TRANSLATION-INVARIANT OPERATORS ON $L^p(G)$, 0

Daniel M. Oberlin

Let G be a compact abelian group, and for $0 let <math>L^p(G)$ denote the usual Lebesgue space with respect to normalized Haar measure on G. For $g \in G$ and functions f on G we define the translation operator T_g by $T_g f(h) = f(h-g)$ for $h \in G$. The collection $\{T_g \colon g \in G\}$ is a group of linear isometries on any $L^p(G)$, and we are interested in the bounded linear operators on $L^p(G)$ which commute with this group—the translation-invariant linear operators on $L^p(G)$. The problem of characterizing these operators is sometimes known as the multiplier problem and, for $p \ge 1$, has attracted much attention. Satisfactory characterizations are available only for the case p = 1 and the trivial case p = 2. Obtaining such a characterization for any other $p \ge 1$ appears to be a most difficult task, but for p < 1 the problem seems to have been neglected. The purpose of this note is to present such a characterization when 0 .

THEOREM. Let G be a compact abelian group and fix p with $0 . The bounded linear operators on <math>L^p(G)$ which commute with each T_g (g \in G) are precisely those operators of the form

(1)
$$\sum_{i=1}^{\infty} a_i T_{g_i}, \quad \text{where } g_i \in G \text{ and } \sum_{i=1}^{\infty} \left| a_i \right|^p < \infty.$$

Proof. It is obvious that (1) defines a bounded and translation-invariant operator on $L^p(G)$. To show that each such operator is of the form (1), we require two lemmas.

LEMMA 1. Let K be a compact Hausdorff space and let λ be a complex-valued regular Borel measure on K. If for some p (0 and some finite positive number M we have

(2)
$$\sum_{j=1}^{m} |\lambda(E_j)|^p \leq M$$

for each m and each finite Borel partition $\{E_j\}_{j=1}^m$ of K, then λ is of the form $\sum_{i=1}^\infty a_i \, \delta_{x_i}$, where δ_{x_i} is the unit mass at some point $x_i \in K$ and $\sum_{i=1}^\infty \left|a_i\right|^p \leq M$.

Proof. Assume first that λ is positive and let $\lambda=\lambda_d+\lambda_c$ be the decomposition of λ into discrete and continuous parts. Then (2) holds with either λ_d or λ_c in place of λ . If $\lambda_c(K)>0$, then, as a consequence of [1, 11.44], for any $m=1,\,2,\,\cdots$ we can find disjoint Borel subsets E_1 , \cdots , E_m of K such that $\lambda_c(E_j)=m^{-1}\lambda_c(K),$ $j=1,\,\cdots$, m. For these E_i we have

$$\sum_{j=1}^{m} \left| \lambda_{c}(E_{j}) \right|^{p} = m(m^{-1}\lambda_{c}(K))^{p} = m^{1-p}(\lambda_{c}(K))^{p},$$

Received September 22, 1975.

Michigan Math. J. 23 (1976).

and this contradicts (2) for λ_c as soon as $m^{1-p}(\lambda_c(K))^p > M$. Thus $\lambda_c(K) = 0$ and so $\lambda = \sum_{i=1}^{\infty} a_i \, \delta_{x_i}$, where $x_i \in K$ and $\sum_{i=1}^{\infty} \left| a_i \right| < \infty$. Now (2) implies that $\sum_{i=1}^{\infty} \left| a_i \right|^p < \infty$ as desired.

If λ is not positive, then it suffices to show that (2) holds when λ is replaced by its total variation measure $\left|\lambda\right|$. So fix a finite Borel partition $\left\{E_{j}\right\}_{j=1}^{m}$ of K and we will show that $\sum_{j=1}^{m}\left[\left|\lambda\right|(E_{j})\right]^{p}\leq M.$ By definition of $\left|\lambda\right|$, for each $\epsilon>0$ and $j=1,\cdots$, m there exists a finite Borel partition $\left\{E_{i}^{j}\right\}_{i=1}^{m_{j}}$ of E_{j} such that

$$\left|\lambda\left|(E_j)\right| \leq \sum_{i=1}^{m_j} \left|\lambda(E_i^j)\right| + \left(\frac{\epsilon}{m}\right)^{1/p}.$$

Then

$$\sum_{j=1}^{m} \left[\left| \lambda \left| (E_j) \right|^p \leq \sum_{j=1}^{m} \left(\sum_{i=1}^{m_j} \left| \lambda (E_i^j) \right| + \left(\frac{\epsilon}{m} \right)^{1/p} \right)^p \leq \sum_{j=1}^{m} \sum_{i=1}^{m_j} \left| \lambda (E_i^j) \right|^p + \epsilon \leq M + \epsilon$$

by (2). Since $\varepsilon > 0$ was arbitrary, this establishes (2) for $|\lambda|$ and so completes the proof of the lemma.

LEMMA 2. Let G be a compact abelian group and let U be a neighborhood of 0 in G. There exists a Borel set E contained in U such that for some finite subset $\{g_1, \dots, g_n\}$ of G, the sets E, $g_1 + E$, ..., $g_n + E$ form a partition of G.

Proof. Let T be the circle group. Considering products of half-open intervals in T, it is easy to see that the lemma holds if $G = T^m \times F$ for some finite group F and some $m = 1, 2, \cdots$. That is, the lemma is true when the character group Γ of G is a finitely generated group. We show that this implies the general case.

Let U be a neighborhood of 0 in G. Fix $\epsilon>0$ and characters γ_1 , ..., γ_k of G such that

$$\{g \in G: |\gamma_i(g) - 1| < \epsilon, i = 1, \dots, k\} \subseteq U.$$

Let G' be the character group of the subgroup Γ' of Γ generated by γ_1 , ..., γ_k . Then there exist a continuous homomorphism ϕ of G onto G' and characters γ_1' , ..., γ_k' of G' such that $\gamma_i = \gamma_i' \circ \phi$ for $i = 1, \ldots, k$. Since the lemma holds for G', there exist a Borel subset E of G' and elements g_1' , ..., g_n' of G' such that

$$E \subseteq \{g' \in G': |\gamma'_i(g') - 1| < \epsilon, i = 1, \dots, k\}$$

and such that the sets E, $g_1' + E$, ..., $g_n' + E$ partition G'. Then the Borel sets $\phi^{-1}(E)$, $\phi^{-1}(g_1' + E)$, ..., $\phi^{-1}(g_n' + E)$ partition G, and

$$\phi^{-1}(E) \subseteq \left\{g \in G \colon \left|\gamma_i(g) - 1\right| < \epsilon, \ i = 1, \cdots, k\right\} \subseteq \ U \,.$$

Finally, if $g_i \in G$ is selected so that $\phi(g_i) = g_i'$, $i = 1, \dots, n$, then

$$\phi^{-1}(g_i' + E) = g_i + \phi^{-1}(E).$$

Thus the set $\phi^{-1}(E)$ and the elements g_1 , ..., g_n of G satisfy the conclusion of the lemma.

We return to the proof of the theorem. Let T be a bounded translation-invariant operator on $L^p(G)$. We will show that there exists a measure λ on G of the form

$$\lambda = \sum_{i=1}^{\infty} a_i \, \delta_{g_i}, \quad \text{where } g_i \in G \text{ and } \sum_{i=1}^{\infty} \left| a_i \right|^p \leq \sup_{0 \neq f \in L^p(G)} \int_G \left| Tf \right|^p \bigg/ \int_G \left| f \right|^p$$

such that for each $f \in L^1(G)$, Tf is equal to $\lambda * f$, the convolution of λ and f. This will complete the proof of the theorem.

Since T commutes with translations, it is easy to check that if γ is in the character group Γ of G, then $T\gamma = c_{\gamma}\gamma$ for some constant c_{γ} . The boundedness of T implies that $\sup_{\gamma \in \Gamma} |c_{\gamma}| < \infty$, and so T is also a bounded linear operator on $L^2(G)$. It then follows from an extension of the Marcinkiewicz interpolation theorem due to Hunt [3] that T defines a bounded linear operator on $L^1(G)$. Hence it follows from Wendel's theorem [2, 35.5] that there is a complex-valued regular Borel measure on G such that $Tf = \lambda * f$ for $f \in L^1(G)$. We complete the proof by showing that λ satisfies the hypothesis (2) of Lemma 1 with

(3)
$$M = \sup_{0 \neq f \in L^p(G)} \int_G |Tf|^p / \int_G |f|^p.$$

Fix a Borel partition $\{E_j\}_{j=1}^m$ of G and an arbitrary $\epsilon>0$. Since λ is regular, there exist compact sets K_j with $K_j\subseteq E_j$ and pairwise disjoint open sets U_j with $K_j\subseteq U_j$, $j=1,\cdots,m$, such that if F_j $(j=1,\cdots,m)$ are any Borel sets satisfying $K_j\subseteq F_j\subseteq U_j$, then

(4)
$$\sum_{j=1}^{m} |\lambda(\mathbf{E}_{j}) - \lambda(\mathbf{F}_{j})|^{p} < \varepsilon.$$

Let U be a neighborhood of 0 in G such that for each j we have $K_j+U-U\subseteq U_j$, and let E and g_1 , ..., g_n be as in Lemma 2 (where we take the present U). Since the sets E, g_1+E , ..., g_n+E partition G, the measure of E must be $(n+1)^{-1}$. Thus

$$\int_{G} |\lambda(g+E)|^{p} dg \leq (n+1)^{-1} M,$$

since Tf = λ * f for f \in L¹(G) and where M is defined by (3). Writing g₀ for 0 \in G, it follows that

$$\int_{G} \sum_{i=0}^{n} |\lambda(g+g_i+E)|^p dg \leq M,$$

and so there exists some g (which we now fix) for which

$$\sum_{i=0}^{n} |\lambda(g+g_i+E)|^p \leq M.$$

For i = 0, ..., n, put $S_i = g + g_i + E$. Then the inequality above becomes

(5)
$$\sum_{i=0}^{n} |\lambda(S_i)|^p \leq M.$$

The collection $\left\{S_i\right\}_{i=0}^n$ is a partition of G, and since $E\subseteq U$ and $K_j+U-U\subseteq U_j$ for each j, it follows that if $S_i\cap K_j\neq \emptyset$, then $S_i\subseteq U_j$. For $j=1,\cdots,$ m set

$$\mathbf{F}_{\mathbf{j}} = \bigcup_{\mathbf{S}_{\mathbf{i}} \cap \mathbf{K}_{\mathbf{j}} \neq \emptyset} \mathbf{S}_{\mathbf{i}}.$$

Then the F_j are Borel sets and $K_j \subseteq F_j \subseteq U_j$ for each j. Thus it follows from (4) and (5) that

$$\begin{split} \sum_{j=1}^{m} \ \left| \lambda(E_j) \right|^p & \leq \sum_{j=1}^{m} \left| \lambda(E_j) - \lambda(F_j) \right|^p + \sum_{j=1}^{m} \left| \sum_{S_i \cap K_j \neq \emptyset} \lambda(S_i) \right|^p \\ & \leq \epsilon + \sum_{j=1}^{m} \sum_{S_i \cap K_j \neq \emptyset} \left| \lambda(S_i) \right|^p \leq \epsilon + \sum_{i=0}^{n} \left| \lambda(S_i) \right|^p \leq \epsilon + M \,. \end{split}$$

Since $\epsilon>0$ and the partition $\left\{E_j\right\}_{j=1}^m$ were arbitrary, this establishes the hypothesis (2) of Lemma 1 for λ . The proof of the theorem is complete.

REFERENCES

- 1. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- 2. ——, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Springer-Verlag, New York-Berlin, 1970.
- 3. R. A. Hunt, An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces. Bull. Amer. Math. Soc. 70 (1964), 803-807.

Department of Mathematics Florida State University Tallahassee, Florida 32306