OBSTRUCTION THEORY IN THE STABLE RANGE
Donald W. Kahn

Obstruction theory is the branch of algebraic topology that studies the problems
of extending or classifying maps, from a complex X to a space Y, one dimension at
a time. Implicit in the fundamental work of H. Whitney [9], it was first codified of-
ficially by S. Eilenberg [2]. The most general formulation was given by P. Olum [7].

One basic concept in the classical obstruction theory is that of the obstruction
set 0™(X, Y) (see for example p. 181 of [4]). This set consists of the set of all pos-
sible obstruction classes, that is, classes in H*(X; I, _;(Y)) that arise as obstruc-

tions to the extension of maps from X" ! to Y (here X' means the i-skeleton of the
complex X) to the n-skeleton. In general, the literature contains little information
about obstruction sets. It seems that these sets have little interesting structure,
without some special assumptions.

The purpose of the present paper, which concerns the theory rather than com-
putations, is to show that the situation is radically different in the stable case. We
show that when we stabilize with respect to suspension, the obstruction sets are fil-
tered groups, so that the fotal obstruction set

oXX,Y) = 2 05X, Y)

n

is a filtered, graded group. It is a subgroup of the total cohomology group

2 HX; I (Y),

n

where HJTC’(Z) means the jth-stable homotopy group of Z. Furthermore, if we con-
sider this filtered, graded group for all suspensions of X,

2 05X, Y),
J

where j varies over the integers (including negative integers), and where =J
means, of course, the j-fold reduced suspension, we have the structure of a graded,
filtered module over G,, the stable homotopy ring of spheres. This module struc-
ture is compatible with the G, -module structure on

27 {20x, Y},

J
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where {A, B} means the group of stable homotopy classes of maps from A to B.
We note that this group also has a filtration, defined in terms of the skeleta of A,
that relates to the filtration on the stable obstruction sets.

The methods for introducing all this structure consist in interpreting obstruction
theory in terms of the spectral sequence, converging to the groups

»igix, v},

j

which in turn arises from the filtration of X by skeleta, or equivalently, by filtering
Y by successive fibres in a Postnikov system (as originally done by F. P. Peterson
[8]). We review the spectral sequence in Section 1. Our basic results on obstruc-
tions are in Section 2, and we give the applications in Section 3. The first applica-
tions are elementary, dealing with the question when a map X2-1 — Y that does not
extend to X™ is decomposable in terms of the G, -action. We give an exact sequence
for obstructions in the top dimension; it implies some numerical estimates. The
deeper applications, however, relate to the well-known generating hypothesis of P.
Freyd [3]. We use our theory to give new consequences of the generating hypothesis,

unproved at this time, in terms of the G -action on E {Z X, Y}. The conse-
quences here (Theorem 3 and Corollames) are all 1nterest1ng global statements in
stable homotopy.

Parallel to this, we have an obstruction theory to homotopy, which in this case
can be reduced to obstructions to the formation of null-homotopies. One can also
show that if the generating hypothesis is true, the entire obstruction theory in the
stable range can be reduced to the study of G, -modules and their homomorphisms
(see [5]). On the other hand, the relative theory does not have these nice algebraic
properties, with subgroups becoming cosets. Here we shall leave details to the
reader.

We note that much of the additive part of these results follows quickly from the
beautiful treatment of A. Dold (see [1]).

1. We shall work in the category of finite CW-complexes that are connected and
have base points (omitted from the notation). We write =X for the reduced suspen-
sion of X, {X Y} for the groups of stable homotopy classes of maps from X to Y.
Note that {E X, EJY} is defined for all integers i and j.

Definition. APA(X,Y) = {=-P-axP, Y}, BPY(X,Y) = {ZP9(xP/xP1), Y}.
Here XP means the p-skeleton, which is assumed to be the base point if p is nega-
tive. Using the maps from the cofibrations

xP-1  xP - xP/xpP-1
we get an exact couple, denoted by
@(X,Y) = {A, B, f, g h).

The maps have bidegrees (-1, 1), (1, 0), and (0, 0), respectively. The elementary
properties of this couple are summarized in the following theorem (see [5] for de-
tails).

THEOREM 1. (a) BP4(X, Y) = CP(X; 11, (Y)).
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(o) The homomorphism d| is the usual coboundayy.
(¢) The construction is functovial in X and Y. The induced maps on the fivst
devived group

, S
BY? = HP(X; 112 (Y))

are the usual induced maps; the coefficient homomovphisms associated with the in-
duced maps on stable homotopy groups express the functorviality in the second vari-
able.

(d) The entive exact couple has the stvucture of a couple of graded modules over
G, . The action is defined by the action of {a} € G, on {t} € {X, Y} by the com-
position

sotmtp o zrnX>§<Sn-l~p 1(f)§<a) EmY%Sn - Zm+nY,

where i = (-1)P"™

Associated with the exact couple #(X, Y), we have a convergent spectral se-
quence whose first invariant term is

S
EDY = HP(X; 2, (Y));

the sequence converges to the graded group associated with Ej {3X, Y}. Because
this is zero for sufficiently small j, the entire spectral sequence lies in the upper
half-plane and vanishes to the right of a suitable line.

2. We wish to identify the obstruction classes in terms of our spectral se-
quence.

THEOREM 2. Suppose X and Y ave (j - 1)-connected and
max (dim X, dim Y) < 2j - 2.

The class x € H'(X; HE_I(Y)), with x # 0, is the obstruction to the extension of a
map £: X! — Y {0 the n-skeleton of X if and only if there exists a

y € Hn_k(X; Hrsl-k(Y)) such that in our spectval sequence

(1) di{y} =0 (G <Kk),

. % %

() d {y} ={x} i E".
(Note that II__.(Y) = IS 1(Y)))

Proof. Suppose that the condition is satisfied and y is represented by a map

g: X"k -y
that factors through the map
B': Xn-k/xn‘k"‘l — Y’

with B' representing the cohomology class y. The first condition assures us that g8’
lifts to 8": Xn-! — ¥, and the second condition says that if we compose on the left

with =-}(xn/xn-1) 9, x"-1 we get a map
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n-1

pgm: X/X — XY

that represents x. It is clear that the indeterminacy in {x} also has the form of a

m

map X2-1 - ¥, sothat x e E, may be represented by such a g".
It will obviously suffice to show that the obstruction to extending g" is 8". Ob-
serve that the suspended attaching map for an n-cell e? ¢ X" is

(26) (1,): 8™ — »xn-1.

i

but then the obstruction cocycle, evaluated on e, is precisely B8'".

Conversely, let x ¢ HY(X; HS-l(Y)) (x # 0) be the obstruction to extending
f: xn-1 Ly, By previous remarks, x is represented by

o}
s-Uxnyxn-h) & gn-1 Loy
The map f does not extend to X", and if we choose k so that f | XK is nontrivial,
yet £ l xk-1 g trivial, we see at once that {x} is a suitable boundary.
COROLLARY 1. The nth stable obstruction set ¢ ¥X, Y) for maps from X to
Y is the kernel of the natural homomovphism
’ I-
D" - E" 77,

where

D" = kgz ker(dy) € E3!1P = H(X; IS _,(Y)).

Proof. If x € H(X; HE-I(Y)) is an obstruction, we see that {x} =d,({y}), so
that x clearly lives in the desired kernel. The converse also follows at once from
Theorem 2.

COROLLARY 2. (X, Y) = 2, , 05(=™X, Y) is a graded, filteved G-
module. The filtration arises from the successive kernels

Dn~_>Errl,1—n (2_<_r§°0),
whereas the Gg-action arises from the Gy -action in the exact couple.
Proof. Apply Corollary 1 to the various iterated suspensions Z™X,

3. We now give some applications.
PROPOSITION 1. Let f: X®-1 — Y not extend to X™, and suppose the obstruc-

b

tion is x € HY(X; HE_I(Y)). Suppose f = a -g, wheve a € G; = l'IiS(SO) and
g: T 'X =Y. Then x is an image undev the coefficient homomorphism

HYX; 15, (Y)) — HYX; IS _,(V)),

which is given by multiplication by «.

Proof. By our theorem, {x} =d 1y}, where y is represented by a map

x*/x*l Y (r=n-m)
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and d,,{y} is given by the correspondence
{x7/xh v} - x5 ¥} « {x™ v} o {x™h v} - {xYx™L 2y).

We choose f in the group which is second from the right so that the class of the
image of { on the right is x. All maps are G,-linear; therefore x is clearly such
an image.

PROPOSITION 2. If dim X = n, we have an exact sequence
0 — 0%X,Y) » H'(X; I2_,(Y)) B ker({X, 2} — {x*], 2v}) - o0,
wheve p is the projection
[CalxX; TS _1(¥))/m ({X™1/x™72% v} & {x™/x™!, 5y}
- [c™x; 12 (V)/im ({=x™7, 2Y} — {x¥/x*7) =v})].
The sequences, for suspensions of X, ave natural under the G K action.

Proof. 05(X,Y) = UJ- Im d;, because this is the top dimension for X. We
then have an obvious exact sequence

0 - 03(X,Y) » HYX; I°_,(Y)) —» EX!® - 0.

Since dim X = n, the last group is the required kernel. The rest is obvious.

We remark that one can use these techniques to give estimates on orders of
elements, and to give a modified version of the sequence, in one dimension lower
than that in Proposition 2. Note that Proposition 2 is a generalization of the classi-
cal Hopf-Whitney theorem.

Next, we turn to Freyd’s generating hypothesis (see [3]). It claims that if X
and Y are finite, connected complexes, and f: X — Y induces 0 on stable homotopy
groups, then f is stably null-homotopic. We shall show how, via obstruction theory,

this hypothesis implies interesting results about the G, -action on EJ- {Ej X, Y}.
LEMMA. Assume the genevating hypothesis. Then

(a) if f: X — S is a stably nontvivial map and X is a finite complex, theve
exist distinct elements ay, -, a;, --- € G, such that a;{f} # 0 for each i;

(b)if 0#x € HS(X) there exist infinitely many Bi € G, such that B; -x # 0.
One may assume tkat each B; is a product of length i.

Proof. (a) By the generating hypothesis, there exists an x € HS(X) with
f#(x) # 0. We use Proposition 9.3 of [3], a consequence of the generating hy-

pothesis, to find elements a; € G, such that o; f#(x) # 0, for each i. It is then easy
to verify that a;{f} ¢ {=* X Y} must be nonzero, for each i.

(b) Let g: S™ — X represent x (stably). Denote Spanier-Whitehead duality by
D, and apply (a) to the dual map Dg: DX — S™. Since the a; are self-dual, it is
clear that the compositions
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are all nontrivial. The generating hypothesis implies (see [3]) that the B; may be
chosen as products, as desired.

THEOREM 3. We assume the genevating hypolhesis, and we let f: X - Y be a
(stably) nontrivial map between finite complexes.

(a) There exists an o € H?n(X) such that f does not extend to a map

x = six Uemtitl 5y (m> dim X).
a
Denote the obstruction by v (which may be identified with fi(a)).

(b) There exist g =p-f (B e G, and {g} € {Z4X, Y}) and infinitely many
a; € G, such that a;{g} # 0 for all i. In fact, if u vepresents g in the spectral

sequence, say in B, then 4 {u} =B-{v} and o, -u+0 in E;:’* for all i (in
other wovds, the teyms a; -u ave nonzevo for all i in the fixed term El’z’*).

(¢) Let u' be anothev class, in our spectral sequence, with dk{u‘} =8- {v}

Then u' is vepresented by a map g': X - Y, where o; - {g'} # 0 forall i, and
g - ¢g' extends to X'.

Proof. To begin, we observe that the selection of g in part (b) is primarily to
show (c), which is a uniqueness assertion for the situation here. The choices of di-
mension that follow are needed for this.

By the generating hypothesis, there is an x € IIE(X) with f%s#(x) # 0. By part (b)
of our Lemma, there are 8, B2, --- € G, such that

Bi =+ Bi-f3(x) # 0 for all j.

Without loss of generality, we may assume after suspension that

(1) X is (i - 1)-connected,
(2) i - 1 <dim X and dimY<|:%i:|- 1,
(3) there exists a k; such that
B; "'Bklfi(ﬁkl_l -+ Byx)# 0 forall j >k,

with the degrees satisfying the condition
7. .
21 [ < deg (Bi;-1 '~ B1 -X) < 2i-2.
Putting a = Bkl-l -+ B1 X, we see that part (a) is trivially satisfied. Note that

BP0 1)~ BT @I & I(0);

this justifies the identification of the obstruction v with fﬁ(a).

From the G,-linearity of the maps

{x~-1 v} - {xn/x7-}; =y},
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we conclude that g; - Bkl v # 0 for all j > k; . Next, choose ky > k; so that the
filtration of Bko Bkl{f} achieves its minimum, in other words, the elements
vanish in Ej* of lowest r. Write Bko Bkl =B, and put g = B-f. If we let the

symbols «; denote the elements Bkoﬂ , Bk0+2 , **+, then part (b) is clear.

To prove part (c), observe that for sufficiently early EX*-terms, in dimensions
below dim X', the spectral sequences for maps > X — Y and for maps DX -Y
are the same. Our choices of dimension ensure that such an element u' remains to
the term E. in the spectral sequence for {ZJ X, Y}, this representing some map
g', as claimed. Because dk{u'% = B{v} in the sequence involving X', and
a;-B-v # 0 for each i, we see that a;{g'} # 0 for each i. It is clear that the ob-
struction to extending g - g' vanishes; this completes the proof.

The following are corollaries to the preceding theorem and lemma. For these
corollaries, we shall assume the generating hypothesis.

COROLLARY 1. If the mapping f: X — Y is stably essential, then there is a
stable mapping a: sm-1 — X (with m > dim X + 1) such that f;(a) # 0. In fact,
theve ave infinitely many a; € G, such that a;{f} # 0 for each i, and the obstruc-
tion to extending o;f is aifi(a).

Proof. The existence of such @ comes from the lemma, part (b); the rest
comes from Theorem 3.

COROLLARY 2. If 1x: X — X is the identity map of a nontvivial finite complex
X, then theve exists an a5 € G, for infinitely many i, with o;- {1x} # 0.

COROLLARY 3. If X is a nontrivial complex, theve ave infinitely many stable
maps

. f: :
six 253" x  (>my),
such that every finite successive composition is stably essential.

Proof. By the proof of Theorem 3, and by part (b) of the Lemma, we may as-
sume that the elements in Corollary 2 are products of increasing length. The result
follows because our actions are module actions, with (8, -B81) -f =B, - (B ).

COROLLARY 4. If f: X — Y is stably essential, then theve are, aftev suspen-
sion, infinitely many X' (X C X') such that £ does not extend to X'. One may also
assume that X'/X is a sphere, in other wovds, that X' is the adjunction obiained by
adding one cell.

Remarks. (a) Corollary 1 to Theorem 3 says that Ej {2ixX, Y} has big orbits
under Gg-action. One might hope that this module is finitely-generated; but the gen-

erating hypothesis implies that if X is a sphere and Y is not stably a wedge of
spheres, then the module is infinitely generated. In [5], we show this in various
cases without involving the generating hypothesis.

(b) In [6], we give a strengthened version of some of the consequences of the
generating hypothesis. Using this, one may show that in Theorem 3 and its corol-
laries, the elements «; - {g} can be assumed to have divisibility properties and to
annihilate prescribed elements (finitely many) in G, . Here, we omit details because
they are technical and would obscure the presentation.
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