A SUFFICIENT CONDITION THAT AN OPERATOR BE NORMAL

Che-Kao Fong

The following theorem answers a question raised by H. Radjavi and P. Rosenthal [1, p. 197].

THEOREM. Let T be a (bounded) operator defined on a Hilbert space H. Suppose

- (a) T is quasi-similar to a normal operator N, that is, there exist one-to-one operators X and Y with dense ranges such that TX = XN and NY = YT, and
 - (b) each hyperinvariant subspace of T is reducing.

Then T is normal.

Proof. Let E be the spectral measure of N. Then $E(\sigma)H$ is hyperinvariant for N for every Borel set σ .

Let \mathscr{L} be a hyperinvariant subspace of N. Put

$$q(\mathscr{Q}) = \bigvee_{A \in \{T\}'} \overline{AX\mathscr{Q}}.$$

Then (see B. Sz.-Nagy and C. Foias [2, pp. 76-78])

- (i) $q(\mathcal{L})$ is hyperinvariant for T,
- (ii) $\overline{\mathrm{Yq}(\mathscr{L})} = \mathscr{L}$,
- (iii) $\mathscr{L} \subset \mathscr{L}'$ implies $q(\mathscr{L}) \subset q(\mathscr{L}')$,
- (iv) $\bigvee_{\alpha} q(\mathscr{Q}_{\alpha}) = q \left(\bigvee_{\alpha} \mathscr{Q}_{\alpha}\right)$,
- (v) $q(\{0\}) = \{0\}$ and q(H) = H.

By (i) and the hypothesis (b), $q(\mathscr{L})$ is reducing for T. Let $P = P_{q(\mathscr{L})}$ and $Q = P_{q(\mathscr{L}^{\perp})}$ (for each closed subspace \mathscr{M} , we denote by $P_{\mathscr{M}}$ the orthogonal projection.

tion from H onto \mathcal{M}). Then PT = TP. Since $q(\mathcal{L}^{\perp})$ is hyperinvariant for T, we see that QPQ = PQ. Hence PQ = QP. On the other hand, by (ii), we have the relation

$$\overline{\mathrm{Yq}(\mathscr{L})} \cap \overline{\mathrm{Yq}(\mathscr{L}^{\perp})} = \mathscr{L} \cap \mathscr{L}^{\perp} = 0.$$

Hence $q(\mathscr{Q}) \cap q(\mathscr{Q}^{\perp}) = 0$. Also,

$$\overline{\mathsf{q}(\mathscr{L}) + \mathsf{q}(\mathscr{L}^{\perp})} \supset \overline{\mathsf{X}\mathscr{L} + \mathsf{X}\mathscr{L}^{\perp}} = \overline{\mathsf{X}(\mathscr{L} + \mathscr{L}^{\perp})} = \overline{\mathsf{X}\mathsf{H}} = \mathsf{H}.$$

Therefore P = I - Q, or $q(\mathcal{L}^{\perp}) = q(\mathcal{L})^{\perp}$.

Now, for disjoint Borel sets σ and τ , we have the relation $E(\sigma)H \perp E(\tau)H$ or $E(\sigma)H \subset (E(\tau)H)^{\perp}$. Hence

$$q(E(\sigma)H) \subseteq q((E(\tau)H)^{\perp}) = q(E(\tau)H)^{\perp}.$$

Received February 27, 1974.

Michigan Math. J. 21 (1974).

Hence $q(E(\sigma)H) \perp q(E(\tau)H)$. For each Borel set σ , let $F(\sigma) = P_{q(E(\sigma)H)}$. Then $F(\sigma)F(\tau) = F(\tau)F(\sigma) = \{0\},$

if $\sigma \cap \tau = \emptyset$. Together with properties (i) to (v), this shows that F is a spectral measure. Let $M = \int z \, dF_z$. Then M is a normal operator.

We claim that $E(\sigma)Y = YF(\sigma)$. By (ii), $\overline{YF(\sigma)H} = E(\sigma)H$. If $F(\sigma)y = y$, then $y \in F(\sigma)H$ and hence $Yy \in E(\sigma)H$. Therefore $E(\sigma)Yy = Yy = YF(\sigma)y$ in this case. If $F(\sigma)y = 0$, then $F(\sigma^c)y = y$ (the symbol σ^c stands for the complement of σ); because $\overline{YF(\sigma^c)H} = E(\sigma^c)H$, we can assert that $E(\sigma^c)Yy = Yy$, or $E(\sigma)Yy = 0$. Hence $E(\sigma)Yy = YF(\sigma)y = 0$ in this case. Therefore $E(\sigma)Y = YF(\sigma)$.

In particular, $E(\sigma) = 0$ if and only if $F(\sigma) = 0$. Hence N and M have the same spectrum. If f is a step function such that |f(z) - z| is small on this spectrum, then ||f(N) - N|| and ||f(M) - M|| are small, and f(N)Y = Yf(M). Hence NY = YM. Thus YT = YM. Since Y is one-to-one, M = T. Therefore T is normal.

REFERENCES

- 1. H. Radjavi and P. Rosenthal, *Invariant subspaces*. Ergebnisse, Band 77. Springer-Verlag, New York, 1973.
- 2. B. Sz.-Nagy and C. Foias, *Harmonic analysis of operators on Hilbert space*. Akadémiai Kiadó, Budapest; North-Holland Publ. Co., Amsterdam, 1970.

University of Toronto Toronto, Ontario, Canada