SYLVESTER'S PARTITION THEOREM, AND A RELATED RESULT

M. D. Hirschhorn

For k>0, let $\Pi_d(k)$ denote the set of partitions of k into distinct parts. For $\Pi\in\Pi_d(k)$, let $s(\Pi)$ be the number of sequences of consecutive integers in Π , and let $g(\Pi)$ be the number of gaps in Π . That is, let

$$g(\Pi) = s(\Pi) - 1$$

if the smallest part in Π is 1, while

$$g(\Pi) = s(\Pi)$$

if the smallest part in Π is greater than 1.

For k>0 and $r\geq 0$, let $A(k,\,r)$ denote the number of partitions of k into odd parts (repetitions allowed) exactly r of which are distinct, $B(k,\,r)$ the number of $\Pi\in\Pi_d(k)$ with $s(\Pi)=r$, $C(k,\,r)$ the number of partitions of k into even parts (repetitions allowed) exactly r of which are distinct, and $D(k,\,r)$ the number of $\Pi\in\Pi_d(k)$ with $g(\Pi)=r$, and let

$$A(0, 0) = B(0, 0) = C(0, 0) = D(0, 0) = 1,$$

 $A(k, r) = B(k, r) = C(k, r) = D(k, r) = 0$ otherwise.

We shall prove the following two results.

THEOREM 1. B(k, r) = A(k, r) for all k and r.

THEOREM 2. $D(k, r) = C(k, r) + C(k - 1, r) + C(k - 3, r) + C(k - 6, r) + \cdots$ for all k and r.

Theorem 1 was proved arithmetically by J. J. Sylvester [4, Section 46]. Recently, G. E. Andrews [1, Section 2] gave a proof of Theorem 1 by means of generating functions. Our proofs also make use of generating functions; but they are more direct.

V. Ramamani and K. Venkatachaliengar [3, Section 2] have given a combinatorial proof of Theorem 1. A similar proof is available for Theorem 2.

For k>0 and $r, n\geq 0$, let B(k, r, n) denote the number of $\Pi\in\Pi_d(k)$ with $s(\Pi)=r$, and with no part greater than n, let

$$B(0, 0, n) = 1$$
 for $n \ge 0$,

$$B(k, r, n) = 0$$
 otherwise,

and let

Received November 1, 1973.

Michigan Math. J. 21 (1974).

$$B_n(a, q) = \sum_{k,r} B(k, r, n) a^r q^k,$$

$$B(a, q) = \lim_{n \to \infty} B_n(a, q) = \sum_{k,r} B(k, r) a^r q^k.$$

Andrews has shown [1, equation (2.3)] that

(1)
$$B_n(a,\,q) \,=\, (1+q^n)\,B_{n-1}(a,\,q) \,+\, (a\,-\,1)\,q^n\,B_{n-2}(a,\,q) \quad \text{for } n\geq 2\,,$$
 with

$$B_0(a, q) = 1$$
 and $B_1(a, q) = 1 + aq$.

Multiplying both sides of (1) by zⁿ and summing over n, we see that if

$$B(a, q, z) = \sum_{n} B_{n}(a, q) z^{n},$$

then

$$(1 - z) B(a, q, z) = (1 + (a - 1)qz) + qz(1 + (a - 1)qz) B(a, q, qz)$$
.

That is,

$$B(a, q, z) = \frac{(1 + (a - 1)qz)}{(1 - z)} + \frac{qz(1 + (a - 1)qz)}{(1 - z)} B(a, q, qz).$$

It follows by iteration that

B(a, q, z) =
$$\sum_{r>0} \frac{q^{r(r+1)/2}z^r(-(a-1)qz)_{r+1}}{(z)_{r+1}}$$
,

where

$$(a)_r = (1 - a)(1 - aq) \cdots (1 - aq^{r-1}).$$

Employing Abel's lemma [2, p. 101] and the well-known identity

$$\sum_{r\geq 0} \frac{q^{r(r+1)/2}(b)_r}{(q)_r} = \prod_{r\geq 0} \frac{1 - bq^{2r+1}}{1 - q^{2r+1}},$$

we obtain the relations

$$\begin{split} \sum_{k,r} B(k, r) \, a^r \, q^k &= B(a, q) = \lim_{n \to \infty} B_n(a, q) = \lim_{z \to 1-} (1 - z) \, B(a, q, z) \\ &= \sum_{r \ge 0} \frac{q^{r(r+1)/2} \left(-(a - 1)q \right)_{r+1}}{(q)_r} \\ &= (1 + (a - 1)q) \sum_{r \ge 0} \frac{q^{r(r+1)/2} \left(-(a - 1)q^2 \right)_r}{(q)_r} \end{split}$$

$$= (1 + (a - 1)q) \prod_{r \ge 0} \frac{1 + (a - 1)q^{2r+3}}{1 - q^{2r+1}}$$

$$= \prod_{r \ge 0} \frac{1 + (a - 1)q^{2r+1}}{1 - q^{2r+1}} = \prod_{r \ge 0} \left(1 + \frac{aq^{2r+1}}{1 - q^{2r+1}}\right) = \sum_{k,r} A(k, r) a^r q^k.$$

Therefore

$$B(k, r) = A(k, r),$$

and this is Theorem 1.

To prove Theorem 2, we proceed similarly.

For k > 0 and $r, n \ge 0$, let D(k, r, n) denote the number of $\Pi \in \Pi_d(k)$ with $g(\Pi) = r$ and with no part greater than n, let

$$D(0, 0, n) = 1$$
 for $n \ge 0$,

$$D(k, r, n) = 0$$
 otherwise,

and let

$$D_n(a, q) = \sum_{k,r} D(k, r, n) a^r q^k,$$

$$D(a, q) = \lim_{n \to \infty} D_n(a, q) = \sum_{k,r} D(k, r) a^r q^k.$$

Exactly as Andrews proved (1), we may establish that

$$D_n(a,\,q) \,=\, (1+q^n)\,D_{n-1}(a,\,q) \,+ (a\,-\,1)\,q^n\,D_{n-2}(a,\,q) \quad \text{for } n \geq 2\,,$$

with

$$D_0(a, q) = 1$$
 and $D_1(a, q) = 1 + q$.

Ιf

$$D(a, q, z) = \sum_{n} D_{n}(a, q) z^{n},$$

then

$$(1 - z) D(a, q, z) = 1 + qz(1 + (a - 1)qz) D(a, q, qz)$$
.

That is,

$$D(a, q, z) = \frac{1}{(1-z)} + \frac{qz(1+(a-1)qz)}{(1-z)} D(a, q, qz).$$

It follows by iteration that

$$D(a, q, z) = \sum_{r \geq 0} \frac{q^{r(r+1)/2} z^{r} (-(a-1)qz)_{r}}{(z)_{r+1}}.$$

Hence,

$$\begin{split} \sum_{k,r} D(k,\,r) \, a^r \, q^k &= D(a,\,q) = \lim_{n \to \infty} D_n(a,\,q) = \lim_{z \to 1^-} (1-z) \, D(a,\,q,\,z) \\ &= \sum_{r \ge 0} \frac{q^{r(r+1)/2} \left(-(a-1)q \right)_r}{(q)_r} = \prod_{r \ge 0} \frac{1 + (a-1)q^{2r+2}}{1 - q^{2r+1}} \\ &= \prod_{r \ge 0} \frac{1 - q^{2r+2}}{1 - q^{2r+1}} \prod_{r \ge 0} \frac{1 + (a-1)q^{2r+2}}{1 - q^{2r+2}} \\ &= \prod_{r \ge 0} \frac{1 - q^{2r+2}}{1 - q^{2r+1}} \prod_{r \ge 0} \left(1 + \frac{aq^{2r+2}}{1 - q^{2r+2}} \right) \\ &= \prod_{r \ge 0} \frac{1 - q^{2r+2}}{1 - q^{2r+1}} \sum_{k,r} C(k,\,r) \, a^r \, q^k = \sum_{r \ge 0} q^{r(r+1)/2} \sum_{k,r} C(k,\,r) \, a^r \, q^k \,. \end{split}$$

It follows that

$$D(k, r) = C(k, r) + C(k - 1, r) + C(k - 3, r) + C(k - 6, r) + \cdots,$$

and this is Theorem 2.

REFERENCES

- 1. G. E. Andrews, On generalisations of Euler's partition theorem. Michigan Math. J. 13 (1966), 491-498.
- 2. P. Dienes, The Taylor series. Dover Publ., New York, 1957.
- 3. V. Ramamani and K. Venkatachaliengar, On a partition theorem of Sylvester. Michigan Math. J. 19 (1972), 137-140.
- 4. J. J. Sylvester, A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math. 5 (1882), 251-330.

228B North Rocks Road North Rocks, New South Wales, Australia 2151