ON INNER FUNCTIONS WITH HP-DERIVATIVE
P. R. Ahern and D. N. Clark

In this paper, we consider the problem of determining the HP-classes (p> 0)
to which the derivative ¢' of an inner function ¢ in the unit disk U belongs. Vari-
ous conditions sufficient for the relation ¢' € HP have been established; see J. G.
Caughran and A. L. Shields [5], M. R. Cullen [7], and H. A. Allen and C. L. Belna [2]
for the case where ¢ is a singular inner function, and D. Protas [11] for the case
where ¢ is a Blaschke product.

Part I is devoted to results about general inner functions. In Section 1, we give
some relevant results on angular derivatives of bounded analytic functions. Apply-
ing these results to inner functions (Section 2), we show that the relation ¢' € Hl/2
implies that ¢ is a Blaschke product. This answers a question raised in [5] and [7];
see also [2]. Another consequence is that ¢' € HP if and only if ¢'/s € HP, where s
is the singular part of ¢. This has been proved before in a special case in [7]; the
corresponding statement with HP replaced by BP is known to be false (see [2]). We
conclude Part I with an application of our results to exceptional and omitted sets.

In the second part, we consider the case where ¢ is a Blaschke product with
zeros {a,}. Protas [11] (see also Caughran and Shields [6]) has shown that the
condition

(1) 22(1- |ag)® < w

with 6 =1 - p is sufficient for ¢' € HP if 1/2 < p < 1. Using the results of Section
2, we show in Section 3 that condition (1), with 6 = (1 - p)/p, is necessary for

¢' € HP (1/2 < p < 1). This is apparently the first known necessary condition for
the derivative of a Blaschke product to lie in HP. We show by example that both
these conditions represent the best possible values of 6. In fact, if the zeros a,
converge to a boundary point nontangentially, then 6 = (1 - p)/p is precisely the
right order of convergence of (1) (Section 4). Section 5 gives sufficient conditions
for the relation ¢' e HP in some other cases.

PART I. INNER FUNCTIONS
1. ANGULAR DERIVATIVES

We consider the class IB of functions that are holomorphic and bounded (in
modulus) by 1 in U. A function f € IB has a factorization of the form

@ i(z) = {H [2 a“'ﬁi}exp{-f%dum},

a, 1-2a
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where 2 (1 - [anl) < o and where u is a positive Borel measure on the unit circle

T. (The convention here is that la.n]/an is to be replaced by 1 of a, = 0, and that
the set {an} may be infinite, finite or empty.) If pu = 0, the function f is called a
Blaschke product, and if u is singular with respect to Lebesgue measure on T, then
f is called an ¢nner function; a nonvanishing inner function is called a singular inner
Junction. Lebesgue measure on T will be denoted dm, and the phrase “almost
everywhere” will always refer to dm. If f € IB, then £(§) = lim_._, | f(r{) exists for
almost all £ € T; details of these facts about IB can be found, for instance, in [8,

Chapter 2].

Following C. Carathéodory, we shall say that a function f ¢ IB has an angular
derivative at € € T if f(£) exists and has modulus 1 and if £f'(¢) = lim,._, ; £'(x)
exists. If f fails to have an angular derivative at ¢, we shall write |f '(§)| = o0,
Note that this does not imply that If'(rC)( — o as r — 1. The basic results on
angular derivatives, some of which we assemble in the following theorem, are due to

Carathéodory [3, Sections 298-299].
THEOREM 1. If f ¢ B and § € T, then
() [£@©)] =tim 1 (1 - [#)])/(1 - 1)
(i) if f has an angular derivative at €, then £'(€) = T£(&) |£'()];
(iii) if £, € B and £, — { uniformly on compact subsets of U, then

|£'(©)| < lim inf|£)(0)] .

n—oco

COROLLARY 1. If f and g belong to 1B, and if ¢ = ig, then
(3) lo:(©)] = |£(®©)] + |&(®]

forall € € T.

The corollary is an obvious consequence of Theorem 1 (ii) in case both f and g
(and hence ¢) have an angular derivative at . The only other case in which not
both sides of (3) are infinite is that in which ¢ has an angular derivative. In that

case, since
(1- ]88 )/(1-1) < - |o(xd)])/Q - 1),

it follows that f and hence g has an angular derivative at {, and therefore Theorem
1 (ii) again implies the desired conclusion.

If f, g € IB, we say that g is a divisor of f if f = gh, for some h € IB.

COROLLARY 2. If ¢, ¢p€ BB (n=1, 2, ), if ¢, is a divisor of ¢ for every
n, and if ¢, — ¢ uniformly on compact sets, then lon(0)| — |¢‘(§)| Jor every

€ eT.

For the proof, note that Theorem 1 (iii) implies |¢'(¢)| < lim inf |0 () |, while
Corollary 1 implies |¢4(8)| < |¢'(©)].

The following theorem was proved by M. Riesz [12] for singular inner functions,
and by O. Frostman [10] for Blaschke products. The general case was proved in [1].

Here we sketch a proof that is simpler than any of those cited above; it indicates how
easily the theorem follows from the basic results of Carathéodory.
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THEOREM 2. Let f € B have the vepresentation (2). Then fov all € € T,

(4) @) = T - fan|B/le - a2 +2 § - ¢ 2aue.

Proof. We notice first that if g has a point mass at ¢, then both sides of (4)
are infinite. Another case that follows without difficulty is that in which ¢ is in
neither the closed support of u nor the closure of the set {an}

For the case of arbitrary {a,} and p (with p({¢}) = 0), define f,, to have a
representation (2) with {a,} replaced by {a, as, -+, ay,) and U replaced by its
restriction to the complement of the arc on T centered at  with length 1/n. Then
i, is a divisor of f, f,, — f on compact subsets of U, and therefore, by Corollary 2,
lfL.0f — [£(©)]. As we noted above, (4) holds for f,,, and the monotone-conver-
gence theorem shows that the right side of the analogue of (4) for f,, tends to the
right side of (4).

This proof may appear to depend largely on our convention that |f'(§’)] = o0
whenever the angular derivative of f at ¢ fails to exist. The following corollary
shows that in the situation most important to us this is not the case.

COROLLARY 3. Let f be an innev function such that £'(z) has a vadial limit
£'(€) for almost all ¢ € T; then the two sides of (4) ave finite (and equal) almost
everywhere.

Of course, the hypotheses imply that f has an angular derivative almost every-
where.

2. INNER FUNCTIONS

We are now ready to apply Theorems 1 and 2 to the main problem of the paper.
Recall that, for 0 < p <, HP is the class of functions f, analytic in U, and such
that

I£l, = Sgp(‘glf(ré)lp clm(ﬁ))l/p < oo,

THEOREM 3. If ¢ is an innev function and ¢' € Hl/z, then ¢ is a Blaschke
product.

Proof. By Corollary 3, we have almost everywhere the relation
6] = 2@ - la /1e -2, +2 - el Zaue) > (In-cl2aut.
Now, if y is not the zero measure, it follows that

(@72 ame > (- awm) " amc

> el 2§ le -2 awe ) ame)

el 2 00§ 1e -2 am@) auey,
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and the inside integral diverges for every ).

THEOREM 4. Let ¢ = Bs be an inner function (wheve B is a Blaschke product
and s a singular inney function). Let 0 <p < 1. Then the following ave equivalent.

(i) ¢'/s € HP,
(ii) ¢' € HP,
(iii) |¢'(€)| € LP.
Proof. Clearly, (i) = (ii) and (ii) =~ (iii). If (iii) holds, then (4) holds, both

sides being finite almost everywhere. Now, since ¢' = B's + s'B, we see that
¢'/s = B' + Bs'/s, so that for the functions f = ¢'/s and g = s'/s,

[tx8)| < [B' )] + |grt)| < 22(1 - |ag|?)/|1 - a,re)?+2 S Ix - re|"2dpi)

<4 (2(1 - |a,[®/]¢ - an]2+2§ Ix - ¢|2 du(x)) = 4¢'(0)] .
It follows that
j |£(rt) [P dm(¢) < 4P Squ(t:)!? dm(¢) = 4P ||¢'|l§

for r < 1, and hence f € HP.

Cullen [7] proved Theorem 4 in the special case where ¢ = s and the support of
p is a Carleson set. He showed that in this case Theorem 3 follows, in other words,

that ¢' cannot belong to H!/2. Cullen’s proof, together with Theorem 4 above,
gives another proof of Theorem 3.

From the proof of Theorem 4, we can obtain a version with HP replaced by the
Nevanlinna class N.

COROLLARY 4. Let ¢ be as in Theovem 4. Then the following ave equivalent.
(i) ¢'/s € N7,

(ii) ¢' € N¥,

(iii) ¢' € N,

(iv) log*|¢'| € LL.

Proof. We need only prove that (iv) implies (i). As in the proof of Theorem 4,

the function f = ¢/s satisfies the inequality |f(rt)| <4 |¢'(¢)| almost everywhere.
Thus

log* [£(r¢)| < log*|¢'(¢)| +log 4.

It follows that f € N and that, by the dominated-convergence theorem,
S 10g+|f(rC)l dm(¢) converges to SlogJr ]f(C)I dm(¢) as r — 1. The corollary fol-
lows from [8, p. 26, Theorem 2.10].
The following theorem is our major tool.
©0
THEOREM 5. Let ¢, ¢1, ¢, -+ be innev functions with ¢ = Hn:l o, the

product converging uniformly on compact subsets of U. Then, for 0 <p <1, we
have the inequalities
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[} ‘ 1
' 1 1 p
(5) S el < lel, < (Zenl®) 7,
n=1

where each novm is to be veplaced by « if the function fails to exist on a set of
positive measure.

Proof. By Corollary 2,
|6:(6)] = 22 |op(®)],
n=1

and the inequality on the left in (5) follows from Minkowski’s inequality for
0 < p < 1. For the other inequality, note that

©0 P
lo'(©)|P =( > I%(C)\) < 2 len©|F,

n=1

and integrate with respect to dm.
One very simple corollary of Theorem 5 is worth noting.

‘ COROLLARY 5. If ¢ is an inney function and ¢ = ¢ ¢,, then ¢' € HP smplies
¢; € HP (1 =1, 2).

We conclude this section with an application of Theorems 3 and 4 to exceptional
sets. If ¢ is an inner function, we define E(¢) as the set of o € U such that the in-
ner function

Y = (¢ - a)/(1 - a¢)
has a nontrivial singular inner factor. Of course, E(¢) contains O(¢), the set of
omitted values of ¢. According to Frostman [9], E(¢) has logarithmic capacity O.
THEOREM 6. If ¢' € HL/2 then E(¢) = .

Proof. For a € U, set ¢o = (¢ - @) (1 - a¢)~! . Then ¢ is an inner function,
and

bg = (1-|af)e'(1- ag)-2.
It follows that ¢' € yl/2 implies ¢y € ul/2 , and hence, by Theorem 3, that ¢, is a
Blaschke product for every «.
COROLLARY 6. If ¢ is an inner function such that ¢' € H1/2 then ¢(U) = U.
This follows from the inclusion O(¢) C E(¢).
Corollary 7 follows from Corollary 4.
COROLLARY 7. If ¢ is an innev function with ¢' € N, then E(¢) is couniable.

Proof. Let ¢, = (¢ - a)(1 - @¢)-1, and let ¢, = s, By be its representation as
the product of a_singular inner function and a Blaschke product. Since ¢' € N, we
see that ¢4 € N, and thus ¢/S, € N¥. This and the formula

do = ¢' (1 - |a|P)/(1 - ag)?
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imply ¢'/sgy € Nt Now, if py is the measure p appearing in the representation
(2) for sy, then ¢(r¢) tends to @ almost everywhere (duy), and therefore the
measures Ly are carried on disjoint sets. Since the function ¢' € N has a factor-
ization ¢' = BsG (where B is a Blaschke product, s is a singular inner function,
and G is an outer function) and since each singular inner function sy divides s, we
conclude that the number of sy’s is countable.

This argument is an adaptation of a proof of Caughran and Shields [5].

PART II. BLASCHKE PRODUCTS
3. GENERAL BLASCHKE PRODUCTS

In this section we consider a Blaschke product B(z) with zeros a, (n=1, 2, ---).
The quantity 1 - |an| will be denoted by d,,. We deal with two theorems. Their
proofs are very simple; but we shall construct examples to show that the theorems
are the best possible results of their type. Theorem 7 is due to Protas [11] (see
also Caughran and Shields [6]).

THEOREM 7. (i) If 0 < a <1/2 and 2749 <, then B' € H' "%,

(ii) if 22 dl/21og ;1< «, then B' € H!/Z.

Proof. The proof given by Protas and Caughran is short, and it may be based
upon Theorem 5, as follows. Let B,(z) = (z - a,)/(1 - 8, z). By Theorem 5,

1/p
) v |P
Iz, < (Z1eaR) "
Now it is easy to see that
i P o : —
IBal, < Cdf iftp=1-aand0<a<1/2,
and that
‘ ' -1 .
IBLly < cdflogd, if p=1/2.
THEOREM 8. (i) If 1/2 <p<1and B' € HP, then 2 a! PV/P < w;
(ii) if B' € H/2  then 27 d,(log d;!)2 < .
Proof. Using the other inequality in Theorem 5, we find that
Zi|Bafl, < 1815,
where, as before, By, = (z - a,)/(1 - a,2z). It is not hard to see, this time, that

“Bgllp > edl PP gr 1< p<i,
and that
IBLll, > ednGog d;h)? it p=1/2.

This completes the proof.
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Our goal now is to show that both Theorem 7(i) and Theorem 8(i) are the best
possible results of the form

27d% <« implies B' e HP.
The rest of this section is devoted to a series of lemmas leading to an example show-

ing that Theorem 7(i) cannot be improved. That Theorem 8(i) is best possible will be
shown in the next section when we consider Blaschke products with real zeros.

The first of our lemmas will later be useful in other ways.

LEMMA 1. Let a =r eien. Then B' € HY if and only if £ € LY, wheve

n
[>e]
_ E 2 2
f(6) = dn/[dn+ (6 - 6,)“].
n=1
Proof. Note that
(6) |ei9 -a,|% = 1+r2-2r cos(0 - 6,) = d2 + 4rsin?[(6 - 6,)/2].
Thus, if B' € HP, so that B'(el?) € LP, then
leif - ap|* < d2+(0 - 0,)%;

hence £(9) < |B'(el?)|, and therefore f € LP.

Now suppose f € LP. We may write B as the product of four factors, each of
which has its zeros lying in an angle of opening at most 7/2, and it is enough to show
that each of these factors has its derivative in HP. Assume, therefore, that
-1/4 < 6, < 7/4; we need to show that

mi4 .

S |B'(e'f)|Pdo < .

-m/4
For |6| < u/4, we see from (6) that

e - a |2 > d2+4(1/2) (4/m2) (0 - 6,)2/2 > &y [d2+ (6 - 6,)?],
since |0 - 0,] < 7/2. This shows that
|B' ()| < g5t £(0)

for |9| < /4, so that f € LP implies B' € HP, and this proves the lemma.

LEMMA 2. Let y> 1, and let a = rnelen, wheve r,=1-n"Y and 6, =nl-7,
Then B' ¢ H1-1/7,

Proof. In the notation of Lemma 1, we shall show that there is a positive num-
ber & such that f(6) > £0-v/(v-1) for all sufficiently small 6. In fact, in the
present situation,

£0) = 22nY/[1+n%mY 1o - 1)2].
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For a fixed 6, we estimate this sum from below by its largest term. This will
occur when ng is chosen so that

(7) 0-1/r-1)_1 < ny < g-1/r-1),
(Here we assume 0 is small enough so that 6 "1/(Y~1)> 2) From (7) it follows that
1-0 1/(y—1)§ ng pl/(y-1) <1,
and hence that
[1- 6/ =Dl < ay-lo <1,
so that
mYlo- 12 <[1-(1- gt/ r-1hr-112,

This and the inequalities (7) give the relations

Y - -
(o) > ng (6 1/(y-1) _ 1)

> : .
T 1+ni@yte - 1% T [1 S (1 - g y-1yy-1
1+
gl/(y-1)

It follows from elementary calculus that the denominator approaches 1+ (y - 1)2 as
¢ approaches 0, and from this it follows that there is a positive number & such that
f(8) >¢c@ -/ tr-1) for all sufficiently small 6. This completes the proof of Lem-
ma 2.

Notice that if we set 8 = y'l , then the lemma provides an example where
EdﬁlY <o forall @ <B, but B' ¢ H! B,

We are now in a position to show that the exponent p=1 - @ in Theorem 7(i) is
the best possible.

Example. If 0< a < 1/2, there is a Blaschke product B(z) whose zeros con-
vevge to 1 and such that 2 d% < o, but B' ¢ HF for any p> 1 - a.
We construct the example as follows. For each n, we find a Blaschke product

B, whose zeros converge to 1 and such that 27 (d)® < =, but By ¢ Hl1-@*1/n,
This can be done, by Lemma 2. By discarding finitely many of the zeros of B,, we

Eoo mo -n - Hoo .
may assume that 2/, _; (di)% < 27%. It follows that B = 11 ,_; B, is a convergent

Blaschke product whose zeros satisfy the condition 20 dﬁ < %, By Theorem 5,

IB'], > 27 |Ball, = =

when p > 1 - @, so that B' ¢ HY whenever p > 1 - .

We point out that the same method may be used to show that there is a Blaschke
product B whose zeros converge to 1 such that B' ¢ HP for any p > 0.
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4, BLASCHKE PRODUCTS WITH a,, — 1 NONTANGENTIALLY
The main result of this section is that if a,, — 1 nontangentially, that is, if
(8) (1-|an])/|1 -2y > ¢,

then Theorem 8(i) gives the right order of convergence of 2J d¢ for B' € HP.

First we reduce the case of a, — 1 nontangentially to the case where the a,
are real and positive.

LEMMA 3. Let a, — 1 nonlangentially. Then theve ave constants cy, cp, > 0
such that

(9 c1 < |an=2|/[|an| - 2] < ez

for each N of modulus 1. In particular, if B(z) and P(z) are the Blaschke products
with zevos {an} and {|an|} respectively, then

(10) 2 [B'M| < [Pr)| < & [B' ()|
for || =1 (x = 1).
Proof. The right-hand inequality in (9) follows from the relations
lan = [/[|an| -] < lan- 1AL - |an) + 141 - |an)/[x - |as|| < e+2,

where ¢ comes from (8).

To prove the left-hand inequality in (9), we note that
A - Jan|| <X -an] +@ - |an]) +|1-2n| <X -an] +(1 - |an]) +c71(1 - |an)),
where again ¢ comes from (8). The result is
A - Jag|] < @+el)|a-ay.

This proves (9). Now (10) follows from (9) and from Theorem 2.

THEOREM 9. If the zevos of B tend to 1 nontangentially, if p > 1/2, and if
Edg < e for some a < (1 - p)/p, then B' € HP,

Proof. By Lemma 3, we may assume a,_> 0, so that the function £(0) in

Lemma 1is £(0) = 27d,/[d%+ 62]. From the inequality x!-¢ < 1+ x2, with
x =d,/0, we get the further inequality

(dn/0)1-% < 1+ (a,/0)?,
from which it follows that

d,/[6% +df] < o-(ta) g2
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so that £(0) < 6-(1+@) 27 4% ; therefore f € LP for p < (1 + @)-!. This, together
with Lemma 1, implies the theorem.

On the basis of Theorems 8(i) and 9, it is natural to ask whether, under the as-

sumption that a, — 1 nontangentially and p > 1/2, the condition 27 d\l"P)/P < w ig
both necessary and sufficient in order that B' € HP. Our next result shows that the
answer is negative, and it gives some more precise information.

THEOREM 10. Suppose that the zevos of B convervge to 1 nontangentially. Let
k,, denote the numbeyr of values |ay| in the interval (1 - 27, 1 - 2-(nt1)],

(1) If 0< o <1 and k,/2"® =0t for some t > 1+ a, then B' € HI/(1Ta)
(ii) The zevos of B can be chosen in such a way that k. /2" = O(n-1-%), but
B' ¢ Hl/(1+a)
Notice that the series 2J d% converges if and only if 27k, /2P < w,
Proof. Assume, as before, that the a,, are replaced by the |anl .
If k,/2"® =0(n"Y) for some t > 1+ @, we write

§6) = 2 dn/@2+ 6%+ 2 du/(di+60)< L dn/0%+ 2 an.
dn<| 0| dn>| 0| dn<| 6| dn>| 6|

Concerning the first sum we invoke the inequality
[2e) 0 0
Z; dl‘l = E E dk S Z} kn/zn - O( E n—t 2—1’1(1 -a)) ,

dn <] 6] n=N 1 1 n=N n=N
a1 <dk<7n

where 2-(MN+1) < o] < 2°N | If we notice that

o0

3y pton(l-a) <N t 53 gnll-a) O(N—tz-N(l—a)) - O(|9|1—a/[log|9|'l]t)
n=N n=N

we see that

072 22 dn=o0(6]1-2/[log|6]-11t) .
a,<| e|

For the second sum, we get the estimate
N N N :
> al = >3 > d};l) < > k20t = O( > 2n(1+0£)/nt),
d >|9| n=1 \,-n-1 <dkézﬂ‘1 n=1 n=1
where 2°N-1 < |o| <2-N, Now it is easy to see that for each t' <t,

N
>y on(l+a) -t _ O(ZN(”O‘)N't').

n=1
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Since 2‘(N+1)S |9| < 2N we see that
£(0) = 0(6 -1+ /[1og| 6| "!1t')  for each t' <t.

Choosing t' so that 1 +a <t' <t, we see that f € L1/(1ta)
In order to prove (ii), we choose for k, the unique integer satisfying the condi-
tion

no ., -{l+a)

g"%n <k, < gron-ttel

1.

Clearly, k, 2 -ne - O(n’(Ha )). On the other hand,

N N
() >3 I al>2 D % a4l >3 T 2k,
dn>| 6| n=l z-(tl) ¢ g < p-n n=1

where 27N < |0] <27N*1 5o that

1. 1 N NaNn-(1+a)
£(6) 222 kN22“‘ 2

_ %2N(l+a)/NHa > e |9|"(1+a)/[log|9| -1]1+a.

It follows that f ¢ L1/(1*®) and hence that B' ¢ H!/(1+a),

The following corollary shows that Theorem 8(i) is best possible in a stronger
sense than Theorem 9.

COROLLARY 8. For each p (1> p > 1/2), there is a Blaschke product B such
that B' ¢ H® and Edﬁ: w for every g < (1 - p)/p.

Proof. Let a = (1 - p)/p, and choose k,, so that k,,277% = O(n"*) for some
t>1+a, but Eknzmﬁ = for every B < a.

5. TWO MORE SUFFICIENT CONDITIONS

In this section, we give two sufficient conditions for the relation B' € HP, under
assumptions different from those of Section 4. The first condition generalizes the
estimate applied to a B(z) having real zeros in Theorem 9, and the second is based
on a lemma that generalizes part of Lemma 3.

The first of our two theorems generalizes Theorem 7 when q is sufficiently
small. Note also that it holds for all o < 1.

THEOREM 11. Let B be a Blaschke product with zevos a, = rnelen. Let E
be the closuve of the set {6,, n=1,2, ---}. Suppose E has measure 0, and let
{sn} be the sequence of lengths of the intervals on the circle T complementary to

E. Further, suppose that 2 el < = for some q (0 <q < 1), and that 2, dg < w for
some a (0 < a <L 1); then B' € HP for p< (1 - q)/(1 + a).

Proof. We consider the relations
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£(0) = 2 d,/[a2+(6 - 6)%]+ 2 d. /[d2+(6 - 6,)?]
dn<|6'9n| dn_>_|9'9n|

< )> d, (6 - 6.)%+ 2 a;l
dn<|6-6n| dn>| 6-6n |

= 2 d%al-%(-6)%+ 2 a%ailte)
32<] 002 4] 6-0n |

< 2 a6 -6,|1"%/(6 -0

< ¥+ L d¥/]e - e |t
dn<| -6 |

dn>|0-64|

n

=22 d2/|6 - 6,|'t < (2 2 d,of)d(e)‘l'o‘,
n=1

n=1

where d(0) denotes the distance from 8 to E. Since

SM d(e)-1*@)Pgp = o s};(”a)p),
0 n=1

we seethat f € LP aslongas 1 - (1+a)p > q. This completes the proof.

In the next lemma, we have a generalization of (part of) inequality (9) to the
case of a Blaschke product whose zeros approach 1 tangentially. Following G. T.
Cargo [4], we define, for y > 1 and 6 > 0,

R(5, ) = {z:1- |z| > 8]1-2]|7}.

When y = 1, the region R(5, y) is essentially a Stoltz angle. As vy increases, R(5, v)
touches the unit circle T with a greater degree of tangency.

LEMMA 4. If a € R(5, y) and |¢| =1, then
[¢- [a]|” < 8+6)7[¢ - al.
Proof. Let € = 1/y. Then, since a € R(5, y), we see that
[1-al <671 - |a])e.
Thus
|¢-lall < |¢-a]+@-la)+]|1-a] <2{¢-2]+0677[¢-al®
=[2]¢c-a|'FT+o7][¢c-al® <(B+6N]|C-alE.
Of course, Lemma 4 is used in the same way as Lemma 3.

THEOREM 12. Suppose ap € R(5, 7) (n=1, 2, ) and 22 d% < w. Then
B' € HP for p<(a +2y- 1)L,

Proof., By Lemma 4,



ON INNER FUNCTIONS WITH HP-DERIVATIVE 127

IeiG - an|—2 = cx|eie - |an|l—2y)’

so that it suffices to show that

g(0) = 2rdyle'? - |ag| |27 € LP.

But clearly g(0) is dominated by

G(6) = 22d (d2+69Y < 2 d,|e|+ T ai-?v

" dn<| 6| dn>| 6|
< 4 d¥|e|tEre 2 d2|e|! @72y = o(e!-@-EY),
dn <[ 6] a4y > 6|
and this proves Theorem 12.
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