AN ANALYTIC CHARACTERIZATION
OF GEOMETRICALLY STARLIKE FUNCTIONS

David Styer

The class S*(a) of functions f(z) = z +az% + --- which are analytic and uni-
valent in the unit disc IB, and which satisfy the condition Iarg zf '(z)/f(z)l < an/2,
0 < @ < 1, was introduced and studied by Brannan and Kirwan [1]. Since S*(1) is the
usual class of starlike univalent functions, S*(1) is not studied as such. Recently
Leach [3] has extended S*(a) to multivalent starlike functions. A slight modification
of Leach’s definition (which yields the same class of functions) follows.

Let p be a positive integer, and 0 < @ < 1. Then S*(e, p) denotes those func-
tions f holomorphic in IB, with exactly p zeros there (zeros and critical points are
counted by their multiplicity), such that

lim sup max |arg zf'(z)/f(z)| < an/2.

r—1- Jzl=r

This definition clearly has affinities with the analytic definition of weakly starlike
functions, Sy(p), as defined by Hummel [2]. f € Sy(p) if and only if f is holomorphic
in B, has exactly p zeros there, and

lim inf min R zf'(z)/f(z) > 0.

r—1° lz =r

For p > 1 it is no longer true that, with @ = 1, S*(e, p) = Sw(p). It is the pur-
pose of this paper to prove

THEOREM 1. S*(1, p) = S4(p).

Here Sg(p) is the class of geometrically starlike functions of order p. That is,
fe Sg(p) if and only if f is holomorphic in IB, has exactly p zeros there, and for
each point z in IB there is a curve in IB, between z and some zero of f, which £
maps one-to-one onto the radial line segment between 0 and f(z). An interesting
feature of Theorem 1 is that the proof is almost completely combinatorial. Setting
the tone, we will need

LEMMA 1. Let f € Sy(p). Then f € Sylp) if and only if £ has p - 1 critical
points.

This result may be found in Styer [4, p. 232].

For all r > 0 define y.: [0, 27] — € by y.(t) = reit, and let C, be the image of
vy . For any closed curve y which does not pass through 0, let I(y, 0) be the index,
or winding number, of y about 0.

LEMMA 2. Let g be holomorphic in the annulus 1z : 0 <p < |z| < 1}, and
have no zevo theve. Then the following two statements are equivalent.
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() fgoye, 0) =0, p<r <1, and

lim inf min Rgz) > 0.

r—17 jz|=r

(ii) lim sup max Iarg g(z)l < w/2.

r—1- z|l=r

Note. This means that (i) implies that an appropriate branch of the argument
can be chosen in order to satisfy (ii). Also, we may trivially assume that g is not
constant.

Proof. Suppose that (i) is true. Choose any s, p < s < 1, and let
A={z:s<|z| <1}. Since g omits zero, there is a disc D= {w: |w| <6},
6> 0, such that g(Cg) ND=¢. Let D" =D N {w: %tw<O0}. It is our objective to
prove that D~ N g(A) = @. From this it easily follows that a branch of the argument
of g may be chosen so that (ii) is true.

It will suffice to show that D N g(A) N L = @ for each vertical line L : R w = a,
-6 < a < 0. Furthermore, it will suffice to look only at those L such that g has no
critical point on g-!1(L). Inthis case g-1(L) is a union of disjoint simple analytic
curves. By the hypothesis on the real part of g, %g(z) > a for all z with suffi-
ciently large modulus. It thus follows that g-1(L) N A is a finite disjoint union of
simple curves, each of which must have its first and last point in A on Cg5. Also, g
maps each of these curves in a one-to-one fashion onto a closed segment S of L.
The upper end-point of S is a point where g o y; crosses L from right to left.
Similarly, g o y4 crosses L from left to right at the lower end-point of S. The
proof will be complete when we show that either both end-points of S are in the
second quadrant, or both are in the third quadrant, because then S N D = @. By hy-
pothesis I(g o yg5, 0) = 0, so that in the second (third) quadrant g o s crosses L
from right to left and from left to right equally often. But each time g o 4 crosses
L from left to right in the second quadrant, the point of intersection is the lower end-
point of exactly one line segment S as described above. The upper end of this seg-
ment must be a point in the second quadrant where g o y5 crosses from right to left.
Since there is exactly one line segment associated with each crossing of L by g o y,
and there are but finitely many crossings, it follows that no segment S with upper
end-point in the second quadrant can have lower end-point in the third quadrant.
This completes the proof that (i) implies (ii).

Suppose that (ii) is true. In (ii) the condition on the argument makes it clear
that for large r, 0 lies in the unbounded component of the complement of g(C..).
Thus I(goy,., 0)=0forallr, p<r <1,

The rest of the proof is similar to the one given above, but simpler. With the
notation used above, it will suffice to show that g(A) 0 {w : ®w < 0} is a bounded
set. Choose any ray R of angle 6, 0 > 7/2 (symmetry applies to 6 < -7/2). One
easily sees that (ii) implies g(A) N R must be a subset of the segment between 0
and the point of greatest modulus in g(Cg) N R. This completes the proof.

Proof of Theorem 1. Let f € S*(1, p), and let g(z) = zf'(z)/f(z). By the defini-
tion of 8*(1, p), there must be an annulus {z : 0 <p < |z| < 1} in which g is holo-
morphic and nonzero and satisfies condition (ii) of Lemma 2. There Lemma 2 di-
rectly implies that f € Sy (p). Also I(go y,, 0) =0, p <r < 1. But this means that
g(z) = zf'(z)/f(z) must have the same number of zeros as poles. Since f has p
zeros, f' must have p - 1 zeros. By Lemma 1, f € Sg(p). Thus S*(1, p) C Sg(p).
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On the other hand suppose that f € Sg(p), and let g(z) = zf'(z)/f(z). Then by the
fact that f has exactly p zeros, and p - 1 critical points (Lemma 1), it follows that
in some annulus {z: 0 < p < ]z’ < 1}, g is holomorphic and nonzero and satisfies
condition (i) of Lemma 2. By Lemma 2, f € S*(1, p), so Sy(p) < $*(1, p).
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