ON INNER FUNCTIONS WITH BP DERIVATIVE
P. R. Ahern and D. N. Clark

As the title suggests, this paper contains results similar to those in [2], with the
spaces HP replaced by BP. The basic problem we consider is that of determining
the BP classes (p > 0) to which the derivative ¢' of an inner function ¢ in the unit
disk belongs. Recall that the space BP is by definition the class of functions f(z)
analytic in the unit disk U and satisfying

1 p27 _
”f”p = S S lt(reif)| (1 - r)1/P-2 dgdr < .
0 Yo

(Here and in what follows, df denotes normalized Lebesgue measure on the unit
circle.)

M. R. Cullen [8] first considered the problem of determining the BP classes of
¢', for ¢ a singular inner function, and he conjectured that ¢' ¢ B!/2 for such a
function. Cullen’s idea was to use this to prove a conjecture of J. G. Caughran and
A. L. Shields [6] to the effect that ¢' ¢ H!/2. H. A. Allen and C. L. Belna [3] dis-
proved Cullen’s conjecture by giving examples of singular inner functions ¢ with
¢' € BP for all p < 2/3. The conjecture that ¢' ¢ B2/3 for inner functions with
singular factors then seemed reasonable (see, for instance, Caughran and Shields
[7]). Finally, D. Protas [11] gave a sufficient condition for ¢' € BP (p > 1/2) for ¢
a Blas]chke product. (For p < 1/2, we have ¢' € BP for any inner function [9, Theo-
rem 5].)

In this paper we prove that if ¢ has a singular factor, then ¢' ¢ B2/3, To do
this we develop (in Section 1) an integrated analogue of the angular derivative, the lat-
ter having been used in [2] to prove, among other things, the H!/2 conjecture of
Caughran and Shields. The methods of Section 1 are also applied to give a sufficient
condition for the relation ¢' € BP for ¢ a singular inner function (Section 3), to give
a partial converse to Protas’ condition for Blaschke products (Section 4), and to
show that both Protas’ condition and the partial converse are “best possible” (Sec-
tions 4 and 5).

The original H1/2 conjecture of Caughran and Shields in [6] arose in connection
with problems on exceptional sets, and the solution of the B2/3 conjecture has ap-
plications to exceptional sets, as did our solution of the H!/2 conjecture in [2].
These applications are discussed in Section 2.

Throughout this paper, the similarity of our results with those in [2] is apparent;
however, it seems unlikely that the results of the present paper can be obtained
directly from those in [2]. One reason for this is our example (Lemma 2) of a
Blaschke product B with B' € B2/3 put B' ¢ H1/2,
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108 P. R. AHERN and D. N. CLARK
PART I. INNER FUNCTIONS

1. Preliminavies. In [2], it was seen that the classical angular derivative of an
inner function ¢ was a useful tool in determining necessary conditions for the rela-
tion ¢' € HP. We introduce here an integrated analogue of the angular derivative
which bears a similar relationship to the class BP.

Let ¢ be an inner function and 1/2 < p < 1. We define

L1 - [¢(relf)] 1/p-2
Ip(qb, 6)=SO 17 (1-r)"'P“dr.

The relationship between Ip(qb, 6) and the main problem of the present paper is given
in the following theorem.

THEOREM 1. If ¢ is inner and if 1/2 < p < 1, then

27
(1) lor]l, < 2 jo I(, 6)d0 < 2p(2p - D1 o] .

Proof. The inequality

[p1(z}] < (1 - |o(2)]2)/(1 - |2]2) < 201 - |oz) )1 - |z |)
holds, for any function ¢ holomorphic and bounded by 1 in the unit disk [4, p. 18],

and it implies the first inequality in (1). To prove the second, we note first that,
since ¢ is inner,

1
1- |¢(relt)| < S lor(teltd)| dt  a.e.

r
Hence we have the inequalities

1,(¢, 8) < 51 (1-r)l/p-3 51 |¢'(teif) ] at ar
0

r

1 t
= S |qb'(te19)| S (1 -r)l/pP-3drdt
0 0

1
= pap - D1 § [ortei®)] [@ - O1/p-2 - 1]at
0

1 -
< p(2p - -1 S |6 (telf)] (1 - )2 /P-2qt,
0

and integrating with respect to 6 yields the second inequality in (1).

One example of the use of Ip(qs, 8) is the following corollary of Theorem 1.
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COROLLARY 1. Suppose ¢ is innev and 1/2 < p < 1. Then the relation
¢' € BP implies ' € BP jor any divisor ¢ of ¢.

Proof. If  is a divisor of ¢, we have that |y(z)| > |¢(z)] for all |z| <1, and
hence that

Ip(w, 0) < 1,6, 0).

The result now follows from Theorem 1.

Next we use Theorem 1 to give a “geometric” criterion which is necessary in
order that the derivative of an inner function belong to BP. The criterion involves
the R(5, v, £) regions of G. T. Cargo [5]. If 6> 0, > 1 and |¢| = 1, we have, by
definition,

R(6, v, §) = {z:1- |z]| > 6]|arg(t - 2)|7}.

THEOREM 2. Suppose that ¢ is innev and that |¢(z)| is bounded away from 1
in R(S, y, €), for some b, y, and €, with 6> 0, y> 1 and ICI =1. Then

27 )
S (1- |¢>(rele)|)d9 > (1 - )Y
0
for some € > 0. In particular ¢' ¢ Y/ (2y-1)

H. Somadasa [12] has studied conditions sufficient for |¢| to tend to 0 uni-
formly in a region R(§, v, £); we shall refer to some of his results later in the con-
struction of examples.

Proof. Let
a, = {6: |6 - 60| < [(1-r)/6]t/7}

and suppose that |¢(z)| <p<1in RS, y, {), where § = ele0 . Then

52” |p(rei®)|do < 5 |o(retf)| a6 +S |o(retf)] a6
o C

0
r Olr

<plap| +1-|az] =1-(1-p)|ax|

=1-(2/0'M @1 -p)1-0)t/7,
and the theorem follows.

COROLLARY 2. If ¢)(z) =exp[-ME +2)/(€ - z)] for x> 0 and |¢| =1, then
theve is an € > 0 such that

2
S " (1 - |gp(retf))dag > (1 - r)l/2
0

In particulay, if ¢ is any innev function having ¢y as a divisor, then ¢' d B2/3.

Proof. It is enough to show that |¢) | is bounded from 1 in R(3, 2, £), for some
6> 0. Now [(;{)A(z)[ = exp[-A(1 - |2]2)/|¢ - z]2], and
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{z: (1 - |2]|2)/|¢ - 2|2 > 1/2}

is a disk inside U and tangent to dU at {. It is not hard to see that, for suitable 6,
R(5, 2, €) lies inside this disk.

2. Inner functions. In this section, we prove a slightly strengthened version of
the B2/3 conjecture. We begin with a simple inequality for the Poisson integral of a
measure.

LEMMA 1. If ¢ is a positive measure and 1/2 <r < 1, and if
|eiG_eDL|_>_(1_r)l/2
Jor all \ € supp o, then
27T . . 27
S (1 - r2) |e17‘ - relel'zdo'(?\) <4 S do .
0 0

Proof. We have the inequalities

SZW (1 - r2) |eir - reif|-2do(n) = SZW (1 - r2)/[(1 - r2) +r |elf - el*|2] do(r)
0 0

2
< S ' (1-r9)/[(1-1r)2+r(1-1r)]do(d)
0

2T
< 2r‘15 do(n) .
0

THEOREM 3. If ¢ is an inner function that is not a Blaschke product, then, for
some € > 0,

2m
S (1- |plrei®)|)do > &(1 - r)1/2.
0

In parvticular ¢* ¢ B2/3 .

Proof. By Corollary 2, we may assume ¢ has no divisor of the form
o (z) = exp[-2(€ +z)/(€ - z)]. Suppose, therefore, that ¢ has a divisor of the form

2
Y(z) = exp [ - S (e +2)/(e™ - z)do(n) ],
0

where o is a singular measure with no atoms. By the proof of Theorem 1.1 of [1]
(specifically, by the second and ninth lines following (1.4) on p. 194 of [1]), we may
write

do(A),

1 - |¢(reit)|? _ 5211 | ¥y (rei?)]?

1_r2 0 lelh _reiglz
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o .
where ¢, (z) = exp [ - S ('t + z)/(e't - z)do(t) }
0

Without loss of generality, we may suppose the measure ¢ to carry some mass
on the interval (0, 7). We have

2 .
S "1 - |p(relf)|)do > S (1 - |g(ret)|)ao > %S (1- |p(reif)]?)de
0

2T P27 .
= = ‘S‘ be)& (ret?) |2 (1-1r2) |el7L ret® I"Z do do (\)

22070 et (- 12) [e - rei?| 2 0 do ),
0 Ya.()

where o (A) = {6: (1 - 1r)1/2 < |elf - el*| <2(1 - r)l/2}. By Lemma 1, there
exists € > 0 such that |y, (relf)]2 > ¢, if 6 € a,.(1), and we arrive at the relations

5 (1 - |orei®)])do > (e/2) S S (1 - r2) |e}r - reif |2 dg do(n)
0 a,.(2)

=@/ (" a-n/0- xR re el - M 2]a0 a0l
0 ar(h)

(e/8r) Sﬂ la ()| do(d) > g4(1 - r)l/2
0

if r > 1/2, since |a ()| > c(1 - r)1/2 for some constant c, and S do(d) > 0.
This completes the proof.

As stated in the introduction, one point of interest in the B2/3 conjecture is its
relationship to exceptional sets. We now give an application of Theorem 3 in this
direction. Recall that, for an inner function ¢, we define the exceptional set E(¢) as

E(p) = {pu: I,ul <1 and (¢ - p)/(1 - i¢) is not a Blaschke product} .

See [2] for a brief discussion of E(¢).
COROLLARY 3. If ¢ is inner and satisfies ¢' € B%/3 then E(¢) = @.
Proof. Let ¢ = (¢ - w/(1 - o). Then

o] = @ - [u]® o] 11 - Be]™% < clo'],

so that ¢' € B2/3 implies ¢y € B2/3. Theorem 3 now tells us that ¢, must be a
Blaschke product.
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COROLLARY 4. If B is a Blaschke product with zevos {a,} and if
(1 - |a,[|)1/2 < o, then E(B) = @.

Proof. The condition Z(1 - |a,|)!1/2 <« implies B' ¢ B2/3, by a theorem of
Protas [11] (to which we shall return in Section 4).

In [2, Theorem 6], we proved that if ¢ is an inner function satisfying ¢' € H1/2,
then E(¢) = ¢. Combining this with another theorem of Protas ([11, Theorem 2]) we
see that [2, Theorem 6] implies a result very close to Corollary 4: if B isa
Blaschke product with (1 - |a,|)P <« for some p <1/2, then E(B) = @. We as-
sert that Corollary 4 above is actually stronger than [2, Theorem 6]. Indeed, there
exist Blaschke products B with Z(1 - [anl)”2 < « (hence with B' € B2/3) but with
B' ¢ H1/2, The existence of such B is obtained from the following lemma.

LEMMA 2. Suppose a sequence {d,} is given, with 1> d, > 0, 5dl/? < e
and 2 d%/zlog(l/dn) =0, Then theve is a Blaschke product B with zeros {an}
satisfying 1 - Ianl =d_ (in particular B' € B2/3) and with B’ d Hl/2, Movreover,
the a, may be chosen so that a, — 1 as n — «,

Proof. Assume for convenience that = dl/2 < 7/2, and define
[+ o]
6, = 2 d]}(/2 and a, = (1- dn)elen .
k=n
By Lemma 1 of [2], we need only show that
o0
1(6) = 22 d_/[d2+(6 - 6,)%] ¢ L1/2,
n=1
Now, in the interval (6., , 6,), we have
£(0) > d,/[d2+(6 - 0,)?],

so that

27 0
S f(o)/2d0 > 2 drll/ZS T @2+ (6 - 6% 2a0
n

0 6n+1
q1/2
1/2 (9o i
- 24 S @ +t3)1/2 gt
n 0

2 d}l/z[%logu/dn) +log(1 + (1 +a;’;)1/2)] = «,

3. Singulay innev functions. In this section, we show how Theorem 1 may be
used to obtain a sufficient condition for the relation ¢' e B, when ¢ is a singular
inner function. Our theorem contains as a special case the result of Allen and Belna
[3] that if the singular measure associated with ¢ consists of a finite number of
point masses, then ¢' € BP for all p < 2/3. 1t also enables us to give examples of
singular inner functions ¢ having purely nonatomic singular measures and satisfying
¢' € BP, for all p < 2/3.
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We say a compact subset E of [0, 27] is of type 8 (0 <8 < 1) if there is a
constant ¢ such that |Eg| < cef, where

E, = {0:dist(6, E) < ¢}.
Roughly speaking, if 8 is close to 1, then a set E of type g has small e-neighbor-
hoods. For example, if E = {0, 1/2, 1/3, :-* }, then E is of type 1/2, but of no

larger type; if E = {0, 1/2, 1/4, --- }, then E is of type g for all < 1; and E is
finite if and only if E is of type 1.

THEOREM 4. Suppose o is a singular measure carvied on a set E of type B
(B> 0). Let ¢ be the corvesponding singulay innev function. Then theve is a con-
stant ¢ such that

27 )
[ - Joet®ao < et - 20
0

Sfor all q > B/2. In particular, ¢' € BP for all p <2/(4 - p).

Proof. Let & denote the Poisson integral of o:
. 2T . .0
G(retf) = ‘S‘ (1-1%) [e* - rel?|-2do(n).
0

There is a constant ¢ such that
G(ret?) < c(1-r)d(6)-2,
where d(6) is the distance from 6 to E. Now
lp(rel?)] = exp[-5(rel?)],
and since 1 - e™* < x for x > 0, we have the inequality
1- [q)(reie)l < min {1, 6(reig)} .

Now fix g < /2, and define a sequence vy, v}, **, by: yo = a/B and, if
Yo» ***» Yk-1 are defined, y = vy +B-1(2n._; - 1). Notice that vy < 1/2 and hence
that g5 = -B-1(2y9 - 1) > 0. We assert that

(2) ')’k S ')/O - kso (k = 0, 1, "').

For k = 0, this is clear. Proceeding by induction, suppose that (2) holds for a given
value of k. Then

Yir1 = Yo TB 12 - 1) < v +87 12y - keg) - 1)
=y - €9 - 2kgg B! < 99 - (kK +1)gg,

since 2/B8 > 1. This proves (2), which we use to infer that eventually we have
Yk < 0. Corresponding to the yx, define a sequence of sets
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ay = {6:d6) < (1-1)70}

ap = {0: (1-r)"k-1 <do) <(1-r)k} (k=12 ).

Since eventually ¥, <0, a finite number of the ; will cover [0, 27], the number
required being independent of r.
Now we have

S (1- |¢rei®))as < |ag| < (1 -1)7P = (1-1)a,
Qo

S (1- |oplreif)|)de < c(1-1)(1 - r)”4¥k-1 | e |
Xy
S C(l _ r)l-Z'}/k_]_""YkB S_ C(]. _ r)q ,

and hence

2T .
S (1- |o(ret?)])d6 < c(1 - 1)d.
0

The proof is complete.

COROLLARY 5. If supp ¢ is of type B fov every B < 1, then ¢' € BP, for all
p <2/3.

If supp o is a finite set, then Corollary 5 yields the above mentioned result of
Allen and Belna. We now show how to construct a set E which is of type B8 for every
B <1 and which supports a continuous measure. Take a sequence {0,} with 8, = 2
and 6, | 0 and construct a Cantor set in the usual way: E, consists of 2" intervals
each of length 2-76, and E, ., is obtained from E, by deleting an open interval
from the center of each of the intervals in E,, so that E,,; consists of 2°7! inter-

valtsl,1 iaCh of length 2-(nt1) 6,41 Let E= nf:(, E,. If € > 0 is given, choose n
so tha

2-mtl)g | <& < 2m5_.
Thus

IESI S 3611 = 3((Sn/5n+l) 21‘l-lhl(z—(n-‘—l)(‘Sn-H) S 3'zn-'_l(én/(sni-l){’:'

Now pick p € (0, 1) and 6 = 22p"*. We have

2 2
IEEI S 3_2n+l [ann /(2n+lp(n+l) )]8 - 3(2n/p2n+1)8 = 3p-—1(2/p2)n8.
Since £ < pnz, we have loge <nZlogp and n? < loge/logp so that
(2/p2)7 < exp[(loge/logp)l/210g(2/p2)] = exp[a(loge-1)!/2]

for some a > 0. It follows easily that for every B < 1, there is a constant C such
that
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|Eg| < CeP.

Thus E is of type 8 and the Cantor function on E induces the required type of
measure o.

PART II. BLASCHKE PRODUCTS

4. Arbitrary Blaschke products. In this section, we consider a Blaschke product
B(z) with zeros {a,}; 1 - |a,| will be denoted by d,. As in [2, Section 3], we deal
with two theorems giving a sufficient condition for B' € Bp and a partial converse.
Both theorems are shown to be the best possible of their type. The first theorem is
due to Protas [11], and we include only the statement, as the use of Theorem 1 does
not appear to simplify Protas’ proof.

THEOREM 5. Suppose £d% < «, for some a < 1. Then B' e B/(1+@)

THEOREM 6. Suppose B' e BP, for some p > 2/3. Then £d% < for all
a>(1-p)/@2p-1).

Before beginning the prooi, we prove a lemma.

LEMMA 3. If p> 1, if 0<x<1, and if plog(1/x) < log2, then
1-xP> (p/2)(1 - x).

Proof. We have the relations
1
1-xP =p S tP-lat > p(1 - x)xP-1 > p(1-x)x° > (p/2)(1 - %)
X

if xP > 1/2, that is, if plog(1/x) > log2.

Proof of Theovem 6. Let ag =inf {a: 2d¥ <=}, and suppose that
ag>(1-p)/(2p - 1). Choose a > ag (so Zd¥ <) and let p, = d‘r’f'l . Then

II 'an[pn converges, since
log Ianlpn = p, log |a,| = d% [(log |a,|)/d,].

In order to estimate the partial products of B from below, we want to find the least
number r; such that

z| - |a;

o] = lagl

J
—_ I Pj
T Jagl 2] 2 %l

b

j
for all |z| > r;. A straightforward calculation shows that
ry = (Jag] + |ag]?)/(1 + |a] 1P

Now if we assume, as we may, that the |a;| form an increasing sequence it follows
easily that the numbers r; form an increasing sequence also. So, if

B,(z) = I1;. | (- ay)/(1 - ajz), then,
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n-1 ., _ 4. n-1 IZI - lal n-1 ) ®
B,(z)| > II - ——— > 1 |as|Pi > T Ja;|Pi = g9 > 0
l n ' =1 1 az| = i1 1 - laj| IZI = i=1 I Jl —j:I I JI 0
if IZIZI’n-l-
Next we observe that, for every n,
1- ]B(rew)lz S 1- |Bn(reie)|2 _ Zn) IB'(I‘eiG)'Z 1- lajlz
1-rp2 = 1-r2 j=1 J |1‘5jrei9|2’

the last equality being easily proved by induction. If we let n go to infinity we obtain
the inequality

1-|B iBy]2 © . 1 - .2
B DI S % (pygeett) 2 1L
1-r j=1 1-3are’” |

(Equality actually holds, as can be proved by the methods of [1]; we do not use this
fact however.) Now multiply both sides by (1 - r)1/P-2 and integrate to get

27 27 1 B (rei®)]2(1 - |a.|?) (1 - r)1/p~‘2
1B, 6)de _>_—;—S 2 S L® | | dr d6
0 n

So T, |1 - a,ret? |2
1 ' /p-2 2m i 2
> 5 Z)S (1-r)t/P- SO (1- |ay|®/]1-a,rel?|2d0ar
i

=%88 27 (1 - Ianlz)'g (1-1)1/P-2/(1 - |a,|%r?)dr

n T'n

1

> 27d (1-1)/P-2/[d_+(1-r)]dr
Z ~1 n n

n I'n

(1-ry)/d
o Za/Pt T @/ e

n 0
(1-rp)/d
>, U drll/p—lj\ TR ez g = g, 20 (1-ryt/p-1,
n 0 n

Computing 1 - r, gives

1-r, = dy(1- [ag®/(1+ |an] ") > (1/4)d, pn dy

(by Lemma 3) so that 1 - r,, > (1/4)d "% . It follows that
E d£11+a)(1/p-1) < o,
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for any o > ag. Butif ag > (1 - p)/(2p - 1), then (1 + aqg)(1/p - 1) < @¢ and hence
(1+a)(1/p-1) <ag for all a such that @ < ag + €. But this contradicts the
definition of ap, and completes the proof.

We shall now show (in the rest of this section and in the next) that Theorems 5
and 6 represent the best possible results obtainable for general Blaschke products,
involving a relationship between B' € BP and Zd¢ <,

To show Theorem 5 is best possible, we will show that if 0 < a < ag < 1, there

is a Blaschke product B such that Zd‘rylo <, but B' ¢ BY/(1*®) | In fact, choose y
and 8 with y > 1, 8§ >1 and (8 - 1)/8 < 1/y. Somadasa has shown [12] that there
exists a Blaschke product B such that d, = n~PB and B(z) tends uniformly to 0, as
z — 1, z € R(5, y, 1), for any 6 > 0. By Theorem 2, this implies B' ¢ BY/(2y-1)
If we let (@ +1)-! =y/(2y - 1), we see that there is a Blaschke product B with
d,=n-B and B' ¢ BI/(1*@) a5 long as @B < 1. So our goal is achieved if we pick
B so that af <1 but agp > 1.

Theorem 6 will be shown to be best possible in the next section.

5. Blaschke products with arga, in a set of type (. In this section, we obtain a
sufficient condition for B' to belong to BP, in case the arguments of the zeros lie in
a set of type B (as defined in Section 3). In the case of a set of type B for all B < 1,
this condition yields the same degree of convergence of ~d¢ as our general neces-

sary condition (Theorem 6), and so in the case of real zeros, parallelism with the
problem of B' € HP [2, Section 4] is again to be noted.

THEOREM 7. Suppose B is a Blaschke product with zevos {a,} having
arga, € E for some set E of type B (0 <B < 1). Suppose also that = d% < =, for
some a (0 <a <1). Then

27 .
5 (1- |B(reif)|)do < c(1 - ra
0

forall q < B/(1+ a). Inparticular, B' € BP for
p<(1+01)/(2+20! -B)

Proof. The proof is similar to that of Theorem 4 and will only be sketched.
First by [10, p. 170],

1- |Blreif)| < 427d,(1-7r) |1 - anrelf -2 = 7(relf),
and so we get the inequality
1 - |B(reif)| < min{1, 7(reif)}.
Now by the proof of [2, Theorem 11], there is a constant ¢ such that
T(relf) < e(1 - r)/d(o)+e,
since Zd% < o (recall that d(8) = dist(6, E)). Choose

Yo = a/B and ¥ =y, +B8 {n (1+a)-1],
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= {0:d(6) <(1-1)°} and oy = {6:(1-1)"k1 <d(0) <(1- 1)k},

and proceed as in the proof of Theorem 4.

COROLLARY 6. If B(z) is a Blaschke product with arga, belonging to some
set E of type B for all 8 <1, then B' € BP for all p < 2/3. If in addition
Zd2 <=, then B' € BP for p <(1+a)/(1+2a).

We remark that there exist Blaschke products with B' ¢ BP for p > 1/2 (even
with a, — 1). An example can be got from Somadasa’s Example 2 [12, p. 299], to-
gether with Theorem 2.

Added in proof. Since submission of this paper, we learned that Corollary 2 had
been obtained previously by C. L. Belna, in his paper Tke derivative of the atomic
Sfunction is in BP iff 0 <p < 2/3, to appear in Proc. Amer. Math. Soc.
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