A FIXED-POINT THEOREM FOR HOMOGENEOUS CONTINUA

Charles L. Hagopian

A space is *homogeneous* if for each pair x, y of its points there exists a homeomorphism of the space onto itself that takes x to y. The union S of a finite collection \mathscr{F} of arcs is called a *star* provided that one point of S is the common part of each pair of elements of \mathscr{F} . A continuum X is *star-like* if for each $\epsilon > 0$ there exists an ϵ -mapping of X onto a star. Here we prove that every homogeneous star-like continuum has the fixed-point property for homeomorphisms.

A topological transformation group (G, X) is a topological group G together with a topological space X and a continuous mapping $(g, x) \to gx$ of $G \times X$ into X such that ex = x for all $x \in X$ (e denotes the identity of G) and (gh)x = g(hx) for all $g, h \in G$ and $x \in X$.

For each $x \in X$, let G_x be the stabilizer subgroup of x in G (that is, the set of all $g \in G$ such that gx = x). If we let G/G_x denote the left-coset space with the usual topology, the mapping of G/G_x onto Gx sending gG_x to gx is one-to-one and continuous. We call the set Gx the orbit of x.

Henceforth, X is a continuum (that is, a nondegenerate, compact, connected metric space) and G is the topological group of homeomorphisms of X onto itself with the compact open topology. It follows from a theorem of E. G. Effros [2, Theorem 2.1] that each orbit is a G_{δ} -set in X if and only if for each $x \in X$, the mapping $gG_x \to g(x)$ of G/G_x onto G_x is a homeomorphism. In [5], G. S. Ungar pointed out that if X is homogeneous, then $G_x = X$ for each $x \in X$, and therefore T_x : $g \to g(x)$, being the composition of the natural open mapping of G onto G/G_x and a homeomorphism of G/G_x onto X, is an open mapping of G onto X.

A continuous function f of X onto a space Y is called an ϵ -mapping if for each y ϵ Y, the diameter of f⁻¹(y) in X is less than ϵ . A finite sequence $\left\{L_i\right\}_{i=1}^n$ of open sets in X is a *chain* provided that $L_i \cap L_i \neq \emptyset$ if and only if $\left|i-j\right| \leq 1$.

THEOREM. Suppose that X is a homogeneous star-like continuum. Then for each homeomorphism h of X onto itself, there exists a point x of X such that h(x) = x.

Proof. Assume there is a homeomorphism h of X onto itself that moves each point of X. There exist a positive number ϵ and an open set U in G containing h such that for each f ϵ U and each x ϵ X, the distance from x to f(x) in X is greater than ϵ .

Since X is star-like, there is a sequence $\left\{\mathscr{C}_i\right\}_{i=1}^\infty$ of open covers of X such that for each i, (1) each element of \mathscr{C}_i has diameter less than i^{-1} and (2) there is an element Y_i of \mathscr{C}_i such that \mathscr{C}_i - $\left\{Y_i\right\}$ consists of finitely many mutually disjoint chains, each having only one element, an end-link, that meets Y_i . For each i, define y_i to be a point of Y_i .

Let y be a limit point of $\left\{y_i\right\}_{i=1}^{\infty}$, and let $x=h^{-1}(y)$. Note that $T_x[U]$ is an open set in X that contains y. Let j be an integer such that $j^{-1}<\epsilon/2$ and the closure of Y_j is a subset of $T_x[U]$.

Received October 30, 1974.

Michigan Math. J. 21 (1974).

Define K to be the x-component of X - Y_j. There is a point z of K that belongs to the boundary of Y_j [4, Theorem 50, p. 18]. Let $\{L_i\}_{i=1}^n$ be the longest chain that is a subcollection of \mathscr{C}_j - $\{Y_j\}$ and covers K. We assume without loss of generality that z \in L₁. Let $\{L_i\}_{i=1}^m$ be the shortest subchain of $\{L_i\}_{i=1}^n$ that covers K.

Since $z \in T_x[U]$, there is a homeomorphism f in U such that $f^{-1}(z) = x$. For each k $(1 \le k \le m)$, define

$$A_{k} = \left\{ p \in K \cap L_{k}: f^{-1}(p) \in \bigcup_{i=k}^{n} L_{i} \right\}$$

and

$$B_k = \left\{ p \in K \cap L_k : f^{-1}(p) \in X - \bigcup_{i=k}^n L_i \right\}.$$

Note that $A = \bigcup_{k=1}^m A_k$ and $B = \bigcup_{k=1}^m B_k$ are disjoint closed sets and $A \cup B = K$. The point z belongs to A. Since K is connected and A is not empty, B is empty. It follows that $f^{-1}[K] \cap Y_j = \emptyset$. But since $x \in K \cap f^{-1}[K]$, this implies that $f^{-1}[K]$ lies in the component K. Hence B contains $K \cap L_m$, and this is a contradiction. This completes the proof.

Our only example of a homogeneous star-like continuum is the pseudo-arc [1]. Showing that there are no others would make our result a corollary to O. H. Hamilton's theorem [3].

REFERENCES

- 1. R. H. Bing, A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729-742.
- 2. E. G. Effros, Transformation groups and C*-algebras. Ann. of Math. (2) 81 (1965), 38-55.
- 3. O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua. Proc. Amer. Math. Soc. 2 (1951), 173-174.
- 4. R. L. Moore, *Foundations of point set theory*. Revised edition, Amer. Math. Soc. Colloquium Publications, Vol. 13. Amer. Math. Soc., Providence, R.I., 1962.
- 5. G. S. Ungar, On all kinds of homogeneous spaces (preprint).

California State University Sacramento, California 95819