A PROOF THAT SIMPLE-HOMOTOPY EQUIVALENT
POLYHEDRA ARE STABLY HOMEOMORPHIC

M. Brown and M. M. Cohen

We give a new proof of the following result.

THEOREM. If f: X — Y is a simple-homotopy equivalence between compact
polyhedra, and if Q denotes the Hilbevt cube, then £ X 1n: X XQ — Y X Q is homo-
topic to a homeomorphism of X X Q onto Y X Q.

Our proof is of interest because it assumes no facts from infinite-dimensional
topology, because it uses the idea of nearly-homeomovphic maps, which may be of
use in other contexts, and, above all, because it is based on a simple heuristic argu-
ment that explains why the result should be expected.

The theorem is a special case of a theorem of J. E. West [6], who achieved the
same result under the assumption that X and Y are locally finite CW complexes.
The importance of West’s result was demonstrated by Chapman [3], who used it to
prove its converse and thus to prove the topological invariance of Whitehead torsion.
This has led to a spate of proofs of West’s theorem. See [2], [5], and [7].

Here is the heuristic argument that explains why X X Q = Y XQ if X and Y
have the same simple-homotopy type (the symbol = denotes homeomorphism).

Suppose X \. Y (X collapses to Y by an elementary PL collapse). Then, by
definition, X = Y U Q®, where the pair (Q"™, Y N Q™) is homeomorphic to
(1™, 1! x 0). Thus, as was pointed out by P. Dierker [4], we may identify X with
the subcomplex (Y X 0) U(Y N Q™) XI of Y XI. Hence, if X \, Y, then Y XI \ X.
By induction, it follows trivially that if X \ Y, the collapse taking place in n; ele-

nj
mentary steps, then Y X1 \ X. By the same reasoning, it follows that

my ny o B 1
XXI VYXI ' andthenthat YXI * XI N\ XXI °, and so forth. In this way
we get an inverse sequence

. _N
Y/ X /YXT/ xx1™M v YXT 2/ o

b

where N} <N, < --- and M; <M < ---. The inverse limit ofrthis‘sequence is the
N

same as that of the cofinal subsequence {Y X I J}, and (assuming that the bonding

maps are the standard projections Y X INj —Y X INj'l) the inverse limit of this

subsequence is Y X Q. Similarly, the inverse limit of the subsequence {X x IMj} is
XXQ. Hence X XQ = Y XQ.

There are two reasons why this argument is not rigorous.
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. . . M.,
(1) The collapsing maps X X ™Mi-1 /vy x 1N and Y X INJ / X X1 J have not
been precisely defined.

(2) Even if the maps were defined, it would not be true that the composition

. - . . N: M
YxTH / xx1™ 7 v x0T (or X x5/ v x1T9 / X x1"9) is the standard
projection.

We resolve the first problem in Section 1 by defining the collapsing map

N: M:
YXIJ \VXxI 37! to be the restriction of the natural projection

M; M _ N;
XXI 9 —-XxI 9!, This requires the choice of an embedding of Y XI 4 into

X X IMJ , and some care must be taken to keep track of these embeddings. In Section
2, we resolve the second problem and give the proof that X X Q ~ Y X Q. Although
the composition of collapsing maps does not give the standard projection, we show
that the composition is nearly-homeomorphic to\the standard projection, and this is
good enough to yield the same inverse limit. In Section 3 we point out how our argu-
ment automatically yields the fact that simple-homotopy equivalences are stably
homotopic to homeomorphisms.

1. THE SETTING

We denote by I =[0, 1] the unit interval, by I® the Cartesian product
IXIX.-XxI (n factors), and by Q the product of countably many intervals, that is,
the Hilbert cube. A space is an n-ball if it is homeomorphic to I™. The n-tuple
(0, 0, -+, 0) is denoted by 0,. Unless it is otherwise stipulated, m; or wa denotes
the natural map Z X I" — Z X T x On_j , and m or 7' denotes the natural map
ZXI" - Z.

By a complex we mean a finite CW complex such that the closure of each n-
cell is an n-ball that is the underlying space of some subcomplex.

If X and Y are complexes, a cellular map f: X — Y is one in which the image
of every subcomplex of X is a subcomplex of Y. (This is different from the usual
definition of cellular map.)

If Y is a subcomplex of X, we say that there is an elementary formal expansion
of Y to X - written Y /e X - if X =Y U Q", where Q" is a closed n-cell of X,
where P! = Y N 3Q™ is an (n - 1)-ball in aQ™ (P™~! is necessarily a subcom-
plex), and where Qn-! = C1(3Q"» - Pn-1) is a closed (n - 1)-cell of X. We say that
there is a formal expansion Y 7 X if there is a finite sequence of elementary
formal expansions Y =Y, /eY; /e ... feY =X

Each formal expansion Y / X determines a decomposition
x=yUq Ue,U--Uq,
Py P, Pn
where

Y0=Y,

Y

j YUQlU“'UQj (j:]-’z} “.)7

Y; N Q-

Pj1
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Give I™ and Y X I™ the product cell structures. We define an expansiorn correspond-
ing to this formal expansion to be any cellular embedding 8: X — Y X I" constructed
inductively as follows:

a) Let Bg = 1y.

b) Having defined a cellular embedding Bj: Y; — Y X i , choose an embedding
Bir1: Yjr1 — Y x 9% such that

Bi+1|Y; = (85,00 and  Bj11(Qj+1) = B3(Pjs1) X 1.

c) Let B=84.

Because B is cellular, B;(Pj+1) is a subcomplex. Thus B;5+1(Q;+1) and
Bj+1 [Cl(anH - Pj)] are subcomplexes, and it follows that Bj+1 is cellular.

The expansions B: X — Y X I™ corresponding to a formal expansion Y / X have
the following basic properties:

E;. Bly) =(y, 0,) forall y e Y C X.

E,. The image B(B) is independent of which expansion 8 has been constructed
(since, inductively, the image of each cell of Y; is forced). Indeed, writing Bj =7,
where 7: Y XI"— Y X IJ, we obtain the formula

B(X) = (Y X0,)U (Bo(P)) XIX0, ) UB (PR XIXO0, ,)U--U(B, _(P)XI).

E3. B(X) /7 Y XI™ by a naturally arising formal expansion. E; holds because,
inductively,

BX) U (YT x0, ) 7 B U (Y X %o, ).

Indeed, the entire expansion can be visualized if we represent Y X I as an ordered
union

YXI® = B(X) U(A1; XIX0,.1) U@A12XIX0, 1) U= U (Agp) XIX 04_1)]
Uf(Az; XIX0,_2) U U (AZP?_ XIx0,_2)]
U[ JU--U[(Ag XT) Uee U (A, XD,
where the Aji are the cells of Y X H-l - B8;-1(P;), and where
0 = dim Aj) <+ < dim Ajpj'

(This explicit presentation of Y X I"™ will be used in the proof of Lemma 2.)

Property E; of expansions leads to the following notation. Suppose we are given
cellular embeddings

o
A— B —E—> a(A) x 17
such that Ba = (@, 0). Then we define "a,[a’: B — A by the equation
— =1 5-1 _ -1
Te,g =@ B myB = (@, 0)""myB.

(Intuitively, if @(A) 7 B then Tq,B 1S a choice of “collapsing map”.)
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Finally, we recall that if (Z js fj) is a sequence

fi f2
Zof_—‘ Z1<—_ sz—— b

of spaces and maps, then the inverse limit of the sequence is defined by

0

Lim(Zj, fj) =<ze ]I Z; I fj(Zj) =zj-1 forall j,
j=0
where zj is the jth coordinate of z. Corresponding to any two inverse sequences
(Z;, £;) and (Z;, f;) and a sequence of maps g;: Z; — Z; such that g;_f; =f:g:,
J2 %) )2 ) J J J J J J 2]
there is determined a map

g = Lim(gj): Lim (Zj, fj) — Lim(Zj, £5)

defined by g(zg, 2, 22, -*) = (go(zg), g1(z}), ---). Clearly, if each g; is a homeo-
morphism, so also is g.

2. PROOF THAT XXQ~ Y XQ

LEMMA 1. If A is a topological ball of dimension s with metric d and if A®
(read: A collared) is the subset

(AXx0)uU (cA x1)

of A X1, then, for each 8> 0, theve exists a homeomorphism T: A X1 — A° X1 such
that T'(x, t) = (x, t, 0) if (X, t) € AC and such that the diagvam

1_‘ C
AXI—> ASXI

lw lﬁ'
1r|AC
-

A A€

is 6-commutative (that is, d(m, 77' ) < 8).

This lemma is elementary, and its proof is an exercise. We include it for the
sake of completeness. Let ht A - B = {x ¢ RS[ |x]| < 1} be a homeomorphism.
Let B¢ =(BX0) U (3B x1I). Choose 6' >0 so thatif z,z' € B and ||z - z'|| < &',
then d(h~1(z), h"1(z")) < 6. Suppose I'': BXI — B¢ X1 is a homeomorphism with
I'(x, t) =(x,t, 0) for all (x,t) € B€, and suppose I': AX I — A® X1 is the induced
homeomorphism. This gives the diagram
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AXxI d > A XI
/T hx1 !
C
B Ti'A AC
A < (hx1)|AS x 1.
\ (hx 1) |Ac A
T .
h B X1 > B" X1~
T !
\f \(
C
B B T|B B

2
All the vertical squares are commutative, and one easily verifies that if the bottom

square is 0'-commutative, then the top square is 6-commutative. Thus it suffices
to show that I'': B XI — B¢ X1 can be constructed so that it is 6'-commutative.

Let g: 12 - [Ix0) U (1 XI)] XI be a homeomorphism such that g, t) = (a, t, 0)
if t=0 or A =1, and such that gix, t) =(, 0, t) if 0 <A <1 - 6'. If z € 9B, define

T,: {0z, )] O\, 1) € 12} — 12
by T,(xz, t) = (A, t). Define
'z, t) = (T, x 1) 'gT,0\z, t).

Then, if 0 <A <1 - 8', we see that T''(Az, t) = (\z, 0, t). Therefore

7' T'(\z, t) =xz =7z, t). If 1 -6 <A <1, then I'"(Az, t) = 'z, t1, t2), where
1.-6'<A' <1 and t; =0 or A' = 1. Therefore 77' I'"(Az, t) =\'z. Thus

d(m(rz, t), 77" T'(Az, t)) =d\' z, xz) = A - A" <6'. ®m

LEMMA 2. Suppose A and B ave complexes and o: A — B is a cellular em-
bedding such that a(A) / B by a formal expansion. Assume B: B — a(A) XI? is g
corresponding expansion. Let € > 0, and let d be a metvic on A. Then there exists
an expansion y: a(A) X It — B(B) X I™ corresponding to the formal expansion
B(B) / a(A) X IM of E,,

o B
AT "B aA)xI® AN B(B) x 1™ |
Ta,B T8,y

such that d(m, , Ta,B° WB’,},) <, wheve m, = (a, 0)-! To: a(A) XI™ — A.
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Proof. As we pointed out following E3 of Section 1, if

o) 7B=0)Uq U U q,,
P, P,

then the formal expansion B(B) / «a(A) X I" is carried by the ordered union

a(A) xI" = B(B) U U U AijI X On—j] ’
1<j<nb1<k<p

where {Aj X 0, ;1| 1<k <pj} are the cells of [a(A) xP™! x 0, j41] - B(P;),
and where 0 =dim Aj; < --- < dim AJPj . Let us write Aq = Ajx when

qa =P +--'+pj_l+k. A].SO, set d():ﬁ(B) and
ol = BB)U (A XIX 0, ) U U (A xIX0, ;)
when Ay =Aj. Let m =p; +p; +--+p,. Thus

BB) = g Je Ay /e Je A = a(A) X 1™,

m

Now we are ready to construct the desired expansion y: a(A) X I* — B(B) X I'™.

Let yo = 1g(p) - Let 7;: , — B(B) X I be defined by setting y;(x) = (x, 0) if
x € B(B) and y (A, t, 0, 1) = (A}, t) = (yo(A}), t). (This makes sense because A,
is a point.) Assume inductively that an expansion yq.j: «£q-1 = B(B) X 19-! has
been constructed corresponding to the formal expansion B(B) / .ﬂq_ , and satisfy-
ing the condition that d(mg | 4.1, Ta,80TB,y 1) < (q - 1)e/m.

To construct yq: g — B(B) x 1%, we of course set Yq | -1 =(rg-1, 0). We
must define yq on Ag XI X 0,_; (where Aq = Aji). If dim Aq =0, then yq is de-
fined like y; above, and we leave this case to the reader. Otherwise, set

c _
Agq = (Ag x0) U (aAqxI) C Ag XI.
By our ordering of the cells,
C — -
Agx 0, 5= g 1 N(AGXIX0, 5);

therefore vq_; I Aa X 0,_; is already defined. Give B a metric, a(A) C B the in-
duced metric, and a(A) X I* a standard product metric. (All metrics will be denoted
by the letter d). Using the uniform continuity of 7y, fixa 6 > 0 such that if

y, v' € a{A) X I™ and d(y, y') < 6, then d{7y(y), Te(y")) <&/m. By Lemma 1, we can
find a homeomorphism T such that in the following diagram the left-hand square is
5-commutative. (Each map should be understood as being restricted to the appro-
priate domain.)

I
j ——> Agx 0, ;X1 —F——pBx I

BEE i

. c  — q-1
Aqxon—J+1T_AqX0n~J - BBXI X0 .
q-1

Y XlI
g-1
Aq X I X On-'
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Clearly, the right-hand square is commutative. We define
yql(A XIX0p.3) = (yg-1 X )T .
It follows that d('nj_l | A g, nj_lygl_lnq,lyq) < 6. Now
TByq = (B O 1 movg = (8, 07 7o 7q-1 7
= B, 0 Ty v YT Y = wﬁ,yq_lyéflwq_lyq-

Thus, if x € &/ and x' = yé{l Tq-17Yq(X), we have the relations
AT (x), Ta,p7 6,9, (&) = d@ o), 19 g7g,y &)

< dmg(); 1)) + dlmg(x), 10,878,y (X))

< dlmy, (), m4(x") +

E(_Q_m'_ll (by the induction hypothesis)

= drg m;_1 (%), 14 m5_1(x") +§-(q—m_~ll, where d(r;_1(x), 75.1(x")) <6

<£+M, by choice of 5.

m m

This completes the induction step. In the end, we set y = y,, and have the in-
equality d(m,, To,BTR ’),) < ¢. The proof of Lemma 2 is complete. &

Definition., Two maps f, g: X =Y (where X and Y are metric spaces) are
nearly homeomovphic if there exists a sequence of homeomorph1sms hj: X — X such
that fh; converges uniformly to g.

It is easily verified that the relation of being nearly homeomorphic is an equiva-
lence relation on the set of maps from X to Y. Notice that the fact that f and g are
nearly homeomorphic does not imply that the homeomorphisms h; themselves con-
verge. Thus there need not exist a near-homeomorphism h (that is, a uniform limit
of homeomorphisms as defined in [1]) such that fh = g.

LEMMA 3. Counsider the diagram
6] B 0%
AT—> B <— aAXI" ——> BB XI™,
T T
a,B B,y

wheve « is a cellulary embedding such that oA / B, wheve B is a covvesponding ex-
pansion, and where vy is an expansion corvvesponding to the formal expansion

= -1 .
BB / aAXI". Letmwy =(a, 0)" my: @A X1 — A. Then ny and 1y gug ,, are
nearly homeomovrphic.

Proof, For each integer j > 0, choose yj oA XI"— BB XI™ so that
A7y, Ty 878, 7 ) < 1/j. This is possible, by Lemma 2. Let hy=y~ y Then

Tgyhy = (B 07 Moy y Ty = M
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Therefore d(7,,, Ta,378,yhj) = dlng, 1q g TTB,},j) <1/j. Thus {ﬂa,BﬂB,yhj} con-
vergesto 7. W

From now on we assume that a formal expansion Y / X is preassigned. Set
Yo=Y and Xy =X, and let ay: Y5 — X be the inclusion. This leads to a sequence

@0 21 n_ hr my

. Of?_i-kY @i X Q2i+1

1 1

> Y 4 —> -,

me-.
where Y, = a,;(Y;) X1 1“, Xi=azi-1(Xj_1) XI ', and each ¢; is an expansion
corresponding to the fact that (1mage aJ_l) /' (domain o, ) In particular,
@41 0 (a 0). The direct sequence gives rise to an 1nverse sequence

Y0< X0<

Y < X €<—— -,
To,1 T1,2

T2.3

where T5.541 = . We write Ti,5+2 = 5,541 Tj+1,5+42 -

Tay, a5,
LEMMA 4. Theve exist homeomorphisms h;: Y; — Y; (i > 0) such that
Lim (Y;, 7252 23) = Lim(Y;, 7;h;), where (changmg from earlier notation)

- n.
m = (ap5.2, 0 g Yi=ap; o(Y ) XTI T = Y;_ .

Proof. By Lemma 3, there exists for each fixed i a sequence hji: Y; 5 Y;
such that Limy (7;hj) = 752, 2;. By the approximation theorem for inverse limits
(Theorem 3 of [1]), we may choose, for each i, one of these homeomorphisms hj -
call it h; - in such a way that Lim (Y;, 7;h;) = Lim (Y3, 7555 ;). ®

LEMMA 5. Let Ny=nj +n,+ - +n;. Let py: YoxI 1o YoxTi-1 be the
natuval projection. Then Lim (Y;, m;h;) = Lim (Yg X INi, p;) = YoxXQ.
Proof. We construct a vertical sequence of homeomorphisms g; such that the

diagram

Ti+1 Digg ng oy
YO < Yl < Yi < Yi+l = aZi(Yi) xI? <

[ e

N N .
YO<—Y0><INl <« - Yo XI 1<—p— YoxI = (Y xI f) x 17141
i+l

commutes. Let g,=1. Having constructed g;, let g, , = [(glazl) X 1]h;1; . Then
-1 _ - _
Pir18i+1 = Pir1lgi@z] X 1hyyy = gilas;, 07 mohyyy = gilmi hir) .-
N:
The map g = Lim(g;) issa homeomorphism of Lim(Y;, 7;h;) onto Lim(YyXxI %, p;).

Finally, the map f: Lim (Y 4 X INi, p;) — Y3 X Q given by the equation
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f(Yo, (YO, tl; Tty tNl)’ (YO, tla Tty tle T tNZ), ) = (YOy tl’ tZ: )

is obviously a homeomorphism.
Proof that XoXx Q ~ YgX Q. Let Z be the inverse limit of the sequence
72,3

To,1 T1,2

Y, < X, <

Yl < Xl e—-— bl

Then Z is homeomorphic to the inverse limit of its cofinal subsequence

(Yi, m2i-2,2i). By Lemmas 4 and 5, Lim(Y;, m25_2,2i) ~ Yo X Q. Similarly, using
Lemmas 4 and 5 stated in terms of the X; (call these Lemmas 4' and 5'), we see
that Z =~ X3 X Q. Thus X;XQ ~ Yy XQ. H

3. PROOF OF THE THEOREM

If X and Y are simplicial complexes, then a simple-homotopy equivalence
f: X = Y is by definition a map homotopic to a composition

where either there exists an elementary simplicial collapse X; N X;_; and f; is the
inclusion map, or else there exists an elementary simplicial collapse X;_; Vv X; and
f; is a homotopy inverse to the inclusion map. Thus, to prove that f X 1p is homo-
topic to a homeomorphism of X X Q onto Y X Q, it suffices to prove that if X5 \ Y
by an elementary simplicial collapse and if ag: Yo — X is the inclusion, then

g X 1n is homotopic to a homeomorphism of Yo X Q onto Xg X Q. We shall show
that the final homeomorphism constructed in Section 2 has this property.

In Section 2 we constructed homeomorphisms (unlabelled there) as follows:
F: Lim (Y;, m24-2,21) — Lim(Y;, m1h;)  (Lemma 4),

Lim(Y;, m;h;) —» Yo XxQ (Lemma 5),

Lim (X;, 735.1,2i+1) — Lim (Y, 72i-2,21),

1’1.1>

Lim (X;, m2;-1,2i+1) — Lim(Xi, 7;h;) (Lemma 4,

.C.?>

Lim (X;, 7:h;) — XoXQ  (Lemma 5').

Let T = GFHF-1G6-1: XoXQ — Yy X Q. Let each of the maps
Ty: YoXQ — Yo, Ty Xg X Q — X,
py: Lim (Y5, 755 5 29 — Yo, pxt Lim(X;, 7551 2i+1) — Xo,
py: Lim (Y, m;hy) — Y, pk: Lim (X;, 7;0;) — X,

be a standard projection onto the first coordinate.
ASSERTION: TTYT ~ ﬂo’lﬂx: XO X Q - YO .
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This assertion will suffice, because 7o, 71x = 'ny(wo 1 X 1g). Therefore our asser-
tion implies that 7y T ~ ﬂy(ﬂ'o 1 X 10), whence T ~ ~my,1 X 1. Since 7 ; isa
homotopy inverse to ay: Yy S Xp, it follows that oy X 1o~ T-1.

To prove the assertion, we first show that py F ~ py: Lim (Y;, 7,;_ 2,21) — Yo
The homeomorphism F is obtained from Theorem 3 of [1], and it is defined there so
that if

s = (sg, 81, ) € Lim(Y;, 7p;_5 51),

then py F(s) = Fo(s) = Lim, [(m; hy) - (7, h,) (s,)]. But by the proof of Lemmas 3
and 4, h; is of the form h; = yj‘il v, for some expansions 7, yji. Thus, by E, of
Section 1, h; takes each cell of Y; onto itself. Therefore 7} h; -7 h (s ) lies in
the same open simplex ¢ = 8(sn) of Yo as my @, - my(s,). On the other hand, if

y € a21-2(Q0) X Ini, where Qg is a closed cell of Y;_;, then

7721—2,21(3{) €Qy =m [agi_g(Qo) X Ini] .

Hence, proceeding inductively, we see that the point sy = 7y ; *** 72, _5 2n(s,) and the
point 7y *** 7 (s ) lie in a common simplex. Therefore, for all n,

(myhy) == (myhy) (sp)

lies in the closed simplicial star of sg (that is, in the union of all closed simplexes
containing sg), and the limit of this sequence py F(s) must lie in this star. Since

so = py(s), this shows that py and py F are contiguous and, consequently, homo-
topic maps.

Similarly, pk F ~ px: Lim (X;, T2i-1,2i+1) — Xo-

Next notice that 7y G = py: Lim (Y3, m;h;) = Yy. For G was defined in the
proof of Lemma 5 by the formula G =foLim/(g;), where gy = IYO and f preserves
the first coordinate.

Similarly, ﬂxé =py.

The homeomorphism H was not explicitly defined. Its existence was merely
inferred from cofinality. We define H explicitly as the map induced from the verti-
cal map

T1,272,3 T3,4T4, 5
Xy < X, < = X, «———

To,1 l lﬂz,3 1”4,5

Y, <

Yo \"'70,1 T1,2 1 ‘772,3 T3 4

of inverse sequences. It is clear that H is a homeomorphism with

-1
H (Yo, Y1,¥2> ) = (771,2(3’1)’ 7T3,4(Y2), ).
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Obviously, pyH =7g | px.
Finally, all of the information above gives the relations

A A N

7yT = nyGFHF 1 G-! = py FHF-1G-! ~ pyHF-1G-1 = o, px F-1G-1
= Mg 1 Px Gl =g Tx.

This completes the proof of our assertion.
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