EMBEDDINGS OF k-ORIENTABLE MANIFOLDS

Keith R. Ferland

1. INTRODUCTION

Let M be a closed, k-connected, smooth, n-dimensional manifold, and let M_0 denote M minus a point $x_0 \in M$. In [2], J. C. Becker and H. Glover showed that for $j \leq 2k$ and $2j \leq n$ - 3, the manifold M embeds in R^{2n-j} if and only if M_0 immerses in R^{2n-j-l} . We shall extend this result to j=2k+1 by placing an additional condition of orientability on M.

A vector bundle is called k-*orientable* if its restriction to the k-skeleton of its base is stably fibre-homotopy-trivial. A manifold is k-orientable if its tangent bundle is k-orientable.

Letting M be (k + 1)-orientable with $k \le (n - 5)/4$, we state our main theorem.

THEOREM 1.1. M embeds in $R^{2n-2k-1}$ if and only if M_0 immerses in $R^{2n-2k-2}$.

This result reduces an embedding problem to one involving an immersion in which the top obstruction vanishes.

As applications we obtain the following.

THEOREM 1.2. Let M be an n-dimensional, simply-connected spin manifold with $n \equiv 3 \pmod{4}$ and $n \ge 11$. Then M embeds in R^{2n-3} .

Proof. It is sufficient to show that the associated bundle with fibre $V_{m,m-n+4}$ has a cross-section, for large m. The obstructions to such a cross-section lie in $H^{i+1}(M_0;\pi_i(V_{m,m-n+4}))$. If i < n-4, then $\pi_i = 0$. For i = n-4, the obstruction \overline{w}_{n-3} is 0, by [7]. The homotopy group π_{n-3} is 0, by [6]. By connectedness, $H^{n-1}(M_0) = 0$, and finally, $H^n(M_0) = 0$.

COROLLARY 1.3. If M is a closed, almost parallelizable, k-connected n-manifold and k \leq (n - 5)/4, then M can be embedded in R^{2n-2k-1}.

The corollary follows from the fact that M is (n-1)-orientable and that by [4] M_0 can be immersed in \mathbb{R}^n . This corollary extends a result of R. de Sapio [8], for some values of k.

2. ORIENTABILITY

Let $\mathscr E$ be a spectrum as defined in [10]. Let $\mathscr S$ denote the sphere spectrum, and let $\mathscr S^k$ denote the k-stem spectrum. (We obtain $(S^n)^k$ from S^n by killing the homotopy group for $i \ge n+k$ with the inclusion map $\lambda \colon S^n \to (S^n)^k$.) As in [10], we have a generalized homology and cohomology theory defined by

Received November 11, 1973.

Michigan Math. J. 21 (1974).

$$H_n(Y; \mathscr{E}) = \lim \pi_{n+q}(E_q \wedge Y),$$
 $H^n(Y; \mathscr{E}) = \lim [S^q Y, E_{n+q}].$

An \mathscr{E} -fundamental class for M is an element $z \in H_n(M; \mathscr{E})$ such that $(j_x)_*(z)$ is a generator of $\widetilde{H}_n(S^n; \mathscr{E})$ as an $H^*(pt; \mathscr{E})$ -module for each $x \in M$. Using an argument similar to that found in [9, p. 304], we obtain the following.

LEMMA 2.1. A vector bundle over M is k-orientable if and only if it has an \mathscr{G}^k -fundamental class.

3. PROOF OF THEOREM 1.1

We can now prove the sufficiency, using some standard techniques of algebraic topology together with a result of Becker [1].

Since M embeds, M_0 immerses in $R^{2n-2k-1}$. To reduce the codimension of this immersion by one, it is sufficient to find a cross-section to $S(\alpha)$, the sphere bundle associated with the restricted normal bundle α to this immersion. Since M is (k+1)-orientable, α is (k+1)-orientable. Therefore, by [1], it is sufficient to show that M_0 is contractible in M_0^{α} , the Thom space. M_0^{α} is (n-k-1)-connected, by an argument using the Thom Isomorphism Theorem, the Van Kampen Theorem, and the Hurewicz Theorem. The groups $H^p(M_0)$ are 0 for $n-k \leq p \leq n-1$, and $H^n(M_0)=0$. Therefore all obstructions vanish.

The necessity will follow after a series of lemmas and the application of a technique used in [3].

LEMMA 3.1. If M_0 immerses in $R^{2n-2k-1}$ with a normal vector field, then M_0 embeds in $R^{2n-2k-1}$ with a normal vector field.

The lemma follows from [5, Theorem 5.1].

Let M_1 denote M minus the interior of an n-disk E_1 of radius 1 and center at x_0 , and let M_2 denote M minus the interior of an n-disk E_2 of radius 2 and center at x_0 .

Assume f: $M_0 \rightarrow \mathbb{R}^{2n-2k-1}$ is an embedding with a normal vector field. Let

$$X = R^{2n-2k-1} \setminus f(M_2).$$

LEMMA 3.2. If $g: E_2 \to X$ is a proper map whose restriction to the complement of some compact set is an embedding, then there exists a homotopy, fixed outside some compact set, that deforms g into an embedding.

Proof. Using Alexander and Poincaré dualities, we see that $H_i(X) = 0$ for all $i \le n - k - 2$. The set X is simply connected, by a general-position argument. Therefore, by the Hurewicz Theorem, X is (n - k - 2)-connected. The result now follows from [3].

LEMMA 3.3. $H_{n-1}(X; \mathscr{S}) \simeq H_{n-1}(X; \mathscr{S}^{k+1})$.

Proof. It is sufficient to show

$$\pi_{n-1+q}(X \wedge S^q) \simeq \pi_{n-1+q}(X \wedge (S^q)^{k+1}).$$

The Kunneth formula gives us a commutative diagram of short exact sequences associated with the maps id: $X \to X$ and $\lambda \colon S^q \to (S^q)^{k+1}$. The homomorphism

$$(id \wedge \lambda)_* : H_i(X \wedge S^q) \to H_i(X \wedge (S^q)^{k+1})$$

is an isomorphism for $i \le n-1+q$, and it is surjective for i=n-1, by the fivelemma. The result follows from Whitehead's Theorem.

LEMMA 3.4. The homomorphism $i_*: H_{n-1}(\partial M_1; \mathscr{S}^{k+1}) \to H_{n-1}(M_1; \mathscr{S}^{k+1})$ is constant.

Proof. The groups $H_i(E_1; \mathscr{S}^{k+1})$ are 0 for $i \ge k+1$. Therefore, the mappings

$$\partial \colon \mathrm{H}_{\mathrm{n}}(\overline{\mathrm{E}}_{1}\,,\,\partial \overline{\mathrm{E}}_{1}\,;\,\mathscr{S}^{\,\mathrm{k}+1}) \to \mathrm{H}_{\mathrm{n}-1}(\partial \overline{\mathrm{E}}_{1}\,;\,\mathscr{S}^{\,\mathrm{k}+1})$$

and

$$i_*: H_n(\overline{E}_1, \partial \overline{E}_1; \mathscr{S}^{k+1}) \to H_n(M, M_1; \mathscr{S}^{k+1})$$

are isomorphisms.

Since $j_*: H_n(M; \mathscr{S}^{k+1}) \to H_n(M, M_1; \mathscr{S}^{k+1})$ is surjective, by the existence of a fundamental class, it follows that $\partial: H_n(M, M_1; \mathscr{S}^{k+1}) \to H_{n-1}(M_1; \mathscr{S}^{k+1})$ is zero. The sufficiency now follows from the commutative diagram

$$\begin{array}{ccc} H_{n-1}(\partial M_1; \mathscr{S}^{k+1}) & \xrightarrow{i_*} & H_{n-1}(M_1; \mathscr{S}^{k+1}) \\ & & \downarrow \partial \ (\cong) & & \downarrow \partial \ (zero) \\ H_n(\overline{E}_1, \ \partial \overline{E}_1; \mathscr{S}^{k+1}) & \xrightarrow{i_*(\cong)} & H_n(M, M_1; \mathscr{S}^{k+1}) \end{array}$$

We now prove the necessity.

Because M_0 immerses in $R^{2n-2k-2}$, it immerses in $R^{2n-2k-1}$ with a normal vector field. By Lemma 3.1, M_0 embeds in $R^{2n-2k-1}$ by some map f and with a normal vector field $\nu \colon M_0 \to R^{2n-2k-1}$ such that $\nu(x)$ is a unit vector orthogonal to the image under df of the tangent plane to M_0 at x. Let ϵ be a positive real number small enough to be the radius of a tubular neighborhood of $f(M_1)$. Let $\lambda \colon M_1 \to [0, \, \epsilon]$ be a differentiable map equal to ϵ on M_0 and equal to 0 on ∂M_1 . Define g: $M_1 \to X$ by $g(x) = f(x) + \lambda(x) \nu(x)$.

By Freudenthal's Suspension Theorem, the homomorphism

S:
$$[S^{n-1+q}, S^q X] \rightarrow [S^{n+q}, S^{q+1} X]$$

is an isomorphism for all q, since X is (n - k - 2)-connected. Therefore, $i_0: \pi_{n-1}(X) \to H_{n-1}(X; \mathscr{S})$ is an isomorphism. From the commutative diagram

$$\pi_{n-1}(\partial M_{1}) \xrightarrow{i_{0}} H_{n-1}(\partial M_{1}; \mathcal{S}) \xrightarrow{\lambda_{*}} H_{n-1}(\partial M_{1}; \mathcal{S}^{k+1})$$

$$\downarrow^{i_{\#}} \qquad \downarrow^{i_{0}} \downarrow^{i_{1}} \qquad \downarrow^{i_{1}} (zero)$$

$$\pi_{n-1}(M_{1}) \xrightarrow{i_{0}} H_{n-1}(M_{1}; \mathcal{S}) \xrightarrow{\lambda_{*}} H_{n-1}(M_{1}; \mathcal{S}^{k+1})$$

$$\downarrow^{g_{\#}} \qquad \downarrow^{g_{*}} \qquad \downarrow^{g_{*}} \qquad \downarrow^{g_{*}}$$

$$\pi_{n-1}(X) \xrightarrow{i_{0}(\simeq)} H_{n-1}(X; \mathcal{S}) \xrightarrow{\lambda_{*}(\simeq)} H_{n-1}(X; \mathcal{S}^{k+1})$$

with the appropriate maps now identified, we see that $[f(\partial M_1)] = 0$ in $\pi_{n-1}(X)$.

Therefore $f \mid M_1 \colon M_1 \to R^{2n-2k-1}$ can be extended to a map $\widetilde{f} \colon M \to R^{2n-2k-1}$ such that $\widetilde{f}(M_2) \cap \widetilde{f}(E_2) = \emptyset$. The map $\widetilde{f} \mid E_2$ is a proper map whose restriction to $E_2 \setminus \overline{E}_1$ is an embedding. By Lemma 3.2, $\widetilde{f} \mid E_2$ is homotopic to an embedding of E_2 in X that agrees with f in $E_2 \setminus \overline{E}_1$. This embedding and f now fit together to give an embedding of M in $R^{2n-2k-1}$.

REFERENCES

- 1. J. C. Becker, *Immersions of k-orientable manifolds*. Michigan Math. J. 17 (1970), 161-164.
- 2. J. C. Becker and H. H. Glover, Note on the embedding of manifolds in Euclidean space. Proc. Amer. Math. Soc. 27 (1971), 405-410.
- 3. A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings. Topology 2 (1963), 129-135.
- 4. M. W. Hirsch, On imbedding differentiable manifolds in euclidean space. Ann. of Math. (2) 73 (1961), 566-571.
- 5. ——, Embeddings and compressions of polyhedra and smooth manifolds. Topology 4 (1966), 361-369.
- 6. C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds. Bull. Amer. Math. Soc. 71 (1965), 661-667.
- 7. W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold. Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13.
- 8. R. de Sapio, Embedding π -manifolds. Ann. of Math. (2) 82 (1965), 213-224.
- 9. E. H. Spanier, Algebraic topology. McGraw-Hill, New York, 1966.
- 10. G. W. Whitehead, Generalized homology theories. Trans. Amer. Math. Soc. 102 (1962), 227-283.

Plymouth State College of the

University System of New Hampshire Plymouth, New Hampshire 03264