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1. INTRODUCTION

Throughout this paper, A is a B*-algebra and 7 is a continuous representation
of A on a Hilbert space H. The representation 7 is not assumed to be adjoint-
preserving. Let B(H) denote the algebra of all bounded linear operators on H. In
this paper we consider the following question concerning the representation 7.

Do theve exist a *-vepresentation vy of A on H and an operator V with
V, V-1 ¢ B(H) such that wn=V-1yV?

If such a representation y and operator V exist, then 7 is said to be similar
to y. The question stated above for representations of a B*-algebra had its origins
in a related question concerning group representations of a locally compact
group G.

If & is a strongly continuous, uniformly bounded vepresentation of G orn H, do
theve exist a unitary vepresentation v of G on H and an opevator V with
V, V-1 € B(H) such that 6=V-17V?

In [6], J. Dixmier answered the second question affirmatively for the case where
G is abelian. More generally, the answer is known to be affirmative whenever G is
an amenable group [9, Theorem 3.4.1]. However, there do exist strongly continu-
ous, uniformly bounded representations of some important locally compact groups
that are not similar to any unitary representation of the group. An example is pro-
vided by L. Ehrenpreis and F. I. Mautner in [8]. The corresponding question for
representations of a B*-algebra remains open.

The group question and the algebra question are closely related. If 6 is a
strongly continuous, uniformly bounded representation of G on H, then & lifts in the
usual way to a continuous representation 8, of L!(G) on H. The algebra L!(G) has
a largest B*-norm

£l = sup {[[+®)]: ¥ is a *-representation of L(G)},

and |ff; > [[f]| for £ e L1(G) (|£]l, denotes the usual L!-norm of f). If 6, is con-
tinuous with respect to - ||, then §; extends to a continuous representation 7 of
C*G) on H, where C*(G) denotes the B*-algebra that is the completion of L1(G) in
the norm || . || . It is easy to verify that if # is similar to a *-representation of

C*(G) on H, then 6 is similar to a unitary representation of G on H. In the other
direction, if 7 is a continuous representation of A on H such that the restriction of
7 to the group of unitaries in A is similar to a unitary representation, then 7 is
similar to a *-representation of A on H.
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The similarity question for representations of a general B*-algebra first ap-
peared in the literature in 1955 in a paper by R. V. Kadison [11]. In [11], Kadison
derived very general necessary and sufficient conditions for a continuous represen-
tation of a B*-algebra to be similar to a *-representation. In [1], [2], and [3], the
present author also considered the similarity question for representations of a B*-
algebra and some related questions. The proof of the main theorem in [3] is simpli-
fied in this paper. The best results on the question are due to J. Bunce. He proves
in [4] that if A is strongly amenable (in the sense of B. E. Johnson [10]), then the
similarity question for representations of A has an affirmative answer. Particular
examples of strongly amenable B*-algebras are the GCR (post-liminaire) algebras
of I. Kaplansky and uniformly hyperfinite algebras.

In this paper, we show that if 7 is a continuous representation of A on H such
that the representations 7 and a — 7 (a*)* have a common cyclic vector, then there
exist a self-adjoint operator U (perhaps unbounded) with domain in H and dense
range in H, and a *-representation v of A on H such that 7 = U-19U on the do-
main of U. In particular, this holds whenever 7 is irreducible. The *-representa-
tion y is unique in the sense that if 7 is similar to a *-representation of A on H,
then 7 is similar to vy.

At this point we introduce some notation. Let ¢ be the universal representation
of A on the universal representation space Hg [7, p. 43]. We denote the w.o.
(weak operator) closure of ¢(A) in B(Hg) by B. If X is a Banach space and T is
a linear operator on X, let @(T), #(T), and # (T) denote the domain, range, and
null space of T, respectively. Let X* denote the dual space of X. If x € X and
f € X* we use the notation (x, f> = f(x).

2. THE RESULTS

There is a standard lifting theorem to the effect that a *-representation of a
B*-algebra A lifts to a *-representation of B, the von Neumann enveloping algebra
of A [7, 12.1.5]. We prove a generalization of this theorem. Our original proof was
patterned after a proof of a related result of P. G. Spain in [16].

THEOREM 1. Let p: A — B(X) be a continuous vepresentation of A on a ve-
flexive Banach space X. Then theve exists a vepresentation p: B — B(X) such that
p(¢(a)) = p(a) for all a € A, and § is continuous as a map from B in the w.o. lo-
pology into B(X) in the w.o. topology. Furthermove, the set {T € p(B): "T” <r}
is w.o. closed for all r > 0.

Proof. If x € X and f € X*, then a — <p(a) X, f) is a continuous linear func-

tional on A. Then, by [7, Corollaire (12.1.3)(ii)], there exists a unique w.o. contin-
uous linear functional w[x, f] on B with the property that

wlx, £1(¢@) = {p@)x,£) (a e A).

Also, by [7, Corollaire (12.1.3)(iii)] the norm of w[x, f] on B is the same as the
norm of a — <p(a) X, f> on A. Therefore

|wlx, 1) < loll =l £l v

whenever x € X, f € X* b € B. It follows that for each b € B, the form w[x, £](b)
is continuous and bilinear on X X X*. Hence, since X is reflexive, there exists a
unique operator p(b) € B(X) such that
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(Bb)x, 1) = wlx, £](b)

whenever x € X, f € X* and b € B. That p is linear and continuous as a map from
B with the w.o. topology into B(X) with the w.o. topology follows immediately.
Since

pb) = p(e=1(b)) (b € ¢(a)),

f is an algebra homomorphism on ¢(A). Fix b € ¢(A) and c € B. Let {c)} bea
net in ¢(A) such that cy — c in the w.o. topology in B(Hg). Then bcy — be in the
w.o. topology, so that

plocy) — plbe) and  p(b) flcy) — plb)plc)

in the w.o. topology in B(H). Since p(bc,) = p(b) g(c,), we have the relation
p(be) = p(b) p(c). Essentially the same argument establishes that

plbe) = p(b)p(c)  whenever b, c € B.

Thus, p is a representation of B on X.

Now, if r > 0, let W, = {T € §(B): |T|| <r}. By [5 Lemma 5.3], 5(B) isa
norm-closed subalgebra of B(X). Suppose T is contained in the w.o. closure of
W, . Choose a net {T) } suchthat Ty — T in the w.o. topology. By the open-
mapping theorem, there exists a bounded net {by } € B such that p(by) = T), for all

A. Therefore there exist a subnet {CG} of {bx} and some b € B such that c5—b
in the w.o. topology. Hence

p(b) = w.o. lim p(cg) = T.

This completes the proof.

Let p be a continuous representation of A on a reflexive Banach space X. In
the remainder of this paper, we simplify our notation by denoting the extension g
constructed in Theorem 1 also by p. This should cause no confusion.

Next we use Theorem 1 to simplify considerably the proof of the main result
in [3].

THEOREM 2. Let X be a reflexive Banach space, and let p be a continuous,

irveducible vepresentation of A on X. Assume that theve exists a nonempty subset
S of B such that

W = n{./V(p(b)): besS}
is a nonzevo, finite-dimensional subspace of X. Then X is a Hilbert space in an
equivalent novym, and p is similar to a *-representation of A on this Hilbert space.
Proof. Let
L ={be B:p(b)w={0}} .
By Theorem 1, L is a w.o0. -closed left ideal of B. Therefore, by [15, Proposition
1.10.1], there exists a projection p € B such that L. = B(1 - p). This implies that

p(ppw=w for all w € W. Also, since S C L and p(b)p(p) =0 for all b € S, we see
that #(p(p)) = W. Thus p(p) has finite-dimensional range, so that the algebra



28 BRUCE A. BARNES

p(pBp) is finite-dimensional. A nonzero idempotent e in a complex normed algebra
D is minimal if eDe = {Ae: A complex}. Standard Wedderburn theory implies that
there exists q € pBp such that p(q) is a minimal idempotent of the finite-dimen-
sional algebra p(pBP). Thus p(q) is a minimal idempotent of p(B), since

p(a) p(B) p(a) = p(aBa) = p(gpBpa) = {Ap(q): X complex} .

Therefore B/ker (p) contains a minimal idempotent, so that the result follows from
[3, Corollary 2.3].

Recall from the Introduction that 7 denotes a continuous representation of A on
a Hilbert space H. If 0 is a representation of A on H, and C is a *-subalgebra of
A, let 6 denote the restriction of 6 to the algebra C.

Now we state and prove the main result.

THEOREM 3. Assume that theve exists xq € H such that both w(A)xqy and
7(A) *xo ave dense in H. Then theve exist a *-representation y of A on H and a
self-adjoint operator U (possibly unbounded) with the properties U > 0, U is one-
to-one, and R(U) is dense, such that for all x € @ (U) and all a € A

m(a)x = U-ly(a) Ux .

Furtheymove, if C is a closed *-subalgebva of A such that nc is similar to a *-
rvepresentation of A, then wc is similar to yc.

Proof. Define a functional 8 on B by the equation
B(a) = (m(a)xg, xq) (a € B).

Since 7 is w.o.-continuous by Theorem 1, 8 is a normal functional on the von
Neumann algebra B. By the polar-decomposition theorem for normal functionals
[7, p. 240], there exists a partial isometry u € B such that @ = u*-8 is a positive
functional and B =u-ca. Let x; = 7(u*) *x,. With this notation,

a(a) = (1(a) xg, x;) (a € B).

Also, (w(a)xg, xg) = Bla) = (w(u) n(a) X, x;) for all a € B. Since 7(A)x( is dense in
H, it follows that 7(u) *x; = xg. Thus 7(a) *x¢ = w(ua) *x; (a € B). By hypothesis,
m(A) *x is dense in H, and so we have proved that

(1) 7(B) *x, is dense in H.
Now define a form < <, > with domain D = 7(B) xg by
<ﬂ(a)x0, ﬂ(b)x0> = a(b*a) (a, b € B).

Using (1), we can easily verify that n(a) xy = 0 if and only if a@(a*a) = 0. This im-
plies that the form < <, > is well-defined. Since « is a positive functional, this
form is symmetric and nonnegative. Let V be the self-adjoint positive operator as-
sociated with the closure of this form as in [12, Theorem 2.23, p. 331]. Let U be the
positive square root of V. By [12, Corollary 2.27, p. 332], D is a core of U. This
means, by definition [12, p. 166], that if x € %(U), then there exists {x,} € D such
that x, — x and Ux, — Ux. In particular, UD is dense in #(U). Since V = U2, we
see that #(V) c42(U). We use this and (1) to prove that UD is dense in H. It suf-
fices to show that #2(V) is dense in H. For all a, b € B, we have the relations
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(m(a) xq, Va(b)xg) = { m(a)xg, T(0)x) = alb*a) = (n(a)xq, 7(b*) *x).

Since m(A)x, is dense in H, it follows that Vm(b)xg = n(b*) *x, for all b € B.
Therefore & (B) is dense, by (1). We have verified that

(2) Un(A)x, is dense in H.

Note that U is one-to-one on @ (U), since #(U) is dense in H.

Next we define the *-representation p. Let
L ={aeB:afa*a)=0} = {aeB:Un(a)xg=0} = {a e B:m(a)xg=0}.
Form the quotient space
B/L ={a+L:ae B}.
As usual, B/L is an inner-product space with inner product
(a+L,b+L) = a(b*a) (a,be B).

Let H, be the Hilbert-space completion of this inner-product space, and let 6, be
the *-representation of B on H, determined in the usual fashion by the equation
8y(0) (@ + L) =ba+ L (a, b € B). Define a map Wo: B/L — H by

Wola + L) = Un(a)xg.
Since for all a € B,
<a +L,a+ L) = afa*a) = ”Un(a)xoﬂz,
it follows that W extends to a unitary map W of Hy onto the closure of Un(A)xg

in H. By (2), W is a unitary map of H, onto H. Define a *-representation
y: B — B(H) by

y(a) = Wo,(a)W-!  (a e B).
If a, b € B, then

v(a) U(n(b) xy) = Wog(a) (b + L) = W(ab + L) = Un(a) (m(b) xq) .
Recall that D is a core of U [12, Corollary 2.27, p. 332]. Thus, if x € @(U), then

there exists {xn} C D such that x, — x and Ux, — Ux. By the previous computa-
tion,

Ya) Ux, = Un(d)x, (n>1),
so that for each a € B,
m(a)x, — 7m(a)x, Un(a) x, = v(a) Ux, — y(a) Ux.
Since U is closed, it follows that

(3) m(a)x € @(U) and Un(a)x = y(a)Ux (x € @(U), a € B).



30 BRUCE A. BARNES

Now let C be a closed *-subalgebra of A, and suppose that there exist a *-
representation 8 of C and an invertible operator S € B(H) such that

S-15(a)s = n(a) (ae Q).
Then, for x € @(U),
8(a)Sx = Su(a)x = SU"!y(a) Ux.

If y = Ux, we have the equation
8(a)SUly = sU- Ll y(a)y.
Let T =SU-!. Then @(T) =#(U), and for y € @(T),

(4) 6(a) Ty = Ty(a)y (ae C).

It is a straightforward exercise to verify that T is nonsingular in the sense of [13,
p. 285]. Then it follows from (4) and [13, Theorem 1, p. 285] that there exists a uni-
tary operator R € B(H) such that

Ha) = Ré(a)R-1 = (RS)n(a) (RS)-!

for all a € C. This completes the proof.

COROLLARY 1. Assume that w is irreducible. Then the conclusions of Theo-
vem 3 hold. Let vy be as in the statement of Theovem 3, Then 7 is similar to a

*-yepresentation of A on H if and only if vy is ivveducible.

Proof. Fix xg € H (xg # 0). Since 7 is irreducible, 7(A)xo is dense in H.
Suppose y € H and y 1 7m(A) *xg. Then 7(A)y L Xg, and since 7 is irreducible and
Xg # 0, it follows that y = 0. Thus, 7(A) *x¢ is dense in H. This proves that Theo-
rem 3 holds. We use the notation of Theorem 3 in what follows.

If 7 is similar to a *-representation of A on H, then by Theorem 3, 7 is simi-
lar to y. Therefore, in this case, y is irreducible. Conversely, assume ¥y is
irreducible. Let

L ={aeA:yla*a)=0}.

By [7, Théoréme 2.9.5], L. is a maximal modular left ideal of A. Since
Un(a*a) = p(a*a)U =0 for all a € L, we see that

0 = (ma*a)xg, x;) = ala*a) = |[Ur@@)xyl|2 (ae L).

Thus L = {a € A: 7(a)xo = 0}. Therefore, by [3, Proposition 2.2], 7 is similar to a
*-representation of A on H. Thus 7 is similar to y, by Theorem 3.

If C is a commutative B*-algebra and 8 is a continuous representation of C
on a Hilbert space H, then it follows indirectly from Dixmier’s result for represen-
tations of abelian groups [6, Théoreme 6] or directly from Bunce’s result [4, Theo-
rem 1], that 6 is similar to a *-representation of C on H. We use this fact sev-
eral times in the proof of the next corollary.

COROLLARY 2. Assume that m is ivveducible and w(B) contains a subalgebra
that is similar to a maximal commutative *-subalgebra of B(H). Then 1w is similar
to y. This is the case if there exists b € B such that w(b) is similar to a self-
adjoint opervator with a cyclic vector in H.
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Proof. Let C be a maximal commutative *-subalgebra of B(H), and assume
that S is an invertible operator in B(H) such that

s-1cs c #(B).

By replacing 7 with the representation a — Sw(a) S-1, if necessary, we may assume
without loss of generality that C € #(B). Since 7 is w.o.-continuous, there exists a
central projection q € B such that ker (r) = (1 - q) B(1 - q) [15, Proposition 1.10.5].
Let mq denote the restriction of 7 to qBq. Consider the representation

mgl: C — B(Hg).

By the remarks preceding the corollary, there exists an invertible operator
W e B(H¢) such that

c — W‘lﬁil(c)W

is a *-representation of C. Then K = W-1 nél(C)W is a commutative B*-algebra.
Define a *-representation 6; of K on H by

6,(a) = n(Waw 1) (a € K).
Then a — »(WaW-1) is a continuous representation of K on H. As before, this
representation is similar to a *-representation 6, of K on H. Thus, there exists
an invertible operator R € B(H) such that

6,(a) = R-1y(WaW-1)R (a € K).

Since Un(b) = ¥(b) U for all b € B, we have for all a € K the equations

It

R-1U6,(a) = R-1Un(Waw-!) = R-1y(Waw-1) U

R-1y(WaW-1)RR-1U = 6,(a)R-1 U.

It is easy to verify that R-1 U is nonsingular [13, p. 285]. Therefore, by [13, Theo-
rem 1, p. 285], there exists a unitary operator S € B(H) such that

6,(a) = 8-10,(a)S (2 € K).
Hence,
C = 61(K) = S°16,(K)S = S"IR-1 y(WKW-1)RS.

Let T = RS. We have shown that TCT-! c ¢(B). If E is a projection contained in
¥(B)', then T-! ET commutes with C. Therefore T-! ET € C, so that

E € TCT-! C ¥(B). There exists an idempotent e € B such that y(e) = E. Then
U-1y(e) U is a bounded idempotent that commutes with 7(B). By the irreducibility
of 7, the projection y(e) must be either 0 or the identity operator. Thus, y(B)'
consists of scalar multiples of the identity operator. Hence v is irreducible, and
Corollary 1 implies that 7 is similar to 7.

Now assume that S € B(H) is self-adjoint with a cyclic vector in H, and that
there exists an invertible operator R € B(H) such that S € Ru7(A)R-1. The map
a — Rr(a)R-! is a w.o.-continuous representation of B into B(H). Let D be the
uniformly closed subalgebra of B(H) generated by S and the identity operator.
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Then D C R7(B)R-1, by [5, Lemma 5.3]. Let C be the w.o. closure of D in B(H).
By Kaplansky’s density theorem, every operator in C is the w.o. limit of a bounded
net in D. It follows from Theorem 1 that C € Ra#(B)R-1. The result then follows
from the previous argument if C is a maximal commutative *-subalgebra of B(H).
We verify that this is the case. By a standard form of the spectral theorem, there
exists a finite regular Borel measure p on X, the spectrum of S, such that S is
unitarily equivalent to the multiplication operator Mg on L2(X, u), where ¢(t) =t

(t € X) (see the proof of [14, Theorem 1.6]). Then it follows from [14, Theorem
1.20] that C is unitarily equivalent to L®(X, 1), and hence that it is a maximal
commutative *-subalgebra of B(H).
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