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INTRODUCTION

In the study of expansive homeomorphisms, first made under the term “unstable
homeomorphisms?” (see [3], for example), many reports on expansive homeomor-
phisms and automorphisms have been published. However, in spite of a perhaps in-
teresting topic, ergodic properties of expansive automorphisms are unknown, except
in special cases. In this paper, we show that expansive automovphisms of compact,
connected, finite-dimensional abelian groups ave K-automovphisms.

1. PRELIMINARY LEMMAS

Throughout this paper, given an automorphism of an abelian group, we shall de-
note the restrictions on invariant subgroups and the automorphisms induced on fac-
tor groups by invariant subgroups by the symbol used for the original automorphism.

LEMMA A. Let G be a countable, torsion-free, discrete, abelian gvoup, and let
U be an automorphism of G. Then theve exist a minimal divisible extension G of G
and an automorphism U of G such that U is an extension of U. Furthermore, if U
has no finite orbit, then U has no finite orbit.

Proof. Write G = {h;, hp, -=-}. For each integer j and each positive integer
n, let [hnj] denote the free cyclic group generated by a new element hnj’ and let
<U3hn> denote the cyclic group generated by UJhn. Then we can construct a na-

tural homomorphism ¢, from the direct-product group W, =®;: w [ﬁnj] onto the

> o] . ~ . .
subgroup II;. o {ul hn> of G via the correspondence h; — UJh,. Let U, de-
note the automorphism of W,, defined by h,; — hpj+1; then ¢,,Uy = Ug,,. Since

©0 <o

II I {(uhn,) =g,

n=1 j=-%

there is a homomorphism ¢ from the direct-product group W = ®°1° W, onto G
such that ¢{k_ } = {¢, k, } for each {k,} € W and ¢U' = Up, where

U'{k,} = {ULk,}. It is easy to see that U' is an automorphism of W. Hence
(G, U) is a factor of (W, U'), and if we denote by K the kernel of ¢, then (G, U) is
isomorphic to (W/K, U").

Now there is a divisible extension W = ®::1 ®3°: o Qnj of W, where Qp;j is
an abelian group isomorphic to the additive group consisting of all rational numbers,
and since W is torsion-free, there is an automorphism U' of W that is an exten-
sion of U'. Because W/K is a divisible extension of W/K, U' on W/K is an
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extension of U' on W/K, and since G is torsion-free, there is a minimal divisible
extension of (G, U), which we denote by (G, U).

Assume that U™f = f for an element f of G and an integer n # 0. Then there
exists an integer m # 0 such that f™ ¢ G. Hence, from the relation U™ {™ = ' we
see that U™ =f™, where f™ +# 1 if f # 1.

LEMMA B. Let X be a compact abelian group, let T be an automorphism of
X, and let X; be a T-invariant (TX, = X;) subgroup of X. If T: X| —» X, and
T: X/X; — X/X| are ergodic, then T: X — X is also evgodic.

Proof. Let G, G;, and G' be the character groups of X, X;, and X/Xl, re-
spectively. Assume for an element f of G and an integer n # 0 that U™f = {, where
U is the dual automorphism of T on G defined by Ug(x) = g(Tx). Then, since T is
ergodic on X; and G; is U-invariant (UG; = G;), f(x) =1 on X;. Hence f € G'.
Consequently, because T is ergodic on X/X;, f(x) =1 on X. Thus T is ergodic
on X.

An automorphism T of a compact metric group X with metric d is called
distal if for x € X the relation inf_, «j <o d(T'%, €) = 0 implies x = e, e being
the identity of X.

LEMMA C. Let X be a compact metrvic abelian group, and let T be an auto-
morphism of X. If for x € X we define Bx = x-! Tx, then

(1) B is a continuous endomovphism of X into X,
(2) BT = TB and TB(X) = B(X),
(3) if BMX) is trivial for some n> 0, T is distal.

Proof. Since (1) and (2) are clear, we shall prove (3). Let G and U be as in
Lemma B, and set G; = ann (B{(X), G) = {g € G: g(y) =1 for all y € Bl(x )} fori> 1.
Then it follows from X O B(X)D - D B™X)={e} that Gy € G, C - C G, =G. If
we define inductively

Hy = {feGUf=1}

and

H;,, = {f € G; Uf =gf for some g € H;} (i=1,2, ),
then H; c H, C -*-, and it is easy to see inductively that each H; is a U-invariant
Subgroup of G By induction, we shall show that H; D G; (i = 1, 2 -+, n). Assume

G; CH; and f € Gyy]. Then, since B(Bif(x)) =1 for X € X, we see that

UBlf(x) = Bf(x), and therefore Bif ¢ H;. Assuming Bi-Jf e Hj4p for
i=0,1,,i-1, we have the relation UBi-jf(x) = g(x) -Bi-J{(x) for some g € Hj.
Hence

UBHIl1(x) = g7 (x) - UB TV i(x) - BI L £(x)

where g1 -UBi-Jf € Hj;; . Hence B!-J-1f € Hj;,. Consequently, we see by induc-
tion that f € H;y;, and it follows that Gj4; € Hyj4+; . Thus, for i =1, 2, **-, n,
H; O G;, and therefore G = H,,

Now let inf o «j<w d(TJx e) = 0, where d is the metric of X. If f € H;, the
equation f(Tx) = f(x) implies that f(TJx) = f(x) for each integer j. Hence, by con-
tinuity of f, f(x) = f(e) = 1. Assume f(x) =1 for every f € H;. If f € H;;+, then
f(Tx) = g(x) -f(x) for some g € H;. Hence, because f(Tix) = f(x) for each j, it fol-
lows that f(x) = 1. Consequently, since we obtain inductively f(x) = 1 for every
f € G, x must be the identity. Thus the proof is complete.
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2. ERGODICITY OF EXPANSIVE AUTOMORPHISMS

An automorphism T of a compact group X is called expansive if there exists a
neighborhood V of the identity e of X such that x € X - {e} implies Thx ¢ V for
some integer n. It is known that if X admits an expansive automorphism, X is
metrizable [2]. We observe that “expansive” is incompatible with “distal” [2].

From now on, let X be a compact, connected, finite-dimensional abelian group,
let T be an expansive automorphism of X, and let (G, U) be the dual of (X, T). We
note that G is countable and discrete, and that the rank of G is finite.

LEMMA 1. For k> 1 and x € X, define B x = x 1 TXx. Then

(1) By is a continuous endomorphism of X into X,

(2) By T = TBy, TBy(X) = Bi(X), and ByB; = BjBy for j > 1,

(3) BR(X) is a nontrivial compact connected subgroup of X, for n > 1.

Lemma 1 is clear from Lemma C, since TX is expansive.

We claim that if Y; and Y, are connected subgroups of X such that Y, G Y,,
then dim Y; < dim Y,. For let

F; = am(Y;, G) = {g e G:gly)=1forall ye Yi}

for i =1, 2; then F, % F, and F; /F‘2 is torsion-free. Hence there is an element

g € F; suchthat g" ¢ F, for all n # 0. This g can not be represented by a maxi-
mal independent system of F,. This implies that rank F, < rank F;, and therefore
rank G/F; <rank G/F,, which shows dim Y; < dim Y.

Now we consider the following cases: (i) By (X) = X for all k> 0, and
(ii) Bx(X) # X for some k > 0. In the case (i), assume for a character f and an in-
teger n > 0 that U™f =f. Then, since f(x-1Tkx) =1 for x € X, we see that
f(B1X) = 1. Hence f(X) = 1, and therefore U has no finite orbit on X, so that T isa
K-automorphism. Conversely, if T is a K-automorphism, then it is easy to see that
the condition (i) holds.

From now on, assuming the case (ii), we show a contradiction. By Lemma 1 (3),
if B,(X) # X for some k > 0, then dim X > dim B,(X). Hence, for each k> 1,

Bl (X) = BY"I(X) (j > 0), where N =dim X. Let k; be the least positive integer such
that Bk1 is not onto, and write X, = Bgl(X). Then TX,; = X,;, dim X, <dim X, and

Bj(X,) € X, for i >k, since ByBj=B;By for j > 1. But, for i <k,
B;(X;) =X . Next, let k, be the least positive integer such that Bkz is not onto on

X}, and write Xz = B (X)). Then kp >k, X, C X;, TX, =X,, dim X, <dim X,

and By(X,) C X, for i >k, but By(X,) =X, for i <k,. Repeating this process,
we obtain positive integers n, k;, k;, .-+, k,; and compact connected subgroups
Xy (=X), X}, », X, of X suchthatfor i>1 and j=1,2, -, n

_ N —
Xj = Bkj(Xj—l)’ TXJ = XJ’
Bi(XJ) C XJ’ Bl(Xn) = Xn.

LEMMA 2. X _+# {e} and T: X_— X_ is ergodic.
Proof. It X = {e}, then
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N
Xp.1 D By (X)) D D By (X,p) = {e}.

Hence, by Lemma C, T kn is distal on X, _;, which contradicts the fact that T is

expansive on X_ _ Consequently, X # {e
n-1° ’

Ergodicity of T: X  — X, follows from the fact that B;(X,) = X, for all i > 0.
Now define P = BN BN , then P is a continuous homomorphism from X onto

X ,and TP = PT. Now denote by X' the kernel of P, then TX' =X' and (X/X', T)
is isomorphic to (X,, T). Hence by Lemma 2, T: X/X'— X/X' is ergodic.

Write
G(X") = ann (X', G) = {g € G: g(x) =1 for all x € X'}
and
G(X') = {g € G; g" € G(X') for some integer n # 0},

then G(X') and a(X') are U-invariant subgroups of G. If we set

x{1) = ann (G(X° ), X), then, since the character group of x(1) is G/G(X ) and
G/G(X) (which may be trivial) is torsion-free, the T-invariant subgroup X)) of
X' is connected. Further, because x(1) X, it follows that dim x(1) < dim X.

Since T is ergodic on X/X' and G(X') is the character group of X/X', U has
no finite orbit on G(X ). Hence, if (G(X'), U) denotes a minimal divisible extension
of (G(X"), U), then U has no finite orbit on G(X) by Lemma A. Therefore, since
G(X ) € G(X"), U also has no finite orbit on G(X ). Consequently, since G(X'") is the
character group of x/%(1), T x/%(1) - x/%(1) is ergodic.

I X(1) « {e}, an argument similar to that above shows that there exists a T-
invariant subgroup X" of X(l) such that T: X(1)/x" — X{(1)/X" is ergodic. We
write G(X") = ann (X", G/G(X")),

G(X") = {g € G/G(X'); g € G(X") for some integer n # 0},

and }:((2) = ann (E;}'(X"), X(1)); then X(2) js a T-invariant connected subgroup of X(1),
dim X(1) > dim X(2), and further T: X11)/X(2)} - X(1)/%(2) 5 ergodic.

Since dim X < «, a repetition of these arguments shows that we have a positive
integer m and T- 1nvar1ant connected subgroups X(0) X(1) X(2) ... X ~(m) of X
such that X(0) = x, X(m) = {e}, and T: X(i)/X{i+1) —>x(1)/x(1+1) 4= - m - 1)
are ergodic. Consequently, applying Lemma B inductively, we see that T X—-Xis
ergodic, so.that it is a K-automorphism, which shows that (i) holds. This is incon-
sistent with our assumption. Thus we obtain our result:

THEOREM. Expansive automorphisms of compact, connected, finite-dimen-
sional abelian groups are K-automovphisms.

Remark. Recently, the first author has shown that compact, connected groups
that admit expansive automorphisms are finite-dimensional and abelian [1]. Hence
we can improve our Theorem as follows:

Expansive automorphisms on compact connected gvoups ave Kolmogorov auto-
MOvpnRisSms.
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