EMBEDDINGS OF k-ORIENTABLE MANIFOLDS
Keith R. Ferland

1. INTRODUCTION

Let M be a closed, k-connected, smooth, n-dimensional manifold, and let M
denote M minus a point xg € M. In [2], J. C. Becker and H. Glover showed that for
j <2k and 2j <n - 3, the manifold M embeds in R2n-j if and only if My immerses
in R21-J-1 | We shall extend this result to j = 2k + 1 by placing an additional condi-
tion of orientability on M.

A vector bundle is called k-orientable if its restriction to the k-skeleton of its
base is stably fibre-homotopy-trivial. A manifold is k-orientable if its tangent
bundle is k-orientable.

Letting M be (k + 1)-orientable with k < (n - 5)/4, we state our main theorem.

THEOREM 1.1. M embeds in R21-2K-1 if and only if My immerses in
R2n-2k-2

This result reduces an embedding problem to one involving an immersion in
which the fop obstruction vanishes.

As applications we obtain the following.

THEOREM 1.2. Let M be arn n-dimensional, simply-connected spin manifold
with n = 3 (mod 4) and n > 11. Then M embeds in R2n-3 .

Proof. It is sufficient to show that the associated bundle with fibre V., ,_n+4
has a cross-section, for large m. The obstructions to such a cross-section lie in
HM I (Mg; 7,(Vim,m-n+4). I i <n-4,then 7;=0. For i=n - 4, the obstruction
Wn-3 is 0, by [7]. The homotopy group 7,_3 is 0, by [6]. By connectedness,
Hn-1(Mg) = 0, and finally, H*(Mg) = 0.

COROLLARY 1.3. If M is a closed, almost parallelizable, k-connected n-
manifold and k < (n - 5)/4, then M can be embedded in R2n-2k-1

The corollary follows from the fact that M is (n - 1)-orientable and that by [4]
Mg can be immersed in R®. This corollary extends a result of R. de Sapio [8], for
some values of k.

2. ORIENTABILITY

Let & Dbe a spectrum as defined in [10]. Let & denote the sphere spectrum,
and let #F denote the k-stem spectrum. (We obtain (S®)k from S by killing the
homotopy group for i > n +k with the inclusion map A: 8™ — (8™)K.) As in [10], we
have a generalized homology and cohomology theory defined by
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H,(Y; &)

Il

lim 7y1q(Eq A Y),

HX(Y; 6) = lim [S9Y, B, ].
An &-fundamental class for M is an element z € Hn(M; &) such that (j,),(2)
is a generator of H o(S%; &) as an H*(pt; &)-module for each x € M. Using an

argument similar to that found in [9, p. 304], we obtain the following.

LEMMA 2.1. A vector bundle over M is k-ovientable if and only if it has an
P kfundamental class.

3. PROOF OF THEOREM 1.1

We can now prove the sufficiency, using some standard techniques of algebraic
topology together with a result of Becker [1].

Since M embeds, My immerses in R2n-2k-1 = Tg reduce the codimension of
this immersion by one, it is sufficient to find a cross-section to S(a), the sphere
bundle associated with the restricted normal bundle « to this immersion. Since M
is (k + 1)-orientable, o is (k + 1)-orientable. Therefore, by [1], it is sufficient to
show that M is contractible in MO‘ the Thom space. M is (n - k - 1)-connected,
by an argument using the Thom Isomorph1sm Theorem, the Van Kampen Theorem,
and the Hurewicz Theorem. The groups HP(MO) are 0 for n-k<p<n-1, and
H™(Mg) = 0. Therefore all obstructions vanish.

The necessity will follow after a series of lemmas and the application of a tech-
nique used in [3].

LEMMA 3.1. If M, immerses in R22-2k-1 yitp g normal vector field, then
M, embeds in R20-2k-1 with a normal vector field.

The lemma follows from [5, Theorem 5.1].

Let M; denote M minus the interior of an n-disk E; of radius 1 and center at
Xg, and let M, denote M minus the interior of an n-disk E, of radius 2 and center
at xq.

Assume f: My — R2n-2k-1 jg an embedding with a normal vector field. Let
X = RZn—Zk-—l \ f(MZ) )

LEMMA 3.2. If g: E» — X is a proper map whose restriction to the comple-
ment of some compact set is an embedding, then theve exists a homotopy, fixed out-
side some compact set, that deforms g into an embedding.

Proof. Using Alexander and Poincaré dualities, we see that H;(X) = 0 for all
i<n-k-2. The set X is simply connected, by a general-position argument.
Therefore, by the Hurewicz Theorem, X is (n - k - 2)-connected. The result now
follows from [3].

LEMMA 3.3. H,_(X; &) ~ H,_;(X; &),

Proof. 1t is sufficient to show

7Tn_1+q(X /\Sq) ~ ﬂn—l'f'q(X AN (Sq)k+l) .
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The Kunneth formula gives us a commutative diagram of short exact sequences as-
sociated with the maps id: X — X and x: 89 — (s9)k+l  The homomorphism

(id AN),: Hy(X ASY) — Hy(X A (S

is an isomorphism for i <n - 1+ q, and it is surjective for i = n - 1, by the five-
lemma. The result follows from Whitehead’s Theorem.

LEMMA 3.4. The homomorphism i, H _;(dM;; FEtly H_ _,(M; FEY g
constant.

Proof. The groups Hi(El ; .?kﬂ) are 0 for i > k + 1. Therefore, the map-
pings
9: H,(E,, 08, ; 5) - H,_,(0E,; #5')
and
i H(E;, 0B ; 95 - B (M, M, ; 5

are isomorphisms.

Since j,: Hy(M; ¢ k+1) — H (M, M}; &%) is surjective, by the existence of a
fundamental class, it follows that 9: H(M, M;; #k*1) - H _;(M,; #kt1) is zero.
The sufficiency now follows from the commutative diagram

i
*
H, ,0M;; X' ——> H__,(M;; 5

la (=) la (zero)
I 4 i (=)
Hn(El: aEl; yk-*_l) —_— Hn(M, Ml; yk+1)

We now prove the necessity.

Because Mg immerses in R2n-2k-2 it immerses in R2n-2k-1 with a normal
vector field. By Lemma 3.1, Mg embeds in R22-2k-1 by some map f and with a
normal vector field v: Mg — R2n-2k-1 gych that »(x) is a unit vector orthogonal to
the image under df of the tangent plane to Mg at x. Let ¢ be a positive real num-
ber small enough to be the radius of a tubular neighborhood of f(M;). Let
At M) — [0, €] be a differentiable map equal to € on My and equal to 0 on 9M; .
Define g: M; — X by g(x) = f(x) + A (x) v(x).

By Freudenthal’s Suspension Theorem, the homomorphism
S: [s?-119 §9xX] — [s™'e, s9tl x]

is an isomorphism for all q, since X is (n - k - 2)-connected. Therefore,
ig: 1y 1 (X) = H,_;(X; &) is an isomorphism. From the commutative diagram



256 KEITH R. FERLAND

1o ) Ax k+1
ﬂn_l(aMI) —_— Hn_l(aMl, F) —> Hn_l(aMl; FE

iy i, : li* (zero)
Y ig 2 Xy -
M ; ) —> H,_,(M; 95

with the appropriate maps now identified, we see that [f(@M;)] =0 in 7,_;(X).

su
E;

Therefore f | M;: M, — R2n-2k-1 _can be extended to a map f: M — R2n-2k-1
ch that f(MZ) N f(Ez) = @. The map T | Ez is a proper map whose restriction to
\ El is an embedding. By Lemma 3.2, t | E2 is homotopic to an embedding of

E, in X that agrees with f in E; \ El This embedding and f now fit together to
give an embedding of M in R2n-2k-1

10.
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