ON A DIFFERENTIAL-DIFFERENCE EQUATION
A. Naftalevich

In this paper we consider the entire and the meromorphic solutions f(z) of the
differential-difference equation

(1) f(z +1) = exp[P(z)]f'(z),
where
(2) P(z) = agz™+a;z" 1+ +a, (ag#0)

is an arbitrary polynomial of degree n > 1.
We agree to say that

(a) a meromorphic function f(z) is properly mervomorphic if f(z) has at least
one pole,

(b) an infinite set E of entire functions is linearly independent (over the field
of complex numbers) if each finite system of functions of the set E is linearly in-
dependent. :

We prove that the equation (1) has no properly meromorphic solutions but has a
linearly independent infinite set E (with cardinality of the continuum) of entire
solutions. Furthermore, for each p > n + 1 in the case n > 1 and for p > 2 in the
case n = 1, the equation (1) has a linearly independent set E, (with cardinality of
the continuum) of entire solutions of order p.

The equation (1) has no nontrivial entire solutions f(z) (f(z) # 0), either of order
p <n+1 or of minimal type with respect to the order p =n + 1. On the other hand,
this equation has entire solutions of normal type with respect to the order p =n + 1.

Besides the equation (1), we shall also consider the inhomogeneous equation
(3) f(z +1) = exp[P(z)]f'(z) + g(z)

with an entire or meromorphic free term g(z).

Remark 1. In the case n = 0, the equation (1) reduces to an equation with con-
stant coefficients. Such equations have been at the center of wide research, and we
do not include them in our study although the method used in this paper may be ap-
plied to some extent to these equations also.

Remark 2. The results announced above on the entire solutions of the equation
(1) contain an answer to the following question of Hurwitz [2, p. 752]:

Is it possible for a power series

o0

h(g) = 27 a (& - &) (h(§) # c exp &, ¢ = const)
k=0
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to take the form

h(8) = 2 kag(& - &)<,
k=1

after analytic continuation along some closed path L.? Assume &3 # 0 and the path
L is the circle l£| = IEOI described in the positive sense. Writing

¢ = exp 2miz, h(exp 27iz) = (z),

we reduce the problem above to the following one:
Does the equation
(4) f(z + 1) = (-i/2m) exp(~27iz) f'(z)
have any solutions f(z) (f(z) # c exp(exp 27iz), ¢ = const) analytic in some strip
a < Sz <pB, where @ and B8 are real numbers?

The equation (4) is a particular case of the equation (1); therefore it has a line-
arly independent, infinite set of entire solutions. Consequently, the equation (4) has
entire solutions other than f(z) = ¢ exp(exp 27iz), ¢ = const, and the answer to the
question of Hurwitz is positive.

The problem of Hurwitz was solved earlier by H. Lewy, who kindly permitted us
to present here his elegant solution

-00
h(z) = S exp [zt + (log t - wi)%/4wildt.
0
I would like to thank A. Marden, who called my attention to the subject of this
paper.

1. FORMAL SOLUTIONS

Using the notation

Df(z) = f'(z), (exp D)f(z) = £z +1),
we write the equation (1) in either of the two forms
(1.1) Lf(z) = 0, L=L(D) =exp D - exp[P(z)]D
and
(1.2) f(z) = Kf(z), K =K(D) =exp(-D)exp[P(z)]D.

We shall restrict ourselves to operating on entire functions ¢(z) that tend to
zero rapidly enough as z — +« along the positive real axis.

Define K1 by the formula

z

S exp [-P(t) ot + 1) dt.

+ 00

n

(1.3)  K7'¢(z) = D exp[-P(z)](exp D) ¢(z)
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Here the integration is along a path consisting first of an infinite segment of the
positive real axis from z =+ to an arbitrary p01nt x0 (S xo = 0), and then of any
rectifiable path from x, to z. It is obvious that K-1K = KK™! =1, where I is the
identity operator.

Consider now the formal series

(1.4) Up(z) = ¢(z) + Ko(z) + K2¢(z) + -,
(1.5) Vi(z) = K-1¢(z) + K-2¢(z) + K 3¢(z) + -,
and

+ oo
(1.6) Wo(z) = Udlz) + Vo(z) = 2 K" ¢(z),

where ¢(z) is an arbitrary entire function tending rapidly enough to zero as z — +
along the positive real axis.

It is easy to verify that W¢(z) is a formal solution of both the equivalent homo-
geneous equations (1.2) and (1.1), and that U¢(z) and -V¢(z) are formal solutions of
the inhomogeneous equation

(1.7) Lf(z) = ¢(z +1).

To explain the main idea, which we shall use for the study of the series (1.4) and
(1.5), we denote by A the angle

(1.8) A={z:7-|argz| <96, -n<argz<m 6>0}

and notice that K¢(z) = exp[P(z - 1)]¢'(z - 1) depends linearly on ¢'(z - 1). Itis
easy to see by induction that KJ¢(z) depends linearly on ¢'(z - j), ¢"(z - j),

, ¢ ( (z - j). Besides, for each z there exists a nonnegative number jg such that
z-j€ Aif j>j,. Therefore the moduli of ¢'(z - j), ¢"(z - j), -+, ¢{ilz - j), and
Ki¢(z) will be arbitrarily small if j > jo and |q’>(z)] is small enough in the angle A.

It will be shown that the series (1.4) converges absolutely and uniformly in each
circle ]zl <R, and U¢(z) is therefore an entire solution of the equation (1.7), if the
entire function ¢(z) tends to zero rapidly enough as z — « in the angle A. Similar-
ly, the series (1.5) converges absolutely and uniformly in each circle ]zl <R, and

-V¢(z) is an entire solution of (1.7) if ¢(z) tends to zero rapidly enough as z — « in
the angle

(1.9) B = {z: |argz| <6}.
The function
(1.10) f(z) = Wo(z) = Ug(z) + Vo(z)

is then an entire solution of the homogeneous equation (1.1). We get a linearly inde-
pendent infinite set of entire solutions of the equation (1.1), on taking in (1.10)
¢(z) = ¢,(z), where {¢a(Z)} is a suitably chosen set of entire functions.

Remark. We can also get the series (1.4) and (1.5) by a method of bilateral
iteration. To get the series (1.4), we write the equation (1.7) in the form
f(z) = Kf(z) + ¢(z), and we define a sequence of successive approximations
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folz) = 0, fi.,(z) = Kfy(z) +¢(z) (1=0,1,32, ).

To get the series (1.5), we restrict ourselves to the case when the free term
¢(z) tends to zero rapidly enough as z — < in the angle B (see (1.9)) and the un-
known function f(z) also tends to zero as z — « in this angle. Using (1.3), we write
the equation (1.7) in the form

f(z) = K '[f(z) - ¢(z)] = SZ exp [-PM)]f(t + 1) - ¢(t + 1)]at,

+o0

and we define the sequence of successive approximations
folz) = 0, £, = K f;(z) - ¢(z)] (G=0,1,2 --).

This method has been used previously by us to solve a linear difference equation
with entire coefficients [6], and by L. Navickaite [7] and A. Gilis [1] to solve some
differential-difference equations.

2. CONVERGENCE AND ORDER OF THE
SERIES (1.4) AND (1.5)

1. Before beginning the study of the series (1.4) and (1.5), we agree on the fol-
lowing notation:

(a) Let p>2 and 0 < 6 < (n/2p). By Hp(A) and Hp(B) we denote the class of
entire functions ¢(z) that satisfy in the angles A and B, respectively (see (1.8) and
(1.9)), the inequality

(2.1) lo(z)| < Cexp(-y|x|P) (z=x+1iy),
where C and y are positive numbers that do not depend on z but may depend on

¢(z). Sometimes we shall also use for these classes the notation Hp(A, y) and
H(B, 7), with the purpose of indicating the factor y in the exponent in (2.1).

(b) We use the customary notation M(r, h) = maxlZ |<r Ih(z) |, for any entire
function h(z). -

(c) For each 6 > 0, we define
(2.2) ay = 1+ctgd, o =1+0y =2+ctgé.
Remark., For p =27, where 7 > 1 is a natural number, the function
o(z) = exp[-az2T] (a>0)

belongs to both the classes Hp(A) and Hp(B). In addition, this function is of order
p =27 and of normal type.

To get such a function ¢(z) for other values of p (p > 2), we denote by 7 >0
any nonintegral number and by K(z, 7) the canonical product with zeros at the points
-n{l/7T) (n=1, 2, 3, ---). The asymptotic equality

log K(z, 7) ~ (—l)pmz'r p=1[7]
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holds (see [8, p. 232]) in the angle Iarg z[ <7 - ¢, for each &€ > 0. We define the
function

(2.3) Gz, 7) = K(az?, 7) (a>0)
if p is an odd number, and
(2.4) G(z, 7) = K(a exp(in/7)z2, 7)

if p> 2 is an even number. This function belongs to both classes Hp(A) and Hp(B)
(p = 27), its order equals p, and its type is normal.

2. THEOREM 2.1. If the function ¢(z) belongs to the class Hy(A) (p >n+1)
ov to the class Hyt1(A, y) with a lavge enough -y, then the series (1.4) converges
absolutely and uniformly in each circle Iz' <R, and its sum

(2.5) G(z) = Ug(z)

is an entive solution of the equation (1.7). Moveover, G(z) belongs to the same class
Hp(A) as ¢(z), and there is a constant Cy = Cy(p) such that

(2.6) IG(Z)I < Cypexpla) r-pla;r)]M[a;(r +1), ¢] (]zlgr),
where
(2.7) p(r) = faolrn+ [allrn‘l +---+]an|.

If the function ¢(z) belongs to the class Hp(B) (p >n +1) or to the class
Hyo+1(B, ¥) with a lavge enough v, then the sevies (1.5) convevges absolutely and
uniformly in each civcle |z| <R, and its sum with the negative sign

(2.8) H(z) = -V¢(z)

is an entive solution of the equation (1.7). In addition, H(z) belongs to the same
class Hp(B) as ¢(z), and theve is a constant C, = C,(¢) such that

(2.9) |H(z)| < Cpexp[2a) rplay(r +1))M(a;(r+1),¢) (|z] =1).

COROLLARY 2.1. The functions G(z) = U¢(z) and H(z) = -V¢(z) have the same
ovder and type as the function ¢(z) (speaking of type, we distinguish only three kinds
of it: the minimal, normal, and maximal types).

Proof of the Corollary. Let p be the order of the function ¢(z). Since
¢(z) € Hp(A) or Hp(B), it follows that pu > p, and if u = p, the type of ¢(z) is at
least normal (see [3, p. 21]). Since p > n + 1, it is easy to conclude from (2.6) and
(2.9) that the order and type of G(z) and H(z) don’t exceed the order and type of the
function ¢(z). On the other hand, the order and type of ¢(z) do not exceed the order
and type of each of the functions G(z) and H(z), as follows from the identities

#(z +1) = G(z +1) - exp[P(2)]G'(z),

n

oz +1) = H(z + 1) - exp[P(z)|H'(z)

and the fact that the order p of ¢(z) is higher than the order n of exp[P(z)].
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3. Theorem 2.1 consists of two statements: the first about the series (1.4), the

second about the series (1.5). To prove the first statement, we use the following
result.

LEMMA 2.1. Suppose j is a natural number, K the operator (1.2), and g(z) a
Sunction vegulay in the civcle e(zj, a) = {z: lz - Zjl < a}, where a > 0, zZj =20 - J,

and zq is a fixed point of the z-plane. Then the function gj(z) = K g(z) is regular
in the civcle e(zg, a) and

(2.10) |lg;(z0)| < (/2 expli-p(lzo]| +i+a)lm,
wheve p(r) is the function (2.17) and

M =Mz, a8 = max le(z)] .

zee(z_j,a)
Proof. From the equation
g,(z) = Kg(z) = exp[P(z - 1)]g'(z - 1)

we easily conclude that g;(z) is regular in the circle e(z;_;, a), where
zj-1 =20 - j+1. Writing a; =a - (a/j) and using the Cauchy inequalities, we get

(2.11) M(z;_1, 21, 81) < (i/a)explp(|zg | +j +a))]m(z;, a, g) .

By the same reasoning, we prove that for i =2, 3, ---, j the function g;(z) = Kg;_1(z)
is regular in the circle e(z;_;, a) (zj.; =20 - j +1) and

(2.12) (255, a5, g3) < (/a)explp(|zo| +j - 1+ 1 +a) Mz 541, a1, 8i-1),

where a; =a;_; - (a/j) =a - (ia/j) and M(zo, 2, g;) = |g;(z0) |-

Multiplying the inequalities (2.11) and (2.12) (i =2, 3, ---, j), and using the fact
that p(r) is an increasing function, we get (2.10).

4. We now assume ¢(z) to be an entire function satisfying in the angle A the
inequality (2.1), with p > n + 1 and with y large enough for p =n + 1, and we con-
sider the general term

(2.13) Tj(z) = K o(z)

of the series (1.4). We recall that 26 is the opening of the angle A, and we write
(see (2.2))

(2.14) a, = cot 6/(1+cotd) =1-1/agp.
Let z € Egy41, where
(2.15) Er = {z: |z| <R},

and let j > ag(R +1). Then z - j € A, R(z - j) < -0zj, and by (2.1),

|¢(z - §)| < Cexp(-¥azi)?) (z € Er+1).

Using Lemma 2.1 (with a = 1), we get the inequality
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(2.16) |Ti(2)| < Ci expli-p(R +j+ 1)]exp[-p(ey§)P]
whenever z € Eg and j > ap(R +1). We notice that R+ 1 <j/ag and p>n+1,
and we suppose y to be large enough for p =n + 1. We easily conclude then from

(2.16) and (2.7) that .

(2.17) ITj(Z)I < exp (--;-/(azj)»o) (G> ag(R+1), z € ER),

which implies rapid uniform convergence in Er of the series (1.4). By the Weier-
strass theorem we can therefore apply the operator K term-by-term to the series
(1.4), so that the sum G(z) is an entire solution of the equation (1.7).

5. We consider now the general term Tj(z) when z € ER and

(2.18) j < agR+1).

If z € Egy, then (see (2.2))

(2.19) |z - j| <R+1+ap®R+1) = a;(R+1)
and
lo(z - )| < M[a;(R+1), ¢] = max  [¢(z)]
lz|<a;(R+1)

whenever z € Egp,;. Using Lemma 2.1, we conclude that
(2.20) lTj(z)l < jexp[i-pR+j+1)IM[a;(R+1),¢] (z¢€Eg, j<ayR+1).
Since

la(z)] < 27 T2 |+ 2 [Ty

j<Lag(R+1) i>ag(R+1)

and the degree n of the polynomial p(r) is not less than 1, we easily deduce from
(2.17) and (2.20) the estimate (2.6).

6. To complete our study of the function G(z), it remains to show that
G(z) € Hp(A). For this purpose, we denote by d; the distance from the point z = -1
to the boundary of the angle A, and we write d = min(d;, 1/2). Then the circle
e;j={z:|z-zo+j| <d} G=1,23 )
belongs to A whenever z; = xg+iyy € A. Consequently (see (2.1)),

lo(z)| < Cexp[-y|xg-j+1/2|P] (p>n+1)

if z € e (Gj=1,2,3, ) and zy € A. Using the inequalities aP +bP < (a + b)P
(a>0, b>0) and x(3 < 0, we get the estimate

|$(z)| < Cexpl-v|xq|Plexp[-2(j - 1/2)P]  (z € ej).

By Lemma 2.1, we therefore have the relation
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(2.21) Ichp(zO)[ = a;-Cexp[-y ENLIP
where
a; < (i/d)exp[i-pl|zo] +i +d)]exp[-2j - 1/2)P].

We notice that Izol < lxol/cos 6, since zg € A. Hence, for j < Izol we have
the inequality

aj; < Cy exp[(2/cos 6)|xo| - pl(2/cos 8)|xq| + d)]exp[-(j - 1/2)P]
< Caemp (@ [x o™ exp[-o( - 1/2)°],

where C;, C,, and a do not depend on j, Xg, p, and y. A similar reasoning shows
that

aj < Czexpla(j - 1/2)™ 1 exp[-1(j - 1/2)P]

for j > Izo ] We use these estimates for aj and recall that p > n +1 and y is suf-
ficiently large for p =n+ 1. We conclude then from (2.21) that

(2.22) |Ki¢(z)| < C3Cexp[-(v/2)( - 1/2)P]exp [-(v/2)xP]

for j=0, 1,2, - and z € A. Here C is the constant of (2.1), and C; = C5(p, 7)
does not depend on j and z. Moreover, C3(p, ) < Cs(p, yo) for y > vq (yo > 0).
From (2.22) it follows that G(z) € Hp(A).

7. We shall now analyze the series (1.5) and its general term

(2.23) 8;(z) = K ¢(z).

In all this analysis we suppose ¢(z) to satisfy in the angle B (see (1.9)) the condition
(2.1) with p > n+1 and with ¢ large enough if p =n+ 1. Consequently (see (1.3))

(2.24) S1(z) = Klo(z) = S exp[-P®)]o(t + 1) dt,
where the integration is along the horizontal half-line
Lic, = {t: St= 39z Rz< Rt <=}
joining the points t =« and t = z.
It will be useful to consider the somewhat more general integral
(2.25) iz, 7) = | exp[-POIst+Da  (T>0).
+oo 4,
First we suppose z and T to satisfy the conditions
(2.26) z+T - 1/2 € B and either x =Rz >0 or T > 2|x| +1/2 if x<0,

and we write 7 =Rt. Foreacht € L+°oz we therefore have the inequalities
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T+T-1/2>0 and |t| < |t+T-1/2| <(7+T-1/2)/cos 5.
Consequently,
(2.27) lexp[-P(t)]] < exp[p((t +T - 1/2)cos 8)] (t € Liw,).
By the law of the mean,
(T+TP > (7+T-1/2P+(p/2)(7 +T - 1/2)P-1,
and therefore
(2.28) [¢p(t +T)| < Cexp[-n7 + T - 1/2)Plexp[-y(7 +T - 1/2)P"']  (te Ly ),

where C is the constant of (2.1). Since p>n+ 1 and n is the degree of the poly-
nominal p(r), we have for t € L,,, the estimate

(2.29) lexp [-P(t)]o(t + T)| < C{C exp[-¢(7 + T - 1/2)P],
where C; = C(p, 7) does not depend on z and T, and where C(p, y) < C1(p, vo)
when y > yg.

We now notice that for a > 0,
+o0 400
5 exp (-yxP) dx < (1/ypaP-1) S ypxP -l exp (-yxP) dx < (1/ypaP-1)exp(-yaPf),
a a

and we deduce from (2.25) and (2.29) that
(2.30) [i(z, T)| < C,Cexp[-y(x+T-1/2P] (x=Rz),

whenever z and T satisfy the condition (2.26). Here C, = C,(p, ¥) does not depend
on z and T; and C,(p, ) < Cy(p, yo) when y > vq.

We need an estimate for I(z, T) also in the case when (2.26) does not hold. To
obtain it, we write

(2.31) I(z, T) = l(z;, T)+1;, I = S exp [-P(t)]¢(t + T) dt,
Z]

where z; is the point of intersection of the line L+,,oz and the boundary of the angle
B. By (2.30), we have the inequality

(2.32) H(z,, T)| < a,

where a = a(p, ) does not depend on z; and T, and where a(p, ¥) < a(p, v¢) when
Y2 Y0.

To get an estimate for I, we notice (see (2.2)) that |z, - z| < agr (r = |z],
|t] <oj(r+1) when t € Liw,, and Rz < %t < %R z,). Therefore
lexp [-P(t)]| < exp[p(a; (r + 1))], and since ¢(t) is small enough in the angle B,

lo(t + T)| < M(a (r +1), ¢) for r > ry. Consequently, for r > ry we have the
estimates
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|Il | < agr exp[p(a;(r + 1)) ]M(a;(r + 1), ¢)
and
(2.33) [1(z, T)| < ayr exp[pla;(r+1))]M(a;( +1), ¢) +a.
8. We return to the general term S;(z) (see (2.23)) of the series (1.5), and we
prove the following proposition.

LEMMA 2.2. Suppose ¢(z) satisfies in the angle B the condition (2.1) with
p>n-+1 and with vy large enough for p=n+1. If

(2.34) z+j/2 € B and either x=%2>0 or j > 2|x| +1/2 when x <0,
then
(2.35) |sj(z)| < C3C exp[-»(x +i/2)P],
wheve C is the constant of (2.1), C3 = C3(p, v) does not depend on z and j, and
Cs(p, v) < Cslp, vo) when v > vy.
For any z and j we have the itnequality
J
(2.36) |8i(2)| < W(x)M(a;(r +1), ¢) + 24 ak(h(r))i-k,
k=1
where h(r) = ayr exp[pla;(r +1))] and a is defined by (2.32).

Proof. We prove the first assertion of the lemma by induction. Since
S1(z) =1(z, 1) (see (2.24) and (2.25)), the statement is true for j = 1 since it follows
from (2.30). For this case j = 1, we may take C3 = C;.

Since the point z and the number j satisfy the conditions (2.34), these conditions
are satisfied also for the point t + 1 and the number j - 1, when t € L;,. We as-
sume (using the method of induction) that

(2.37) ;¢ + 1| < Sl cexpl-Ar +(G+D/2P] (7 = w1

whenever t € L+°°Z.
Using (2.23), we write

(2.38) 8;2) = K181 (2) = S exp[-P(t)]¢, (t +T)dt,
L-I-ooz

where T = (j +1)/2 and ¢; is defined by the equation

¢t +(G+1)/2) = 8;,t+1).
By (2.34) and (2.37), we can apply the result (2.30) to the integral in (2.38), and we
easily get (2.35) with C3=C,.

The second statement of the lemma (the inequality (2.36)) may be proved simi-
larly by means of (2.33).

By this lemma we complete the study of the series (1.5) in the same way as for
the series (1.4).
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9. From Theorem 2.1 it follows that W¢(z) (see (1.6)) is an entire solution of
the equation (1) if ¢(z) belongs to both the classes Hp(A) and Hp(B). But it may
happen that W¢(z) = 0 although ¢(z) # 0. For example, W¢(z) = 0 if
¢(z) = ¥(z) - K¥(z) and ¥(z) € Hp(A) N Hp(B). The existence of entire nontrivial
solutions of the equation (1) shows the following.

THEOREM 2.2. The equation (1) has an entive nontvivial solution.

Proof. For each y > 0, there exists an entire function ¢(z) with the two prop-
erties (i) |¢(0)| > 1 and (ii) ¢(z) satisfies in both the angles A and B the inequality
(2.1) with € <1 and p > n+ 1. For example, the function exp(-az2j) (where j is a
natural number and j > (n + 1)/2) and the function G(z, 7) (27 > n + 1) defined in
(2.3) and (2.4) have for large enough values of a the required properties.

The function f(z) = W¢(z) (see (1.6)) is by Theorem 2.1 an entire solution of the
equation (1), and |£(0)| > |¢(0)| - @ > 1 - @, where

o= 2 [K™e0)|+ 2 [K™¢(0)].
m=1 m=1

From the estimates (2.22) and (2.35) it follows that @ < 1 if y is chosen large
enough. Consequently, £(0) # 0 and f(z) # 0.

Remavk. The function ¢(z) may be chosen so that in addition it is of normal
type with respect to the order p = n+ 1. Then, by Corollary 2.1, the order of the
solution f(z) = We¢(z) is not greater than n + 1, and its type not more than normal. It
will follow from the next theorem that the order of this solution is exactly n +1 and
its type is normal.

10. Suppose f(z) (f(z) # 0) is an entire solution of the equation (1). Then it is
easy to prove that the order of f(z) is not less than n. Indeed, if the order of f(z)
were 7 < n, then the left side f(z + 1) of the equation (1) would have the order 7,
and the right side exp[P(z)]f'(z) the order n.

This result may be improved. For this purpose, we denote by E[u, 0] the class
of all entire functions f(z) of order p not more than u, and of minimal type if p = u.

THEOREM 2.3. Theve does not exist an entive function f(z) (f(z) Z 0) belonging
to the class E[n + 1, 0] and satisfying the equation (1).

Proof. Let f(z) be an entire solution of the equation (1). Then
€0 - D] = lexp[-P(z - DI [£(z)|

for each point zp. Denote by C the circle |z - (zo - 1)| < 1/2, and let

M = max |f(z)| (z € C). By the Cauchy inequalities, |t'(zg - 1)| < 2M. Hence there
exists a point z; € C suchthat |f(z1)| > (1/2)|exp[-P(z - 1)]|Tf(z. )[. We agree
to say that such a point z; is associated with zy, and we note that Tzo -2z | < 3/2.

Consider the sequence of points zy, z,, z,, -, where z;;; is associated with
z; . Clearly,

(2.39) |2; - 2541 | < 3/2,  [#(z341)| > (1/2) |exp[-Plz; - D] |1(zy)]

for i=0, 1, 2, ---.

There exists an angle H with vertex at the point z = 0 such that (see (2))
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(2.40) (1/2) |exp[-P(z - 1)]| > explc |z|*] (c =]ao|/2),

whenever z € H and ]z[ 2> Rg is large enough. Suppose the point zy belongs to the

bisector L of the angle H, and |z,| > 2R,. From (2.39) it follows that

Izi - Zo’ < 3i/2, and therefore there exists a positive number c;, depending only on
the angle H, such that z; - 1€ H for 0 <i<j and c¢; lzo| <j<ey|zg| +1. More-
over, the number c¢; > 0 may be chosen so small that lzi[ > |zg|/2 for

i=0,1, 2, -, ].

We use again (2.39) and (2.40), and we get the inequalities
|tz )| > |i(z9)] |exple |z;|"]  G=0,1,2 -, 5-1).

Let us multiply these inequalities, use j > ¢, |ZO|, and write g = z;j. Then we get
the inequality

(2.41) [£€0)| > |f(zg)| exples |z0]| ™1 (& ]| <e3zo]),

where ¢, = 2"¢cyc, c3=1+3c;].

We agree to say that the point {o = z; is related to the point zp, and by way of a
contradiction we assume the solution f(z) to belong to the class E[n + 1, 0]. Then
(see [3, p. 21]) lim sup [log |£(z)|/|z|?*1]1> 0 when z — = along the bisector L.
Therefore there exists a sequence of points z(!) (z) e L, i =1, 2, 3, ---) such that
z{1) -« and

(2.42) lim [log [f(z(1)]/]z®)|»+1] > 0.

i —oc0
For the points ¢{i) that are related to z(), it follows from (2.41) that
€] 2 1165 exple, 2871 ([g8] < es[20]).

From this and (2.42) it follows that lim inf [log [£#(¢@)|/]¢®)|n*1]> 0 when i — .
But this inequality contradicts our assumption that f(z) belongs to the class
E[n+1, 0].

11. Let us consider a properly meromorphic function f(z), its poles, and the set
of the orders of these poles. The minimum k of this set we call the index of the
function f(z). Since f(z) has at least one pole, its index k is positive. Obviously,
the function f(z + 1) has the same index k, but the index of the function
f'(z) exp[P(z)] is k + 1. Therefore the identity f(z + 1) = £'(z) exp[P(z)] does not
occur. In other words, we have proved the following result.

THEOREM 2.4. The equation (1) does not have properly meromovphic solu-
tions,

3. CONSTRUCTION OF LINEARLY INDEPENDENT SOLUTIONS

1. LEMMA 3.1. Let a;(z), ax(z), -+, amm(z), and &(z) be entive functions, and
let Do(z) = ¢'(z). Then
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m-1

IT (exp(-D) a;(2) D) ¢(z) = II ay(z - )™z - m) + 20 biz) 6Nz - m),

i=1 i=1 i=1

whevre the b;(z) are entive functions.
This lemma may be proved easily by induction. The following is an immediate
corollary.

LEMMA 3.2. Let ¢(z) be an entive function, and let K be the operator (1.2).
The function K™ ¢(z) (m =1, 2, 3, ---) equals zevo at the point z =X if A - m iS a
zero of multiplicity at least m + 1 of the function ¢(z). If X - m is a zevo of multi-

plicity m of the function ¢(z), then K™ ¢(\) = H:l exp [-P(\ - i)]d)(m)(?\ - m).

2. Let us fix a positive number ¢ (0 < ¢ < 7/4) and a point A (|arg x| > o) of

the z-plane. Denote by B(\) the set of all points A -j (j =0, 1, 2, ---), where each
point A - j is counted j + 1 times, and denote by n{B(r), r) the number of points of

the set B(A) belonging to the circle T = {z: |z| <r}. Then there exists a constant
C, independent of A and r, such that

(3.1) n(B(A), r) < Cr?2 (r>1).

Of course, it is impossible for a point A - j of the set B(A) to belong to the circle T,
unless |S 7\[ <r and A - j>-r. Since |arg 7\| > 0, the inequalities

i<r+®a<Cir (C;i=1+coto) and n(B(h),r)Sj(j+1)_<_Cr2 (c=zc-%)

will hold.
Now take a sequence S = {1z, (2, — © and |arg z,,| > ¢), and write

B(S) = U;zl B(z,,). If for some j the point z,, - j isin T, then [Sz,| <r and
[zm[ < r/sin 0. From this and (3.1) it follows that n(B(S), r) < Cr2n(S, r/sin o),
where n(Q, r) denotes the number of points of an arbitrary set Q in the circle

|z| <r. From this we easily obtain the following result.

LEMMA 3.3. Let S and B(S) be the sequences defined above. If the exponent
of convergence of the set S is ., then the exponent of convergence of the set B(S) is
not greatey than | + 2.

3. THEOREM 3.1. Fov each p>n+1 ifn>1 and for each |+t > 2 if n=1,
the equation (1) has a linearly independent infinite set Fy (with cardinality of the
continuum) of entive solutions of ordev L.

Proof. For each p described in the theorem, we fix a number p such that
n+1<p<p (ifn>1) or 2<p<Lp (if n=1). Denote by E, = Eyp the set of all
entire functions ¢(z) with the following properties:

(i) ¢(z) is of order pu,
(ii) ¢(z) € Hp(A) N Hp(B) if p>n+1, and
(iii) ¢(z) € Hp(A, ¥) N Hp(B, ¥), with y > yo large enough, if p =n + 1.

There exists a sequence S; of points ¢, (m=1, 2, 3, ---; £, — «) such that
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5.2 lim [log (log |#(¢,) [)/log [€ |1 = (m — ) if p>n+1,
3.2
lim [log [¢(¢.) | /EH] > 7o (m — ) if p=n+1.

For m > m,, the points { _, belong to neither of the angles A and B, since ¢(z)
is small in these angles. Taking a subsequence if necessary, we may assume that
(& AUB for m=1, 2, 3, - and

(3.3) [s6l>1, [3Cmn| > 2[98].
Denote by j,, a natural number such that
(3.4) Zm = Cmtim€e Bbut z,,-1¢B.

Since 0 <6 < |arg Cm[ < 7 -0, there exists a constant c, independent of m, such
that

(3.5) im < c|zm| and IZmI < Clcﬁll'

As in Lemma 3.3, we denote by S the set {z } and by B(S) the set {z - ]}
(m=1,2,3 +; j=0,1, 2, --), where z,, - j is “counted j+1 times. Notice that
by (3.4) the point Cm is contamed jm + 1 times in the set B(S). For every m, we
exclude from B(S) a single point ¢,,, and denote the remaining set by B1(S). Thus
Bl (S) contains j + 1 times each point z,, - j # {,,, but only j,, times the point
Zm - Jm = cm

From (3.3) and (3.4) it follows that the exponent of convergence of the set S is
zero. By Lemma 3.3, the exponent of convergence of the set B1(S) is therefore not
greater than 2. Not greater than 2 is also the order of the canonical product M(z)
with zeros in all the points of the set B1(S) (and with no other zeros). Since
L>p>2 and ¢(z) € Eup, it is easy to see that ¥(z) = M(z) ¢(z) also belongs to the
set E“p .

Now consider the function f(z) = Wy(z) = Uy(z) + Vi(z) (see (1.6)). By Theorem
2.1, this function is a solution of the equation (1), and its order (see Corollary 2.1) is
not greater than 1. We shall show that its order is exactly p. For this purpose, we
agree to say that an entire or meromorphic function g(z) has the order v on the se-

quence {n;n} (Mm — ) if lim[log(log |g(nm)|)/10g|nm|]= v (m — «), and we
shall prove that the solution f(z) has order not less than pu on the sequence

S=1{z,

By Theorem 2.1, the function Vy(z) € H (B) and therefore (see (3.4))
Vi(z,) — 0 as m — «, Therefore the functlon f(z) has on the sequence S the same
order as Uy(z). To find th1s order, we notice that Y(z) = ¢(z) M(z) has zeros at all
points of the sequence B1(S), and we apply Lemma 3.2. From (1.4) and (3.4) we see
that

(3.6) Uz,,) = ¢(€,) ay, b,
Im ()
where ay, = Il ;=1 exp[-P(zy, - 1)) and by = M7 (€y,).
From (2) and (3.5) it easily follows that there exist two positive constants C and
¢ such that

(3.7) la,] > Cexpl-c;|zy| ™).
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It remains to estimate the magnitude of
(3.8) b, = M(Jm)(cm) =j 11im[M@)/z-¢ V™ (z—¢.).

Since the order of M(z) is not greater than 2 and the least distance between the
zeros of this function is 1, there exists for each € > 0 a constant C = C(¢) > 0 such
that

|M(z)| > C exp(-]¢,|?*E) whenever z e T (T, = {z: |z - ¢ .| =1/2}).

Therefore I(z - Cm)Jm/M(z)l < exp(|§m|2+8)/(21m'c) on the circle T, , and

therefore, by the maximum principle (see (3.8)), ]bm| >Cim! glm exp (- ]§m|2+8).
From (3.2), (3.5), (3.6), (3.7), and the last inequality, it follows that on the sequence
S the order of Uy(z) is not less than 1. Thus we have proved that for each function
¢(z) € E satisfying (3.2), the order of the corresponding solution

f(z) = Wi(z) = W [¢(z) M(z)]
equals u.

To complete the proof of Theorem 3.1, we choose from the set E, , for every
y>0if g >n+1 andfor every y > yy if p =n+1, a function ¢(z) = ¢,(z) satisfy-
ing the two requirements

(i) the type of ¢,(z) equals y and
(ii) there exists a set of points {¢,,} such that (3.2) holds for each ¢(z) = br(2).

The set generated by these functions ¢,(z) we denote by ELIL . If p is an even natu-
ral number, we let the set Eb consist of the functions exp[-azH], where a > 0 for
g4 >n+1 and a > a; is large enough for g =n+ 1. For other values of u, we let
Eh consist of the functions G(z, 7) (u = 27) given in (2.3) and (2.4).

As it has already been proved for each ~qby(z) € Eh , the function
f(z) = Wi (z) = W(¢,(z) M(z)]

is a solution of order u of the equation (1). It remains to prove that the set F u
consisting of these solutions fy(z) is linearly independent.

Take a linear combination

where the ¢; are arbitrary nonzero complex numbers and the y; are arbitrary dis-
tinct positive numbers. The function f(z) may be written in the form
f(z) = W[¢(z) M(z)], where

¢(Z) = E Cid)y_(Z).
i=1 .

Since 7; # y; when i # j, the function ¢(z) belongs to E; and satisfies (3.2). Con-
sequently, f(z) is a solution of order p. Thus f(z) # 0, and the set F, is linearly
independent.
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4. THE INHOMOGENEOUS EQUATION
1. In this section we consider the inhomogeneous equation
(3) Lf(z) = f(z + 1) - exp[P(z)]f'(z) = h(z),

where P(z) is the polynomial (2) and h(z) is an entire or meromorphic function.

LEMMA 4.1. Let h(z) be an entive function. For each p > 2 theve exist two
entive functions hy(z) and hy(z) such that

h;(z) € Hp(A), ha(z) € Hy(B), h(z) = h)(z) +hz(z).

If W(z) is of finite order |, and p is an arbitrary number satisfying the in-
equalities p > 2 and p > u., the functions hy(z) and hp(z) may be chosen so that not
only hyi(z) € Hp(A) and hp(z) € Hp(B) but also the ovder of both h\(z) and h(z)
does not exceed p.

This lemma was used and partly proved in [6]. A full proof may be found in [7].

2. THEOREM 4.1. For each entive function h(z), the equation (3) has an entive
solution £(z). If W(z) is of order ., then for each p (p>n+1, p> ) there exists
an entive solution 1(z) of the equation (3) of order not exceeding p.

To prove this theorem, we use Lemma 4.1, write h(z) = h;(z) + h,(z), and notice
that by Theorem 2.1 the function f(z) = Uhj(z - 1) - Vha(z - 1) is an entire solution
of the equation (3). Using Corollary 2.1, we get the required estimate for the order
of the solution f(z).

Remark. Let f(z) be an entire solution of the equation (3). Then
f(z + 1) = exp[P(z)]f'(z) + h(z). If the order u of h(z) is less than n, then it follows
from this identity that the order of f(z) is not less than n. If g > n, the order of
f(z) is not less than .

3. Consider now the equation (3) with a meromorphic free term h(z). Denote by
Mg (6 > 0) the class of all meromorphic functions h(z) that have in the angle A (see
(1.8)) only a finite number of poles (note that h(z) may have infinitely many poles
outside the angle A).

THEOREM 4.2. For each h(z) € Mg, theve exists a mevomorphic solution
f(z) € Mg of the equation (3). If the functzon h(z) (h(z) € Mp) is of order p, and if
v is the exponent of convergence of the sequence of ils poles, then for each p
(p > x =max(u, v+ 2, n+ 1)) there exists a solution £(z) € Mg of the equation (3)
of order not exceeding p.

¥

Proof. Since h(z) € Mg, there is on the real axis a point Xy such that h(z) is
regular in the angle A; = {z: 7 |arg(z - xo)l <a, @ < 6}. Therefore, for each
0 >n+1 and each y > 0, there exist by a theorem of Mergelyan (see [4 p. 86]) a
entire function g(z) and a constant C such that '

(4.1) |h(z) - g(z)| < Cexp[-v|x]9] (z=x+iye A}, 0 >n+1),

if the width of the angle A; is small enough (@ < 7/20).

Write ¥(z) = h(z) - g(z). Obviously Y(z) € Mg, .and therefore, for each r > 0,
there exists a number jo such that Y(z - j) is regular in the circle Izl <r for
j >jo. By virtue of this property and (4.1), the series (see (1.4)) G(z) = U(z - 1).
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converges absolutely and uniformly in each circle |z| <r. The function G(z) is
therefore a meromorphic solution of the equation

(4.2) Lf(z) = y(z) = h(z) - g(z).

This assertion may be proved in the same way as in Theorem 2.1, even though Y(z)
is not entire.

Now we use in (3) the function f(z) = F(z) + G(z). We get the equation
(4.8) LF(z) = hy(z),

where hij(z) = h(z) - LG(z). Since G(z) is a solution of (4.2), the function

h;(z) = h(z) - (h(z) - g(z)) = g(z) is entire. By Theorem 4.1, Equation 4.3 has an
entire solution F(z). The function f(z) = F(z) + G(z) is then a meromorphic solution
of the equation (3). Obviously G(z) ¢ Mg and f(z) ¢ Mg.

To get the estimate for the order of the solution f(z) required in the theorem,
we take in (4.1) 0 =n+ 1 and notice that by the theorem of Mergelyan mentioned
above the function g(z) in (4.1) may be chosen so that the order of g(z) is not
greater than x; = max(n+1, p) (¢ is the order of h(z)). Such will also be the
order of Y(z) = h(z) - g(z).

Denote the poles of the function h(z) by A; (i=1, 2, 3, ==-; |A;| < [Xi41]), and
surround each A; (|A;| # 0) by the two circles

=q{z: |z -2 <c|r;]P} and e;} = {z: |z - ;| < 3c|n;] 7P},

where h is chosen so that h > y, and ¢ > 0 so that
o]

(4.4) 6c(1+Z) |Ai|'h)< 1 (%0,
i=1

If A, =0, we take e; = {z: |z| <c} and e] = {z: |z| < 6c}. Outside the set
E = Ui:l e; the function ¥(z) satisfies for each € > 0 the condition

(4.5) ly(z)| = O(]z|#¥E).

From (4.4) it follows (see [5]) that there exists a point zg such that the net N
consisting of the lines f#z=Rzy+j and Jz=Fzg+j (j=0, £1, £2, ---) inter-
sects none of the circles ei1 . Consequently, (4.5) holds on the net N and its neigh-
borhood N, described as follows: z € N; if there exists a point { € N such that
|z - ¢] <cl¢|™™ when [¢] >1 and |z - €| <c if |¢| <1 (here c isthe same as
in (4.4)). We also notice that z € N implies z - j € N for j =0, 1, 2, ---, and it is
then easy to see that on the net N we may treat the series G(z) = Uy(z) in exactly
the same manner as the series U¢(z) in the proof of Theorem 2.1. We conclude that
for each € > 0 we have the estimate

(4.6) |G(z)| = O(|z|x1+8) (z € N, x; =max(u, n+1)).
If A is a pole of Y¥(z) of multiplicity k, then A +1 is a pole of Ky(z) (see (1.2)) of

multiplicity k + 1, and A + 2 is a pole of K?y(z) of multiplicity k + 2, and so forth.
Consequently, all the poles of the function G(z) belong to the set
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T={r+§:1=1,2,3,;§=0,1,2, -},

in which the point A; +j is contained j + 1 times. We recall that the exponent of
convergence of the set {)\i} equals v. Therefore the exponent of convergence of
the sequence T is by Lemma 3.3 not greater than v + 2. Not greater than v +2 is
also the order of the canonical product M(z) with zeros at all the points of the set
T. From (4.6) and the maximum principle, it follows now that the order of the func-
tion M(z)G(z) is not greater than x = max(x;, v +2) =max(n+1, u, v +2). The
same is true of the order of both the functions G(z) and h;(z) = h(z) - LG(z). By
Theorem 4.1, for each p > x there exists an entire solution F(z) of the equation
(4.3) of order not exceeding p. The order of the solution f(z) = F(z) + G(z) of the
equation (4) likewise does not exceed p.

4. We complete the study of the meromorphic solutions of the equation (3) by
showing that the condition h(z) € Mg is to some extent essential for the existence of
such solutions.

First we prove the following statement: If the free tevm h(z) of the equation (3)
is vegular at the points » -j (5 =1, 2, 3, «++), then each meromorphic solution f(z)
of this equation (3) is vegular at the point 1.

Suppose A is a pole of order k of the solution f(z), and consider the identity
(4.7) f(z +1) = exp[P(z)]f'(z) + h(z)

at the point A - 1. The term f(z + 1) has at this point a pole of order Kk, the term
h(z) is regular at the point, and exp[P(z)] # 0. Therefore the function £'(z) has at
A - 1 a pole of order k, and consequently f(z) has at the same point a pole of order
k - 1. By the same reasoning, we deduce that f'(z) has at the point X - 2 a pole of
order k - 1, that f(z) has a pole of order k - 2, and so forth. Thus f'(z) has at the
point A - k a simple pole, which is impossible.

Now suppose that h(z) is regular at the points A +j (j=1, 2, 3, :--), but has a
pole of order k at the point A. From the staternent above and the identity (4.7) it
follows that the solution f(z) has a pole of order k at the point A + 1. We consider
again the identity (4.7) at the points A +1, A + 2, -++, and we conclude that f(z) has a
pole of order k +1 at A + 2, of order k +2 at A + 3, and so forth.

Let us agree to say that two points A and p are comgruent if X - 4 is an inte-
ger, and take a free term h(z) having no pairs of congruent poles. Also, suppose the
function h(z) has infinitely many poles A, in the half-strip

S={z:-a<3z<a a>0, Rz <0}.

If for such a free term h(z) a meromorphic function f(z) were a solution of the
equation (4), then f(z) would have poles at all the points A; +j (i, =1, 2, 3, --+).
But this is impossible. Of course, for each i =1, 2, 3, ---, there is an integer j;
such that X; +j; belongs to the rectangle R = {z:-a<3z<a 0<Rz< 1}.
Moreover, \; +j; # A + jk if i # k. Thus the function f(z) would have infinitely
many poles in R.
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