, b € C.

LEMMA 2. If 8x< 1, then [1 - (1 +x)z/2] /(1 - 2)? is a BCK-function.

Proof. If x =1, the assertion is a special case of the BCK theorem (p =1,
c = 0) or an easy consequence of the Herglotz representation for functions with posi-
tive real part. For the other values of x under consideration, our conclusion follows
from the identity

1-(1+x)z/2, 0+xP? 1 I:(x-3)+(x+1)z:|2
(1-2)2 8(1-x) 8(1-x) 1-2z ’

the observation made above, and the BCK theorem with p =2 and ¢ = (x + 1)/(x - 3).
THEOREM 4. Let |v| =1, v # x1, and let f € C with

£(2) =__1_|:1+\_lz+1+vzj|( 1

2 1-vyz 1-vz 1—vz)2-

Then for v sufficiently close to +1, f(z)/z is not subovdinate to any of the functions
in E(co C/z).

Proof. Suppose v is a number as described above for which there exists x with

|x| =1, x# 1, and f(z)/z <[1 - (1 +x)z/2]/(1 - z)2. By Lemma 2, we then obtain a
probability measure g on I" for which

f(z) = Sr {lz - 1 +=x)yz2/2]/(1 - y2)2} du(y).
Hence f'(z) = S [(1 - xyz)/(1 - yz)3] du(y), and therefore
r

= tim | [(1-v2)3 (1 - xy2)/(1 - y)3] duy).

z—v YD

If we let z — ¥V radially, the last integrand stays bounded by 2. Consequently
Lebesgue’s dominated convergence theorem implies that 1 = (1 - x) u({v}). It fol-
lows that x = -1 and p({v}) = 1/2. Returning to our two formulas for f'(z), we ob-
tain the equations

£@) = (/21 + v/ - v + (y [ v/t -5 auty),
T'\{v

(1/2)(1 +72)/(1 - 92)(1 - vz)? = j . [(1+yz)/(1 - y2)3] dp(y) .
T'\{v

We now multiply by 2, observe that 2u(T \ {v}) = 1, and conclude that the function
(1+ ¥2z)/(1 - v2)(1 - vz)2 belongs to co (S*)'. But by [2, Theorem 14], this is false
for v sufficiently near +1. Our theorem now follows.
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We take this opportunity to record a correction of Theorem 14 of [2] concerning
the nearness of v to £1. A correct requirement is that 20/21 < cos? 6 < 1, where
v = eif. The statement in [2] containing the inequality 5/6 < cos2 6 < 1 is unjusti-
fied; it results from the incorrect factor 1+ 14cos? 6 - 15cos? 6 occurring in the
proof. This factor should be replaced by 1+ 2cos26 - 3cos46. The essential con-
tent of the theorem remains unchanged.

As a result of the next lemma, we shall obtain “half” of our ultimate result that
E(co C/z) € 1(C/z). More importantly, the lemma leads to results on support points
of C.

LEMMA 3. Let 0 <r < 1. Then the functional f — f(-r) attains its maximum
- (1+ 2/2 . .

2 8 : ;‘)25)’3 L2 it and only if

% x = max{-1, -(3 - 2r - r2)/4r} and y = -(1 +rx)/(x + r).

Proof. From the equation

veal part over E(co C) af the function gy (z) =

-r - yr2/2  -xyré/2
(1+ry)2 (1+ry)e’

gx,y(-1) = gl-r) =

it follows that for any given y, max Rg(-r) is obtained for x satisfying
X

-xyr?/2 _ _r?/2 or -x _ _1
1+ry)2  |1+ry|2’ l+ry y+r’

Hence, max % g(-r) can be attained only for pairs (x, y) satisfying the last equa-
(x,v)

tion. For such pairs, the expression for g(-r) assumes its simplest form when

written in terms of x. Thus the last equation gives y = -(1 + rx)/(x + r), and if this

is substituted into the expression for g(-r),

g-r) = (-2+r+r2+r3+r2x+r2x+r3% - 3rx - r2x%r/2(1 - r?)2.

Now we need only seek the values of x that maximize the real part of the last ex-
pression. With the notation t = ® x, this is equivalent to determining t, -1 <t <1,
for which (r2 + 2r - 3)t - 2rt2 is maximal. The rest follows easily.

COROLLARY 2. If 0<r < 2V3- 3, then R gx,y(-1) is maximal over E(co C)
only for x=-1 and y = 1, that is, for the function z/(1 - z)2.

Theorem 5 below is not the best possible. The last assertion of the theorem will
be superseded by Theorem 8, and the statement about support points is undoubtedly
not the final one to be made. We present the theorem because of the explicit infor-
mation on evaluation functionals contained in the proof.

- 2
THEOREM 5. Let E™ be the set of functions g, (z) = z ((11 +X)§TZZ /2

with ]xl = Iyl =1 and Rx < 0. Then each point of E~ is a support point of C, and
E™/z C I(C/z).

Proof. Let gy ye€ E”. Wechoose r, 0 <r <1, sothat -(3 - 2r - r2)/4r = ®x.
Then by Lemma 3, for a suitable yg, maximizes the functional f — % f(-r)

70
over E(co C), and therefore over C. We let u = yg/y. Then gx,yo(z) = gx,y(uz)/u.

Therefore, from the known inequality % g_ . (-r) > %ti(-r) (f € C), we deduce that
70
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%R gx’y(—ur)/u > Ri(-r) (f € C) and R gx,y(—ur)/uz R f(-ur)/u (f € C). In other
words, g, ., maximizes the real part of the functional f — f(-ur)/u. Hence gy y isa
support point of C. Finally, we must show that if g,(z) = gx,y(z)/z, then g; € I(C/z).
But the last inequality above can be written 9 [-rg;(-ur)] > ®[-rf|(-ur)], where f;
is an arbitrary function in C/z. Therefore g, € I(C/z) by Corollary 1 of Section 2.

The following considerations provide evidence, in addition to that of Theorem 5
and the paper [5], that the set of support points of C coincides with E. (We tempor-
arily abbreviate E(co C) to E.) If we let o denote this set of support points, the
result of [5]is that 0 C E. Therefore our conjecture is equivalent to the inclusion
E C 0. Although we cannot prove this, the abstract argument below shows that
E CT. Thus we have the equality ¢ =E = {gy y: |x| = |y| =1}. This conclusion
of course allows the possibility that o is dense in E without equalling E, but we
regard this as highly unlikely, especially in view of Theorem 5.

To prove E C T, we assume only that C and co C are compact subsets of a
locally convex linear topological space. First we note that C C ¢co o, for otherwise
some point of C could be separated from €6 ¢ by a hyperplane [3, p. 417, Theorem
10}, and a contradiction quickly follows. (It is easy to obtain the stronger conclusion
C Cco(oc N E) by the same type of argument.) From this result, we easily deduce
that co o =co C. Finally, since both ¢ and co ¢ are compact, another general
theorem for locally convex spaces [3, p. 440, Lemma 5] asserts that each extreme
point of co ¢ belongs to . Thus E C©.

To achieve our results that E(co C/z) C I(C/z) and E(co C') C I{(C'), we require
one further definition.

Definition 4. Let G C H(A). Then G is closed under subovrdination if the con-
ditions g € G and f < g imply that f € G.

THEOREM 6. Both co(C/z) and co(C') are closed under subovdination.
Proof. We first suppose f < g, where

o(z) = S 1-(1+x)yz/2

and where p is a probability measure on the torus I'2. Then

du(x, y)  for some w € .

_ 1-(1+x)yw(z)/2
i 51~z [1 - yw(z)]?

It follows from Lemma 2 that the integrand belongs to ¢o(C/z). Consequently the
same is true for f.

Next we assume that, for suitable yp and w,

_ 1 - xyw(z) _ 1 - xyw(z) 1
f(Z) SFZ [1 _ yw(z)]3 dH(X, Y) ‘S\PZ 1 - yw(z) [1 ~ yw(z)]z d}l(X, Y) d

Since 1/(1 - z)2 is a BCK function, while % ei® (1 - xyw(z))/(1 - yw(z)) > 0 for
some o € IR, we conclude that the integrand belongs to €6(C'). Therefore f € co(C')
as required.

Remavrk. The proof of Theorem 6 suggests that if G is compact and convex, and
if f € G whenever h € E(G) and f <h, then G is closed under subordination. This
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statement is correct, and the Krein-Milman theorem [3, p. 440] provides an easy
proof.

THEOREM 7. Lelt G be closed, convex, and closed under subovdination. Then
an extreme point of G cannot be subovdinate lo a nonextrveme point. In particular,
I(E(G)) C I{G).

Proof. Let f € E(G), h € G, and f <h. We must prove that h € E(G). Con-
sidering first the case where f is constant, we have the equations

21 - €
27

2 :
f(z) = h(0) = = S ﬂh(zele) do = % ge(z) +
0

ke(z) ,

€ .
where z € A, 0<e <27, gg(z) =% 5 h(zeif) dg, and
0

2w .
ke(z) = P S h(zeif) do .
€

Now, the hypotheses concerning G imply that gg¢ and kg belong to G. Therefore
our convex decomposition of f is trivial, so that f = gz . Hence

f(z) = lim gg(z) = h(z),
£—0

and h € E(G).

We now suppose that f is nonconstant and that h = tg; + (1 - t)g2, where
0<t<1land g;,g,€G. Then f=tg, cw+ (1- t)g, o w for a suitable function
w € . Hence g ow =g, ow. But since { is nonconstant, so is w. Therefore
g1 =g as required.

LEMMA 4. Let G denote either ¢o(C/z) or ¢co(C'). Then I(E(G)) = E(G).

Proof. We discuss only the case where G =¢o(C'). The proof for ¢o(C/z) can
be accomplished either by the same method or by the geometric considerations de-
scribed at the beginning of Section 3. We shall prove that the relation

1-x1y;2 1-x,y,%
(1-y2)3  (1-y,2)3

(Xls X2, Y1, Y2 € I3 Xy # 17 Xy # 1)

between two extreme points of co(C') implies that x; = X,. First we obtain w € Q
such that

(1—w(z) > _1-x0(2)
1-12 1-x,2z

Now, as z — 1 (z € A), the right side of the last equation stays bounded. Therefore,
consideration of the left side leads to the conclusion that w(z) — 1. Thus the right
side converges to (1 - x5)/(1 - x;). Hence lim,_, (1 - w(z))/(1 - z) = @, where
a3=(1-x,)/(1-x;). If we can show that a € IR, the desired conclusion that

X = X, will follow. But if we define w(1) to equal 1, and
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h(t) = Sﬁw(%+%eit) (tem),

then h has a maximum at 0 with h'(0) = % (@i/2). Therefore % (@i/2) =0 and
a € IR.

Our final theorem is an immediate consequence of Theorem 6, Theorem 7, and
Lemma 4.

THEOREM 8. Let G denote either co(C/z) or co(C"). Then E(G) C I(G).

We remark in closing that R. Hornblower and the second-named author have
now completed the proof that the set of support points of C coincides with E(co C).
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