NORMAL ANALYTIC FUNCTIONS AND LINDELÖF'S THEOREM

Stephen Dragosh

- 1. INTRODUCTION

This paper deals with various weakenings of the hypotheses in Lindelöf's classical limit theorem for bounded analytic functions.

Let D and Γ denote the unit disk |z| < 1 and the unit circle |z| = 1, respectively. The open subarc of Γ with endpoints z = 1 and $\zeta = e^{i\theta}$ $(0 < \theta < 2\pi)$ is denoted by $A(0, \theta)$, while the domain bounded by the arc $A(0, \theta)$ and the closed chord subtending $A(0, \theta)$ is denoted by $G(0, \theta)$. For points $\zeta = e^{i\theta}$, we write $\zeta \to 1^+$ if $\theta \to 0^+$.

Lindelöf's theorem [1, p. 42] is the following proposition.

THEOREM L. Suppose that f is a bounded analytic function in D, that

(1)
$$\lim_{\zeta \to 1^{+}} |f(\zeta)| = \lim_{\zeta \to 1^{+}} (\lim \sup_{z \to \zeta} |f(z)|) = 0,$$

and that $0 < \theta < 2\pi$. Then $f(z) \to 0$ as $z \to 1$ in $G(0, \theta)$.

It is known [2, Theorem 5.6] that the condition (1) can be replaced by the condition

(2)
$$\lim_{\zeta \to 1^+, \zeta \in \Gamma - E} |f(\zeta)| = 0,$$

where $\mu E = 0$ (μ denotes Lebesgue measure on Γ). Moreover, it follows from a theorem of C. Carathéodory (see [1, p. 207] or [2, Theorem 5.5]) that if the radial limits of f satisfy the condition

$$\left|\lim_{r\to 1} f(r\zeta)\right| < \varepsilon$$

for almost every point ζ in some arc A(0, θ), then

$$|f(\zeta)| \leq \varepsilon \quad (\zeta \in A(0, \theta)).$$

(The latter inequality can also be deduced from the representation of f by its Poisson integral.) Thus we can replace the condition (1) in Theorem L by the condition

(3)
$$\lim_{\zeta \to 1^+, \zeta \in \Gamma - E \quad r \to 1} (\lim_{\zeta \to 1} f(r\zeta)) = 0,$$

where $\mu E = 0$ and f has a radial limit at each $\zeta \in \Gamma - E$.

Received August 25, 1971.

Michigan Math. J. 19 (1972).

In [3, Theorem 3], J. L. Doob uses a condition weaker than (3) to obtain a weaker form of Theorem L for bounded analytic functions. Let δ_{ε} be the lower metric density from the north at z = 1 of the set

$$R_{\varepsilon} = \{ \zeta : \big| \lim_{r \to 1} f(r\zeta) \big| < \varepsilon \};$$

in other words, let

$$\delta_{\varepsilon} = \lim_{\theta \to 0^{+}} \inf \frac{\mu \left[A(0, \theta) \cap R_{\varepsilon} \right]}{\theta}.$$

If $\lim_{\epsilon \to 0} (\epsilon)^{\delta_{\epsilon}} = 0$, then f has angular limit zero at z = 1.

O. Lehto and K. I. Virtanen [5, Theorem 2] have shown that Theorem L remains true under the weaker assumption that f is a normal meromorphic function in D. (A meromorphic function f is *normal* in D if and only if the family $\{f(S(z))\}$ is normal in D in the sense of Montel, where S ranges over all conformal maps of D onto itself.) Theorem 2 shows that the conclusion of Lindelöf's theorem need not hold for a normal analytic function satisfying the condition (2). However, the conclusion of Lindelöf's theorem does hold for any normal analytic function f satisfying a condition similar to (3), if in addition f has ∞ as a radial limit at no point of some arc A(0, θ) (Theorem 1). In this result, "analytic" cannot be replaced by "meromorphic". Finally, Theorem 3 shows that Doob's result need not hold for a normal analytic function f even if ∞ is a radial limit of f at no point of some arc A(0, θ) and $\delta_{\epsilon} = 1$ for all $\epsilon > 0$.

2. NOSHIRO'S PRINCIPLE

Several results of K. Noshiro [6] imply the following generalization of the aforementioned result of Carathéodory.

THEOREM N. Suppose f is analytic in D, and for almost every point $\zeta \in A(0, \theta)$,

$$|f_{\gamma(\zeta)}(\zeta)| \equiv \lim_{z \to \zeta, z \in \gamma(\zeta)} |f(z)| \leq \varepsilon,$$

where $\gamma(\zeta)$ is some arc in D ending at ζ . If f has ∞ as an asymptotic value at no point of $A(0, \theta)$, then

$$|f(\zeta)| \leq \varepsilon \quad (\zeta \in A(0, \theta)).$$

Proof. If $|f(\zeta)| = +\infty$ for some point $\zeta \in A(0, \theta)$, then ∞ is an asymptotic value of f at some point of $A(0, \theta)$ (see [6, Theorem 2]). Thus $|f(\zeta)|$ is finite for each $\zeta \in A(0, \theta)$. By [6, Theorem 1], $|f(\zeta)| \leq \varepsilon$ for each $\zeta \in A(0, \theta)$.

We now easily prove our first result.

THEOREM 1. Let f be a normal analytic function in D. Suppose that

(4)
$$\lim_{\zeta \to 1^+, \, \zeta \in \Gamma - E} |f_{\gamma(\zeta)}(\zeta)| = 0,$$

where $\mu E = 0$ and $\gamma(\zeta)$ is some arc in D at $\zeta \in \Gamma - E$, and that $0 < \theta < 2\pi$. Then $f(z) \to 0$ as $z \to 1$ in $G(0, \theta)$ if (and only if) f has ∞ as a radial limit at no point of some arc $A(0, \theta')$ ($\theta' \le \theta$).

Proof. If f is normal and has ∞ as a radial limit at no point of A(0, θ '), then f has ∞ as an asymptotic value at no point of A(0, θ ') (see [5, Theorem 2]). The condition (1) now follows from (4) by Theorem N. Finally, Lehto and Virtanen's generalization of Lindelöf's theorem implies the desired conclusion.

3. EXAMPLE 1

The following example shows that the condition (4) in Theorem 1 can hold when ∞ is an asymptotic value of f in each arc A(0, θ).

THEOREM 2. There exists a function f, normal and analytic in D, such that

(5)
$$\lim_{\zeta \to 1^+, \zeta \in \Gamma - E} |f(\zeta)| = 0,$$

where $\mu E = 0$; but, for each θ (0 < θ < 2π), $\lim_{n \to \infty} f(z)$ does not exist as $z \to 1$ in $G(0, \theta)$. It is possible to construct the function f so that it has a nonzero angular limit at z = 1.

Proof. Let $w = \lambda(\tau)$ denote the elliptic modular function defined in the disk $D_{\tau}\colon |\tau|<1$, where the fundamental non-Euclidean triangle has vertices $\tau=1$, $e^{2\pi i/3}$, $e^{4\pi i/3}$ that are mapped to $w=0,1,\infty$, respectively. Then λ has radial limit zero at $\tau_1=1$ as well as at all points $\tau_n=e^{i\phi_n}$ $(n\geq 2)$ that are obtained from $\tau_1=1$ by the reflections used to extend λ from the fundamental triangle to all of D_{τ} . The unit circle $|\tau|=1$ is denoted by Γ_{τ} .

For each positive integer ν , the set

$$H_{\nu} = \left\{ \tau \colon \left| \lambda(\tau) \right| < \frac{1}{\nu + 1} \right\}$$

consists of an enumerable collection of domains $\Delta_{\nu,n}$ (n = 1, 2, ...) such that each closure $\overline{\Delta}_{\nu,n}$ is a closed Jordan region satisfying the relation

$$\overline{\Delta}_{\nu,n} \cap \Gamma_{\tau} = \{\tau_n\}.$$

For each integer ν , we shall delete from D_{τ} a certain number n_{ν} of the closed regions $\overline{\Delta}_{\nu,n}$ so that if G is the resulting simply connected domain and $\tau = \Psi(z)$ maps D conformally onto G, then $\mu E = 0$, where E is the subset of Γ that corresponds to Γ_{τ} under Ψ . If $e^{i\phi}$ is a point of Γ_{τ} such that $\phi \neq \phi_n$ for $n \geq 1$, then either λ has angular limit 1 or ∞ at $e^{i\phi}$, or λ has no angular limit at $e^{i\phi}$. Set $f(z) = \lambda(\Psi(z))$, where we assume that $\Psi(1) = e^{i\phi}$. By [5, p. 57], f is normal in D. For each integer ν , at most finitely many of the closed regions $\overline{\Delta}_{\nu,n}$ are deleted from D_{τ} ; therefore $\lambda(\tau) \to 0$ as $\tau \to e^{i\phi}$ with the restriction that τ be a boundary point of G in D_{τ} . Thus (5) holds. For each θ $(0 < \theta < 2\pi)$, $\lim_{t \to 0} f(z)$ does not exist as $z \to 1$ in $G(0, \theta)$, because (5) holds and f does not have angular limit zero at z = 1.

It only remains to exhibit a sequence $\{n_{\nu}\}$ such that $\mu E = 0$. First, we note that the circle Γ_{τ} has harmonic measure $\omega \equiv 0$ with respect to each region $D_{\tau} - H_{\nu}$. For if $\tau = \Psi_{\nu}(z)$ maps D conformally onto $D_{\tau} - H_{\nu}$, then

 $\left|\lambda(\Psi_{\nu}(z))\right| > 1/(\nu+1).$ Thus $\lambda(\Psi_{\nu}(z))$ has a radial limit at almost every point of $\Gamma.$ Hence Ψ_{ν} maps almost every point of Γ onto a boundary point of D_{τ} - H_{ν} lying in D_{τ} , and therefore $\omega(z,\,\Gamma_{\tau}\,,\,D_{\tau}$ - $H_{\nu})$ \equiv 0. Now, we can choose an integer n_{ν} such that $\omega(0,\,\Gamma_{\tau}\,,\,G_{\nu}) < 1/\nu$, where

$$G_{\nu} = D_{\tau} - \bigcup_{n=1}^{n_{\nu}} \overline{\Delta}_{\nu,n}.$$

We set

$$G = D_{\tau} - \bigcup_{\nu=1}^{\infty} \bigcup_{n=1}^{n_{\nu}} \overline{\Delta}_{\nu,n} = \bigcap_{\nu=1}^{\infty} G_{\nu}.$$

By the principle of monotoneity,

$$\omega(0, \Gamma_{\tau}, G) < \omega(0, \Gamma_{\tau}, G_{\nu}) < \frac{1}{\nu} \quad (\nu = 1, 2, \cdots),$$

and therefore $\omega(z, \Gamma_{\tau}, G) \equiv 0$. Thus, if $\tau = \Psi(z)$ maps D conformally onto G and $E \subset \Gamma$ corresponds to Γ_{τ} under Ψ , then $\mu E = 0$.

Remark 1. Theorem 1 (and also Theorem N) no longer holds if f is assumed to be a normal meromorphic function. We first apply the technique of Theorem 2 to a Schwarz triangle function $w = \lambda(\tau)$ for which the fundamental non-Euclidean triangle has exactly one vertex on $\Gamma_{\mathcal{T}}$ and that vertex corresponds to w = 0. Then λ , and hence f, does not have ∞ as an asymptotic value. Also, (4) holds, but it is easily seen that

$$\lim_{\zeta \to 1^+} \sup |f(\zeta)| = +\infty.$$

4. EXAMPLE 2

We now show that Theorem 1 is no longer true if we replace the condition that E be of measure zero by the condition that E have metric density zero from the north at z=1.

THEOREM 3. There exists a function F, normal and analytic in D_{τ} , for which the following conditions hold:

(i)
$$\lim_{\tau \to 1^+, \ \tau \in \Gamma_\tau - E_\tau} \left| F(\tau) \right| = 0,$$

where $E_{\tau} \subset \Gamma_{\tau}$ has metric density zero from the north at $\tau = 1$;

(ii) F has ∞ as an asymptotic value at no point of some arc A(0, ϕ) (e^{i ϕ} \in Γ_{τ});

(iii) F does not have angular limit zero at $\tau = 1$.

Proof. The set E in Theorem 2 is a perfect, nowhere dense subset of Γ of measure zero. Hence, the part of E lying in $A(0, \pi/2)$ can be covered by a sequence of open arcs

$$(e^{i\alpha(n)}, e^{i\beta(n)})$$
 $(0 < \alpha(n) < \beta(n) < \pi/2, n = 1, 2, \cdots)$

such that if A_n is the closed arc $[e^{i\alpha(n)}, e^{i\beta(n)}]$, then $\bigcup A_n$ has metric density zero from the north at z=1. It can be assumed that the sequence $\{A_n\}$ converges monotonically (in the obvious sense) to z=1. If

$$B = \Gamma - \bigcup_{n=1}^{\infty} A_n,$$

then

(6)
$$\lim_{\zeta \to 1^+, \zeta \in B} |f(\zeta)| = 0,$$

where f is the function in Theorem 2. Also, f has ∞ as an asymptotic value at no point of B \cap A(0, $\pi/2$).

For each integer n, let $C_{\alpha(n)}$ and $C_{\beta(n)}$ be circles of radius 1/2 internally tangent to Γ at $e^{i\alpha(n)}$ and $e^{i\beta(n)}$, respectively, and let C_n be the circle of radius 1 that intersects A_n and is tangent to each of $C_{\alpha(n)}$ and $C_{\beta(n)}$. Let Λ_n be the Jordan arc traversed as follows: Beginning at $e^{i\alpha(n)}$, follow $C_{\alpha(n)}$ counterclockwise to its intersection with C_n , follow C_n clockwise to its intersection with $C_{\beta(n)}$, and follow $C_{\beta(n)}$ counterclockwise to $e^{i\beta(n)}$. If we set $\delta_n = \frac{1}{2} \left[\beta(n) - \alpha(n) \right]$, then

(7)
$$\mu \Lambda_n = \delta_n + 3 \arcsin \frac{\sin \delta_n}{3} < 3\delta_n = \frac{3}{2} \mu A_n.$$

Also, because all radii concerned are at least 1/2, the angle of inclination $\theta(s)$ of the tangent to Λ_n as a function of arclength s on Λ_n satisfies the inequality

(8)
$$|\mathbf{s}' - \mathbf{s}| \geq \frac{1}{2} |\theta(\mathbf{s}') - \theta(\mathbf{s})|.$$

If

$$\Lambda = B \cup \bigcup_{n=1}^{\infty} \Lambda_n,$$

then Λ is a smooth Jordan curve for which (8) holds, where s now denotes arclength on Λ . Using (7), one can easily show that B (considered as a subset of Λ) has metric density 1 from the north at z=1.

Let $z = \Psi(\tau)$ ($\Psi(1) = 1$) map $D_{\mathcal{T}}$ conformally onto the interior of Λ . By Kellogg's theorem $[4, p. 374], \Psi'(\tau)$ is continuous and nonzero on the closed disk $|\tau| \leq 1$. Let $B_{\mathcal{T}}$ denote the set on $\Gamma_{\mathcal{T}}$ that corresponds to B under $\Psi(\tau)$. We claim that $B_{\mathcal{T}}$ has metric density 1 from the north at $\tau = 1$. Given an arc $A(0, \phi)$ on $\Gamma_{\mathcal{T}}$, let Λ_{ϕ} denote the subarc of Λ that corresponds to $A(0, \phi)$ under Ψ . If we set $B_{\mathcal{T}, \phi} = B_{\mathcal{T}} \cap A(0, \phi)$ and $M_{\phi} = \sup |\Psi'(\tau)|$ on $A(0, \phi)$, then

$$\mu \left[\mathbf{B} \cap \Lambda_{\phi} \right] = \int_{\mathbf{B}_{\tau,\phi}} \left| \Psi'(\mathbf{e}^{\mathbf{i}\phi}) \right| d\phi \leq \left(\mu \left[\mathbf{B}_{\tau,\phi} \right] \right) \mathbf{M}_{\phi}.$$

Thus, as we asserted,

$$\begin{split} \lim_{\phi \to 0^{+}} \frac{\mu \left[\mathbf{B}_{\tau, \phi} \right]}{\phi} &\geq \lim_{\phi \to 0^{+}} \frac{\mu \left[\mathbf{B} \cap \Lambda_{\phi} \right]}{\mu \left[\Lambda_{\phi} \right]} \cdot \frac{\int_{0}^{\phi} \left| \Psi'(\mathbf{e}^{i\phi}) \right| \, d\phi}{\phi} \cdot \frac{1}{\mathbf{M}_{\phi}} \\ &= 1 \cdot \left| \Psi'(1) \right| \cdot \frac{1}{\left| \Psi'(1) \right|} = 1 \, . \end{split}$$

The function $F(\tau)=f(\Psi(\tau))$ is normal in $D_{\mathcal{T}}$ and has ∞ as an asymptotic value at no point of the arc $A(0,\phi)$, where $e^{i\phi}=\Psi(e^{i\alpha(1)})$. Since f does not have angular limit zero at z=1, the same is true for F at $\tau=1$. If $E_{\mathcal{T}}=\Gamma_{\mathcal{T}}-B_{\mathcal{T}}$, then (6) implies that the condition (i) holds for F.

REFERENCES

- 1. C. Carathéodory, *Theory of functions*. Second English edition, Volume II. Chelsea Publishing Co., New York, 1960.
- 2. E. F. Collingwood and A. J. Lohwater, *The theory of cluster sets*. Cambridge University Press, Cambridge, 1966.
- 3. J. L. Doob, *The boundary values of analytic functions*. Trans. Amer. Math. Soc. 34 (1932), 153-170.
- 4. G. M. Goluzin, *Geometrische Funktionentheorie*. VEB Deutscher Verl. Wissensch., Berlin, 1957.
- 5. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65.
- 6. K. Noshiro, Cluster sets of functions meromorphic in the unit circle. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 398-401.

Michigan State University East Lansing, Michigan 48823