TWO THEOREMS ON KAEHLER MANIFOLDS
Bang-yen Chen and Koichi Ogiue

1. INTRODUCTION

Let N be an n-dimensional submanifold (in this paper, we consider only mani-
folds of real dimension) of a 2m-dimensional Kaehler manifold M with complex
structure J and Riemannian metric g, and let V and V be the covariant diiferentia-
tions on M and N, respectively. Then the second fundamental form ¢ of the im-
mersion is defined by the equation ¢ (X, Y) = VY - VxY, where X and Y are vec-
tor fields tangent to N, and where ¢ is a normal-bundle-valued symmetric 2-form
on N. For a vector field £ normal to N, we write

Vgt = -A X + Dy,

where - AgX (respectively, Dx£) denotes the tangential component (respectively,
the normal component) of ﬁxé. A normal vector field £ is said to be parallel if
Dy & = 0 for each vector field X tangent to N. The submanifold N is said to be
totally umbilical if o(X, Y) = g(X, Y)H, for all vector fields X and Y tangent to N,
where H = (1/n)trace ¢ is the mean-curvature vector of N in M. In particular, if
the second fundamental form ¢ vanishes identically, N is called a fofally geodesic
submanifold of M. The submanifold N is called a holomovphic submanifold (re-
spectively, a fotally veal submanifold) of M if each tangent space of N is mapped
into itself (respectively, into the normal space) by the complex structure J.

A Kaehler manifold of constant holomorphic sectional curvature is called a
complex-space-form, and a Riemannian manifold of constant sectional curvature is
called a real-space-form,

In his book on Riemannian geometry, E. Cartan [1, p. 231] proved that an n-
dimensional, totally umbilical submanifold of a euclidean m-space is either an n-
plane or an n-sphere (for more general cases, see [2, p. 50] for example). In Sec-
tion 3, we shall prove the following result.

THEOREM 1. Let N be an n-dimensional, totally umbilical submanifold
(n > 2) of a 2m-dimensional complex-space-form M of holomorphic sectional
curvature ¢ # 0. Then N is one of the following submanifolds:

(a) a complex-space-form immersed holomorphically in M as a totally geodesic
submanifold, ov

(b) a real-space-form immersed in M as a totally real and totally geodesic
submanifold, or

(c) a real-space-form immevsed in M as a totally veal submanifold with non-
zero parvallel mean-curvature vector.

Case (b) occurs only when m > n, and case (c) occurs only when m > n.
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By an r-plane we mean an r-dimensional linear subspace of a tangent space.
A 2-plane ¢ is called olomorphic (respectively, antiholomorphic) if Jo = ¢ (re-
spectively, if J¢ is perpendicular to ¢). A 3-plane is called cokolomorphic if it
contains a holomorphic 2-plane. It is clear that a coholomorphic 3-plane also con-
tains an antiholomorphic 2-plane.

A Kaehler manifold M is said to satisfy the axiom of holomorphic 2-planes
(respectively, the axiom of antiholomorphic 2-planes) if for each x € M and each
holomorphic (respectively, each antiholomorphic) 2-plane ¢, there exists a 2-
dimensional, totally geodesic submanifold N such that x € N and Ty (N) = ¢.

K. Yano and I. Mogi [7] (respectively, B.-Y. Chen and K. Ogiue [3] and K.
Nomizu [5]) proved that a Kaehler manifold with the axiom of holomorphic 2-planes
(respectively, the axiom of antiholomorphic 2-planes) is a complex-space-form.

We now propose a new axiom.

Axiom of coholomovphic 3-spheves. For each point x € M and each coholo-~
morphic 3-plane 7, there exists a 3-dimensional, totally umbilical submanifold N
such that x € N and T (N) = 7.

In Section 4, we shall prove the following theorem.

THEOREM 2. Lel M be a 2m-dimensional Kaehler manifold (m > 3). If M
satisfies the axiom of coholomovphic 3-spheves, then M is flat.

2. BASIC FORMULAS

Let N be a submanifold of a Kaehler manifold M with complex structure J and
Riemannian metric g, and let R, R', and R' be the curvature tensors associated

with 5, V, and D, respectively. Then
(2.1) R(IX, JY) = R(X, Y),
(2.2) R(X, Y)JZ = JR(X, Y)Z.

Let K(X, Y) be the sectional curvature of M determined by orthonormal vec-
tors X and Y. Then

(2.3) K(JX, JY) = K(X, Y),
(2.4) K(X, JY) = K(JX, Y).
It is easy to see that

(2.5) orthonormal vectors X and Y span an antiholomovphic 2-plane if and only if
X, Y, and IX are ovthonormal,

By H(X) we denote the holomorphic sectional curvature determined by X; that
is, H(X) = K(X, JX).

For the second fundamental form ¢ of N in M we define the covariant deriva-
tive, denoted by Vx o, to be

(2.6) (Vxo) (Y, Z) = Dx(c(Y, Z)) - 0 (VxY, Z) - o(Y, VxZ).
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Then, for all vector fields X, Y, Z, W tangent to N and all vector fields £ and 7
normal to N, the equations of Gauss, Codazzi, and Ricci take the forms

g(R(X, Y)z, W) = g(R'(X, Y)Z, W)

(2.7)
+g(o(X, Z), o(Y, W)) - glo(X, W), o(Y, 7)),

(2.8) (R(X, Y)Z)* = Vx0) (¥, 2) - (Vyo)(X, 2),

(2.9) gR(X, V)&, 1) = g®(X, Y)§, n) - g([Ag, Ay 1(X), Y),

where * in (2.8) denotes the normal component.
The Kaehler manifold M is of constant holomorphic sectional curvature c if
and only if

R(X, Y)Z = E{g(Y, 7)X - g(X, Z)Y + g(JY, Z)JX

- g(JX, Z)JY + 2g(X, IY)IZ } .

(2.10)

3. PROOF OF THEOREM 1

Let N be a totally umbilical submanifold of a complex-space-form M of con-
stant holomorphic sectional curvature ¢ # 0. Then

tr Ag
(3.1) o(X,Y) =g(X,Y)-H or AE =

I,
n

where X and Y are vector fields tangent to N. By (2.6), we see that
(Vx 0)(Y, Z) = g(Y, Z) - Dy H;

therefore equation (2.8) reduces to

(3.2) (R(X, Y)Z)* = g(Y, Z) - DxH - g(X, Z) -DyH.

If dim N > 3, then for each vector field X tangent to N we can choose a unit
vector field Y tangent to N that is orthogonal to X and JX. For such a choice, it
follows from (3.2) that

(R(X, Y)Y)* = DxH .

On the other hand, (2.10) implies (R(X, Y)Y)* =0, so that Dy H = 0 for each vector
field X tangent to N. Therefore, by (3.2), we see that

(3.3) REX, Y)Z)t =0

for all vector fields X, Y, and Z tangent to N.
If dim N =2, put N=N,; UN,, where

N; = {x e N| JT,(N) =T, (N)} and N, = {x e N| JT(N) # T,(N)}.
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We can see that N, is an open submamfold of N, where the preceding argument is
available, so that (3.3) holds. Let N be the set of all interior points of N, . Then
Nl is a complex analytic submamfold of M, sothat H= 0 on Nl , and hence (3.3)
holds on N ). Since (3.3) is a tensorial equation, it holds on N.

Therefore (3.3) holds for N with dim N > 2. This implies that N is an invari-
ant submanifold of M (for the definition, see [6]). Thus, by Proposition 3.1 of Chen
and Ogiue [4], we see that N is either a holomorphic or a totally real submanifold of
M. It is well-known that if N is a holomorphic submanifold, then the mean-curva-
ture vector H vanishes; that is, N is minimal, so that N is totally geodesic in M.
Therefore, by equation (2.7) of Gauss, N is a complex-space-form of constant
holomorphic sectional curvature c.

If N is a totally real submanifold, then it follows from (2.7) and (3.1) that N is
a real-space-form of constant sectional curvature c/4 + g(H, H). Since N is totally
real, m > n. Moreover, if H # 0, then m > n. In fact, since DH = 0, it follows from
(2.9) and (3.1) that

g(R(X, Y)H, JY) = 0

for all vector fields X and Y tangent to N. Hence, by (2.10) and the total reality of
N, we see that

g(JY, H) g(JX, JY) = g(JX H) g(JY, JY).
Choose Y in such a way that g(JY, H) = 0. Then
g(dX, H)g(Y, Y) = 0

for all vector fields X tangent to N; this implies that g(JX, H) = 0. From this we
see that H is perpendicular to the n-dimensional normal subspace JT, (N), for each
X € N. Hence m > n. This completes the proof of Theorem 1.

Remark. A totally umbilical hypersurface N of a real projective n-space
RP™c/4) can be imbedded in a complex projective 2n-space CP“"(c) as a totally
real and totally umbilical submanifold. In part1cu1ar if N is not totally geodesic in
RP"(c/4), then N is not totally geodesic in CP n(c)

4. PROOF OF THEOREM 2

Let X be any point in M, and let X and Y be any two orthonormal vectors in
TX(M) such that X and Y span an antiholomorphic 2-plane. Then X, Y, and JX
span a coholomorphic 3-plane 7 that is perpendicular to JY. By the axiom of co-
holomorphic 3-spheres, there exists a 3-dimensional totally umbilical submanifold
N such that x € N and TL(N) = 7. By the argument in the proof of Theorem 1, we
obtain the equations

(R(X, IX)Y)* = g(JX, Y)DxH - g(X, Y)DyxH = 0.
Therefore '
(4.1) g(R(X, JX)Y, JY) =

for all orthonormal vectors X and Y that span an antiholomorphic 2-plane. For

such vectors X and Y, it is easily seen from (2.5) that X\/%Y and JX - JY also

V2




TWO THEOREMS ON KAEHLER MANIFOLDS 229

span an antiholomorphic 2-plane. Therefore, using (2.1), (2.2), (2.6), and (4.1), we
obtain the relation

K(X +Y, JX - JY) g(R(X+Y JX—JY)JX-JY X+Y)

V2 i V2 V2 Y2
(4.2)

H{HE +HOD)}.

On the other hand, (4.1) implies that
K(X, Y) + K(X, JY) = 0;
from this we obtain the relation
K(X+Y,JX-JY) = -KX+Y,X-Y) = -K(X, Y).
Together with (4.2), this implies that

%{H(X) +H(Y)} = -K(X, Y) = K(X, JY) = - %{H(X) +HJY)},

so that H(X) +H(Y) = 0. Since m > 3, it follows that H(X) = 0; this completes the
proof of Theorem 2.
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