PIERCING DISKS WITH TAME ARCS

J. W. Cannon

We give here a short proof of the following theorem of R. H. Bing.

THEOREM 0 (Bing [5]; see [3] for an earlier related theorem). Suppose that S is a 2-sphere in E^3 , that A is a rectilinear segment in E^3 , and that $\epsilon > 0$. Then there exists an ϵ -ambient isotopy $H: E^3 \times I \to E^3 \times I$ of E^3 , fixed outside $N(A \cap S, \epsilon)$, such that $H_1(A) \cap S$ is finite. (The map $H_1: E^3 \to E^3$ is the homeomorphism defined by the restriction $H \mid E^3 \times \{1\}$.)

Bing's original proof of the Side Approximation Theorem (S.A.T.) [4] (see [7] for a new proof) was considerably complicated by the lack of a proof for Theorem 0; Bing first proved Theorem 0 by using both the Side Approximation Theorem and a number of its deep consequences. Our proof of Theorem 0 depends only on the existence of abundantly many *tame* arcs in S [2]; the existence of such tame arcs has recently been established independently of the S.A.T. (see [6, Sections 2 and 3]).

Definition. A compact metric space K is said to be a regular compactum if for each $\epsilon>0$ there exist a finite subset K_{ϵ} of K and a separation

$$K - K_{\varepsilon} = K_1 \cup \cdots \cup K_r$$
 (separated)

of K - K_{ϵ} such that each of the sets K_1 , ..., K_r has diameter less than ϵ .

LEMMA. If K is a regular compactum in E^2 and A is an arc in E^2 , then for each $\epsilon>0$ there exists an ϵ -isotopy $H\colon E^2\times I\to E^2\times I$ of E^2 , fixed outside $N(A\cap K,\,\epsilon)$, such that $H_1(A)\cap K$ is finite.

Proof. Since K is at most 1-dimensional, we may assume that $A\cap K$ is a 0-dimensional subset of Int A. Then $K\cap A$ is covered by the interiors of finitely many disjoint $\epsilon\text{-subarcs }A_1$, ..., A_k of Int A. There exist disjoint $\epsilon\text{-disks }D_1$, ..., D_k in E^2 such that for each i the intersection $D_1\cap A=A_i$ is a spanning arc of D_i . It clearly suffices to show that Bd A_i bounds a spanning arc B_i of D_i such that $B_i\cap K$ is finite.

Since K is a regular compactum, it follows from [8, (3.2) Theorem, p. 35] that there are finitely many disks E_1 , ..., E_n in Int D_i whose interiors cover $K\cap A_i$ and such that, for each j, the set (Bd $E_j)\cap K$ is finite. Clearly, there is an arc B_i bounded by Bd A_i in the set

$$\left[A_i - \bigcup_{j=1}^n \text{ Int } E_j\right] \cup \left[\bigcup_{j=1}^n \text{ Bd } E_j\right].$$

It is equally clear that this B_i must satisfy the requirements of the preceding paragraph. This completes the proof of the lemma.

Received January 16, 1973.

The author is a research fellow of the Alfred P. Sloan Foundation.

Michigan Math. J. 20 (1973).

Proof of Theorem 0. It is an immediate consequence of [2] (see [6; Results 2C.7(2), 2C.7(2).1, 3.1 and 3.2]) that there exists a sequence T_1 , T_2 , \cdots of curvilinear triangulations of S such that, for $n = 1, 2, \cdots$,

- (i) each 1-simplex of each T_n has a locally tame interior;
- (ii) the mesh of T_n is less than 1/n;
- (iii) T_{n+1} refines T_n .

It is an inductive consequence of [1] (see [6; Result 3.1]) that we may assume that each 1-simplex of each T_n has locally polyhedral interior. Let D be a triangular disk in E^3 that contains A in its interior. A slight ambient isotopy of E^3 will move the vertices of D into general position so that the adjusted D misses the countably many endpoints of the 1-simplexes of the triangulations T_n and is in general position with respect to the locally polyhedral interiors of their 1-simplexes. As a consequence, D has finite intersection with the 1-skeleton of each T_n . Thus, for the adjusted D, the intersection $D\cap S$ is a regular compactum. By the lemma, there is a small isotopy of D such that the final image of A has finite intersection with $D\cap S$. Since D is tame, this isotopy may be extended to a small isotopy of E^3 . This completes the proof.

Addendum to Theorem 0. We may assume that at each point of $H_1(A) \cap S$ the arc $H_1(A)$ pierces S.

Proof (R. H. Bing). We show how to remove any intersection $p \in H_1(A) \cap S$ at which A does not pierce S. It suffices to consider the case where $H_1(A) \cap S$ is the single point $p \in Int[H_1(A)]$, where $H_1(A)$ is a rectilinear segment, and where $H_1(A) - \{p\} \subset Int S$. In this case, there exists an arc $\alpha \subset Int S$ such that $J = \alpha \cup H_1(A)$ is a simple closed curve and there is a solid right circular cylinder C containing p in its interior, intersecting J precisely in a subarc β of $H_1(A)$ that is also the axis of C, and having diameter less than ϵ . If there were any component R of (Bd C) \cap S that separates the endpoints of β in Bd C, then J would link some simple closed curve J' in S that is very close to R. This is impossible, since J lies in the set $(S \cup Int S) - R$, which is a set having trivial first homology. Thus no component of (Bd C) \cap S separates the endpoints of β in Bd C, and therefore some arc γ in (Bd C) - S joins the endpoints of β . A small ambient isotopy fixes A $-\beta$ and moves β to γ . This removes the intersection p of $H_1(A)$ with S, and it completes the proof of the Addendum.

REFERENCES

- 1. R. H. Bing, Locally tame sets are tame. Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816.
- 2. ——, Each disk in E³ contains a tame arc. Amer. J. Math. 84 (1962), 583-590. MR 26 #4331.
- 3. ——, Each disk in E^3 is pierced by a tame arc. Amer. J. Math. 84 (1962), 591-599. MR 26 #4332.
- 4. ——, Approximating surfaces from the side. Ann. of Math. (2) 77 (1963), 145-192. MR 27-#731.
- 5. ——, Improving the intersections of lines and surfaces. Michigan Math. J. 14 (1967), 155-159. MR 34 #6743.

- 6. J. W. Cannon, ULC properties in neighbourhoods of embedded surfaces and curves in E³. Canad. J. Math. 25 (1973), 31-73.
- 7. ——, New proofs of Bing's approximation theorems for surfaces. Pacific J. Math. (to appear).
- 8. G. T. Whyburn, *Topological analysis*. Princeton Math. Series, no. 23. Princeton Univ. Press, Princeton, N.J., 1958. MR 20 #6081.

University of Wisconsin Madison, Wisconsin 53706