HADAMARD’S INEQUALITY FOR MATRICES
WITH POSITIVE-DEFINITE HERMITIAN COMPONENT

Charles R. Johnson

Hadamard’s inequality states that if A = (a;;) is an n-by-n positive-definite
Hermitian matrix, then

det A < ajjazp - ap,-

I welet II_={A e M_(C): A+A*>0}, then A € Il does not necessarily satisty
the analogous inequality

(1) 'det Al S lall"'annl'

D. M. Koteljanskil [3], F. R. Gantmacher and M. G. Krein {2], and K. Fan [1] have
generalized the Hadamard inequality by isolating a class (which includes the posi-
tive-definite Hermitian matrices) throughout which (1) holds. In this note, we point

out a different class (related to a convexly parametrized subclass of Hn) in which
(1) holds, and, in the process, also give a dual class in which

(2) |det A| > Jaj; - apy|

holds. The former class also includes the positive-definite Hermitian matrices, so
that an alternate proof of Hadamard’s inequality is provided.

* A%
For A € My(C), we define H(A) =212 and s(a) = A 2A , 50 that

A=H(A) +S(A). If H= (hij) is Hermitian, we define the upper triangular part of H
by T(H) = (t;;) where

2hy; if i<,
tij= hij ifi:j,
0 if i>7.

For A € M,(C), we then define T(A) by T(A) = T(H(A)). It also follows from our
definitions that H(T(A)) = H(A). In this context, Hadamard’s inequality states simply
that

det H < det T(H)

when H is positive-definite Hermitian.
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We shall be interested in the following subclass of Hn:
(@) _
Hn = {aT(A) + (1 - @) T(A)*: A € Hn}.

THEOREM. Suppose A e 1L*) . Then
D) if 0<a<1, |detA] <a;j-ra,,, and
(i) if @ <0or @a>1, |det A| >a;; " an,-

Proof. Suppose A =aT + (1 - «)T*, where T = T(C) for C ¢ Hn . We first
note that S(A) = (2a - 1)S(T):

il

s(A) %(A _A¥) = —;:([ozT+(1 - @) T*] - [aT*+ (1 - @) T])

- —%[(Za - 1T - (2a - 1) T*] = (2a - 1)S(T).

Let H(T) = H and S(T) =S. Then, since H(A) = H(T) and A = H(A) + S(A), we have
the relation A = H+(2a - 1)S € 111,

Now consider the quotient TA-! . The theorem follows if |det TA-1| >1 for
a € [0, 1] and |det TA-1| <1 for @ ¢ [0, 1]. But

det (H + S) det (I + S)
det TA-1 = = Ay
det(H+ (2a - 1)S)  det(I+ (2a - 1)S)

where § = H-1/28H-1/2 ig skew-Hermitian (H‘l/2 is the inverse of the positive
definite square root of H). Thus the eigenvalues of I+ S are of the form 1 +ixj,
while those of I+ (2o - 1)§ are of the form 1 +i(2a - 1x; (A5 real, j=1, .-+, n).

Now,
[(1+iny) - (T + )]
(1 +i(2a - DAy) - (1 +i(2a - D)

l

|det TA-1|

1+ix,
1+i(2a - O,

1+1ix,
1 +1(2C\! - 1))\1

Since |20 - 1| <1 if @ € [0, 1] and |2a - 1| > 1 if @ ¢ [0, 1], this means
that

111 1 if 0, 1] and
1+i(2a - I, Z a € [0, 1] an
1+,
1+ia - I,

<1 if a¢[0,1].

Thus we conclude that

det TA-1| > 1 if @ € [0, 1] and |detTA-1l| <1 if o ¢ [0, 1],
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which is equivalent to the statement of the theorem. The special case o =1/2 is
Hadamard’s result.

Remark 1. The cases of equality in the theorem are easily analyzed from the
preceding discussion. Equality is attained if and only if either ¢ =0 or ¢ =1 or A
is diagonal.

Remavk 2. 1t is also clear from the proof of the theorem that the function

f(a) = det (aT + (1 - a)T*), where T = T(C), C € Hn, and « is real, attains a
minimum for o =1/2 and is decreasing everywhere to the left and increasing
everywhere to the right.

COROLLARY 1. Suppose A € Hn. Then
det H(A) < |det (aT(A) + (1 - @)T(A)*)] < det T(A) < |det (BT(A) + (1 - B)T(A)™)]

(a €0, 1], ¢ [0, 1], B real).

Since right or left multiplication by a positive diagonal matrix has the same
relative impact on the determinant and the product of the diagonal entries of a ma-
trix, we also have a slight generalization of the main result.

COROLLARY 2. Suppose A = DBE, wheve D and E ave positive diagonal
matvices and B € H(na). Then |det A| <ajyj--apn, for 0< o<1 and
|det A] >aj;rapy for a>1 or a <0.

Example. The classes H(na) are not contained in the GKK class as defined
by Fan [1]. Let

3 3 -3
A= 1 4 -6
-1 -2 5
3/4
Then A € Hr(, / ), but A is not a GKK matrix, since

3 -3 1 4
det det = (-6)(2) = -12 % 0.
4 -6 -1 -2
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