FINITE GROUPS WITHOUT FIXED-POINT-FREE ACTIONS
ON A DISK

Richard Parris

A group of homeomorphisms of a space X is said to be fixed-point-free (FPF)
provided no point of X is stationary under the whole group action. A natural ques-
tion is whether a finite group can have an FPF action on a disk. In [3], J. Greever
showed that groups of order p"q or pqr cannot act FPF and simplicially on disks;
in particular, this means that the smallest possible example must have order at
least 36. Actually, by using the techniques developed in [3], we can easily rule out
all groups of order p2q?, as well as all groups of order pZ2q3 with p <q. Also,
with the exception of the alternating group As, no group of order p2qr with
p<qg<ror q<r <p canact FPF and simplicially on a disk. Thus As is the
smallest possible FPF group of simplicial homeomorphisms that a disk admits; an
example of such an action is constructed in [2].

To establish our results, we first observe that if G is a group of homeomor-
phisms of X and N is a normal subgroup of G, then the collection Fp; of points
stationary under N inherits in a natural way an action by G/N; the collection of
points stationary under ¢his action is precisely Fg. As in [3], this is especially
useful in conjunction with the next three theorems. For proofs, see the cited
sources.

THEOREM 1. Suppose f is a periodic simplicial homeomorphism of X,of
prime-power period, wheve X is a finite complex. Then L(f) = x(F¢). (See [1, p.
550]; L(f) stands for the Lefschetz number of f, and x(K) stands for the Euler char-
acteristic of the complex K.)

THEOREM 2. Suppose G is a finite p-group of simplicial homeomovphisms of
X, wheve X is a finite complex. Then X (X) = x{Fg) (mod p). (See [3, p. 165].)

THEOREM 3. Let G and X satisfy the conditions of Theovem 2, and suppose
SJurther that X is homologically trivial modulo p. Then ¥, which by Theorem 2 is
not empty, is also homologically tvivial modulo p. (See [3, p. 167].)

As an application, let G be a group of order p2q2 acting simplicially on a disk.
It is known [4, p. 146] that G must have a normal Sylow subgroup N; without loss of
generality, we can assume that N is a p-group. By Theorem 3, Fy; is homologically
trivial modulo p, hence x(Fpy) = 1. Theorem 2, applied to the q-group G/N, then
implies that x(Fg) = 1 (mod q), so that G cannot be FPF.

A similar argument disposes of groups of order p2q3 with p < q, since such
groups must also have normal Sylow subgroups [4, p. 147], and we obtain the follow-
ing theorem.

THEOREM 4. Suppose that G is an FPF group of simplicial homeomorphisms
of a disk. Then G cannot have ovder p2q2 ov p2q3 with p <q. In particular, G
cannot have ovdev 36.
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Next we state a theorem that will be useful in the remaining applications.

THEOREM 5. Let G be a finite group of simplicial homeomorphisms of a disk.
Suppose that G > H > K D 1, where G/H is a p-group, H/K is a cyclic q-group,
and K is an r-group. Then F is nol empty.

Proof. Fg is homologically trivial modulo r, hence Fy has trivial rational
homology. Therefore, x(Fx) = 1. Theorem 1, applied to a generator of H/K, im-
plies that x(Fyp) is also 1. We obtain the desired result by applying Theorem 2 to
the group G/H.

Let G be a group of order p2qr acting simplicially on a disk, with p<q <r
and G # As. The case p > 3 is easiest to dispose of, for in such groups there is
always a normal subgroup of order qr. To see this, let P be a p-Sylow subgroup of
G, with normalizer N, centralizer C, and automorphism group A; recall that the
order of A is either p-(p-1) or p-(p+1)-(p - 1)2. Since P is Abelian, P isa
subgroup of C, and hence the order of N/C must divide qr; since N/C is isomor-
phic to a subgroup of A, this order must divide (p+ 1)-(p - 1)¢ as well. Now p > 3
implies that N = C, and a theorem of Burnside [4, p. 137] guarantees that P has a
normal complement H. Thus we obtain a normal series G > H P> Z,. D 1, with fac-
tor groups P, Zy, and Z,, and Theorem 5 implies that Fg is nonempty.

If p=2 and q > 5, the argument above is still valid, and therefore we need only
examine the case p =2, q = 3. By Sylow’s theorem, a group of order 12r must have
a normal subgroup Z,, unless r =5 or r = 11; suppose, therefore, that r # 5, 11.
Then G can be expressed as a semidirect product of Z,. by a subgroup H of
order 12. Unless H = A4, we obtain a normal series G > (Z,. Xy Z3) D> Z, D 1,
and Theorem 5 implies that Fg is nonempty. If H = A4, then in the semidirect
product Z,.Xg A4, the normal subgroup Z,(® Z;, of A4 must act trivially on Z..,
because the latter has a cyclic automorphism group. Hence we get a normal series
G D [Z,. Xx(Zp, D Z2)] > [Z2 ®2Z2] > 1, and Theorem 5 applies.

It remains to treat groups of order 60 and 132. Let G be a group of 60 sim-
plicial homeomorphisms of a disk, with G # Ag . Since G is solvable, there are
three cases to consider. ‘

Case 1. G contains a normal subgroup .N of order 30. There are four groups
of order 30, and each can be expressed as a semidirect product of Z;5 by Z, .
Thus we obtain in this case a normal series G > N D> 7,5 D> Zg [ 1, and we may
apply an argument similar to the proof of Theorem 5.

Case 2. G contains a normal subgroup N of order 20. There are five groups
of order 20, all of which can be expressed as semidirect products of Zg by groups
of order four. Therefore, we always have the series G > N > Zg > 1. If the group
N/Zs is cyclic, then we may appeal to Theorem 5. The only troublesome cases,
then, occur when N is a semidirect product Zs Xg (Z () Z2). The trivial product
presents no problem, since we can write G > N > (Z, (b Zz) > 1. The nontrivial
semidirect product can be described by the relations

a5 =p2 =¢2 =1, ba=a*b, cb=be, ca=ac.

It is then a straightforward matter to verify that this group has 40 automorphisms,
hence any semidirect product of this group by Z3 must actually be a direct product.
Since G is such a product, we see that G must contain an element of order 30,
bringing us back to Case 1.
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Case 3. G contains a normal subgroup N of order 12. Since no group of order
12 possesses an automorphism of order 5, it follows that G is just N X Zg . Unless
N is A4, N has an element of order 6, which again brings us back to Case 1. If N
is A4, we can write G > A4 D (%2 @ Z») D> 1 and conclude that Fg is nonempty.

This takes care of all groups of order 60. Since the argument for order 132 is
practically the same, we omit it. We have proved the following theorem.

THEOREM 6. Let G be a group of simplicial homeomovphisms of a disk, of
order p? qr with p <q <r, and with G + As. Then Fg is not empty.

We now turn to the cases q <p <r and q <r <p. In either situation, a theo-
rem of P. Hall [4, p. 228] implies that a group G of order pZqr contains a subgroup
H of order p?r. Moreover, H must be normal because the index of H is the small-
est prime divisor of the order of G. Unless r = 1 (mod p), we can write
G D> H > K D> 1, where K has order p2, and then appeal to Theorem 5. We may
therefore confine our search for FPF groups tothe case q<p<r,withr=1
(mod p). Since H > Z,. in such groups, we need only consider those groups whose
p-Sylow subgroups are Zj @ Z . Then the only remaining possible examples of
FPF groups are of the form [Z; Xg (Z, D Zp)] Xy Zq, where 6 is nontrivial and
Zq does not act trivially on Z, @ Z, . Itis a routine exercise to verify that groups
of this form exist if and only if p=1 (modq) and r = 1 (mod p). If r # 1 (mod q),
there is essentially one such group, which may be described by the relations

a’ =bP=cP=d9=1, ba=ab, cb=be, ca=atc, da=ad, db=hd, dec=ckd,

where AP = 1 (mod r) and p% =1 (mod p). If r = 1 (mod q), there are q noniso-
morphic groups; each may be obtained from the presentation above by replacing the
relation da = ad by a relation da =a7d, where 7 satisfies the condition 79 = 1
(mod r). We omit the details.

These groups, together with Ag, are precisely the groups of order p?qr to
which Theorem 5 can not be applied.
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