TRANSLATION-INVARIANT OPERATORS ON Lp(G), 0<p<«K1
Daniel M. Oberlin

Let G be a compact abelian group, and for 0 < p < « let LP(G) denote the
usual Lebesgue space with respect to normalized Haar measure on G. For g€ G
and functions f on G we define the translation operator T, by Tg4 f(h) = f(h - g) for
h € G. The collection {Tg g€ G} is a group of linear 1sometr1es on any LP(G),
and we are interested in the bounded linear operators on LP(G) which commute with
this group—the translation-invariant linear operators on LP(G). The problem of
characterizing these operators is sometimes known as the multiplier problem and,
for p > 1, has attracted much attention. Satisfactory characterizations are avail-
able only for the case p =1 and the trivial case p = 2. Obtaining such a character-
ization for any other p > 1 appears to be a most difficult task, but for p <1 the
problem seems to have been neglected. The purpose of this note is to present such a
characterization when 0 <p < 1.

THEOREM. Let G be a compact abelian group and fix p with 0 <p < 1. The
bounded linear operators on LP(G) which commute with each T4 (g € G) ave pre-
cisely those opevators of the form

[>e] [> o]
(1) 27 a; Ty, where g; € G and 27 |a;|P < .
i=1 i=1

Proof. It is obvious that (1) defines a bounded and translation-invariant opera-
tor on LP(G). To show that each such operator is of the form (1), we require two
lemmas.

LEMMA 1. Let K be a compact Hausdorff space and let N be a complex-valued
rvegular Bovel measure on K. If for some p (0 < p < 1) and some finite positive
number M we have

(2) 2 MEp|P <M
j=1

Jor each m and each finite Bovel partition {E } -1 of K, then X\ is of the form
(¢ o]
E =124 0x, 5 wheve 04 x; is the unit mass at some point x; € K and Ei:l Iailpﬁ M.

Proof. Assume first that A is positive and let A = A4 + A be the decomposition
of A into discrete and continuous parts. Then (2) holds with either Agq or A in
place of A. If A.(K) > 0, then, as a consequence of [1, 11.44], for any m = 1, 2,
we can find disjoint Borel subsets Ej, ***, Eyy of K such that Ac(Ej) = m-1a.(K),
j=1, -+, m. Forthese E; we have

m
2 e(®)]P = mm 1A (K)P = m! PR (K)P,
i=1
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and this contradicts (2) for A, as soon as m!P(A.(K))P > M. Thus 1.(K) =0 and
[>e] o0
SO A = 21:1 a; Gxi, where x; € K and Ei:l |a1| < «. Now (2) implies that
Q0
22i=1 Iailp < e as desired.

If A is not positive, then it suffices to show that (2) holds when M is replaced by
its total variation measure |\|. So fix a finite Borel partition {E;}{2, of K and

we will show that EJ (B ] P<M. By definition of [x], for each € > 0 and

j=1, ---, m there exists a f1n1te Borel partition {EJ } ) of E; such that
o /
/p
|A|(E)<E |A(EJ)|+( ) :
i=1
Then
m m mj 1/ m m.]
p .
2 [ E)PP < 2 E NED| + ( ) ) 22 2 WMEDIP+e < M+e
j=1 j=1 \Vi=l j=1 i=1

by (2). Since ¢ > 0 was arbitrary, this establishes (2) for |x| and so completes the
proof of the lemma.

LEMMA 2. Let G be a compact abelian group and let U be a neighbovhood of 0
in G. There exists a Bovel set E contained in U such that for some finite subset
{gl, ey, gn} of G, the sets E, g1 +E, -, g, + E form a partition of G.

Proof. Let T be the circle group. Considering products of half-open intervals
in T, it is easy to see that the lemma holds if G = T™ X F for some finite group F
and some m =1, 2, ---. That is, the lemma is true when the character group I'" of
G is a finitely generated group. We show that this implies the general case.

Let U be a neighborhood of 0 in G. Fix € > 0 and characters y;, -:-, yx of G
such that

{g € Gt lvi(g) - 1] <e, i=1, -+, k} C U,

Let G' be the character group of the subgroup I'' of I" generated by y;, +«-, vk-
Then there exist a continuous homomorphism ¢ of G onto G' and characters

¥y, ***, vk of G' such that y;=1vy{o¢ for i =1, ---, k. Since the lemma holds for
G', there exist a Borel subset E of G' and elements g;, ***, g, of G' such that

E C {g' e G" |'}’{(g') - 1| <g, i=1, "',k}

and such that the sets E, g] + E, --, g +E partition G'. Then the Borel sets
¢-1(E), ¢-1(g] +E), ---, ¢ -1(gy, + E) partition G, and

¢"UE) € {ge G: |nlg) - 1| <eg, i=1, -, k} C U.
Finally, if g; € G is selected so that ¢(g;) =g;i, i=1, -+, n, then
¢-l(g; +E) = g; +¢~1(E).

Thus the set ¢'1(E) and the elements g;, -+, g, of G satisfy the conclusion of the
lemma.
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We return to the proof of the theorem. Let T be a bounded translation-invariant
operator on LP(G). We will show that there exists a measure A on G of the form

(>0
E a; 6y,  Where g; € G and Z) la; | sup S |Tf|p/5 [£]P
i=1 G

- i=l " 0+# fe LP(G)

such that for each f € L1(G), Tf is equal to X * f, the convolution of A and f. This
will complete the proof of the theorem.

Since T commutes with translations, it is easy to check that if y is in the char-
acter group I" of G, then Ty = CyY for some constant ¢ The boundedness of T
implies that SUPye T lcyl <o, and so T is also a bounded linear operator on LZ2(G).
It then follows from an extens1on of the Marcinkiewicz interpolation theorem due to
Hunt [3] that T defines a bounded linear operator on L}(G). Hence it follows from
Wendel’s theorem [2, 35.5] that there is a complex-valued regular Borel measure on
G such that Tf = *f for f € L1(G). We complete the proof by showing that A
satisfies the hypothesis (2) of Lemma 1 with

(3) M= suw SITfIP/S H
0+ fe LP(G) YG G

Fix a Borel partition {E;}}Z, of G and an arbitrary & > 0. Since X is regu-

lar, there exist compact sets K; with KJ- C E;: and pairwise disjoint open sets U;
with K; C U;, j =1, -+, m, such that if F; (j =1, ---, m) are any Borel sets satis-
fying K;j C F; € Uj, then

(4) Z) IAME;) - MFDIP < e.

Let U be a neighborhood of 0 in G such that for each j we have Kj+ U - U C Uj,
and let E and g;, ‘-, g, be as in Lemma 2 (where we take the present U). Since
the sets E, g; + E, ., g, + E partition G, the measure of E must be (n+1)-!.
Thus

S Mg +E)|Pdg < m+1)" 1M
G

since Tf =X * f for f € L1(G) and where M is defined by (3). Writing go for
0 € G, it follows that

S E |Ag+g +E)|Pdg < M,
G i=0
and so there exists some g (which we now fix) for which

n
27 xMg+g +E)P < M.
i=0

For i=0, -*°, n, put S; = g+ g; + E. Then the inequality above becomes
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n
p
(5) 2 as)]T < M.
i=0

The collection {8;}i-¢ is a partition of G, and sinice E C U and K;j+ U - U C Uj
for each j, it follows that if §; N K; # @, then S; CUj. For j=1, -+, m set

F: = U Si'

J
SiNKj# @

Then the F; are Borel sets and K; C F; C Uj for each j. Thus it follows from (4)
and (5) that

ZE)P<ST MEY-MFPP+ D | T as)P
j=1

j=1 j=1 SiNK; e 0))
n

<e+2 X IMS)IP < e+ 22 ns)|P < &+ M.
j=1 $;NK;# @ i=0

Since € > 0 and the partition {E; }nzl were arbitrary, this establishes the hypothe-
sis (2) of Lemma 1 for X. The proof of the theorem is complete.
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