NORMAL ANALYTIC FUNCTIONS AND LINDELOF’S THEOREM

Stephen Dragosh

-1. INTRODUCTION
This paper deals with various weakenings of the hypotheses in Lindeldf’s
classical limit theorem for bounded analytic functions.

Let D and I" denote the unit disk |z[ < 1 and the unit circle |z| =1, respec-
tively. The open subarc of I" with endpoints z =1 and ¢ = elf (0< 6 < 27) is de-
noted by A(0, 6), while the domain bounded by the arc A(0, ) and the closed chord
subtenging A(0, 6) is denoted by G(0, 6). For points ¢ =eif, we write ¢ — 17 if
6 — 0.

Lindeldf’s theorem [1, p. 42] is the following proposition.
THEOREM L. Suppose that £ is a bounded analytic function in D, that

(1) lim |£(¢)] = lim (lim sup |f(z)]) = 0,
g—1* ¢—1t 2o

and that 0 < 6 < 27. Then f(z) — 0 as z — 1 in G(0, 9).

It is known [2, Theorem 5.6] that the condition (1) can be replaced by the condi-
tion

(2) lim |£(e)] = o,
t—1t el -E

where pE = 0 (u denotes Lebesgue measure on I'). Moreover, it follows from a
theorem of C. Carathéodory (see [1, p. 207] or [2, Theorem 5.5]) that if the radial
limits of f satisfy the condition

| lim f(rg)| < e

r—1
for almost every point ¢ in some arc A(0, 6), then
|1(©)] <& (¢ e A0, 9)).

(The latter inequality can also be deduced from the representation of f by its Poisson
integral.) Thus we can replace the condition (1) in Theorem L by the condition

(3) lim (lim f(r¢)) =0,
t—1t,te'-E r—1

where pE =0 and f has a radial limit at each ¢ € T - E.
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In [3, Theorem 3], J. L. Doob uses a condition weaker than (3) to obtain a
weaker form of Theorem L for bounded analytic functions. Let &g be the lower
metric density from the novth at z = 1 of the set

Rg = {¢: | im £(re)] < e};

r—1

in othey wovrds, let

r[A(0, 6) N Rg]

0g = lim inf 2

6— ot
)5

If limg _, o (€)°€ = 0, then f has angular limit zevo at z = 1.

O. Lehto and K. I. Virtanen [5, Theorem 2] have shown that Theorem L remains
true under the weaker assumption that f is a normal meromorphic function in D.
(A meromorphic function f isnormal in D if and only if the family {f(S(z))} is
normal in D in the sense of Montel, where S ranges over all conformal maps of D
onto itself.) Theorem 2 shows that the conclusion of Lindeltf’s theorem need not
hold for a normal analytic function satisfying the condition (2). However, the con-
clusion of Lindeldf’s theorem does hold for any normal analytic function f satisfying
a condition similar to (3), if in addition f has « as a radial limit at no point of
some arc A(0, g) (Theorem 1). In this result, “analytic” cannot be replaced by
“meromorphic”. Finally, Theorem 3 shows that Doob’s result need not hold for a
normal analytic function f even if « is a radial limit of f at no point of some arc
A(0, 6) and 6. =1 for all € > 0.

2. NOSHIRO’S PRINCIPLE
Several results of K. Noshiro [6] imply the following generalization of the afore-
mentioned result of Carathéodory.
THEOREM N. Suppose f is analylic in D, and fov almost every point
¢ e A0, 0),

1) 0] = limsup |fz)] <e,
T Lo

where v(£) is some arc in D ending at €. If f has « as an asymptotic value at no
point of A0, 6), then

|1(e)] <& (¢ € A0, 6)).

Proof. 1f If(C)l =+ for some point £ € A(0, §), then « is an asymptotic
value of f at some point of A(0, 8) (see [6, Theorem 2]). Thus |£(¢)| is finite for
each ¢ € A(0, ). By [6, Theorem 1], |£(¢)| < & for each ¢ € A(0, 0).

We now easily prove our first result.
THEOREM 1. Letf be a normal analytic function in D. Suppose that

(4) lim |£(e5(0)| = 0,
t—1t,tell-E ¥(©) |
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wherve pE = 0 and y(¢) is some avcin D at £ € T - E, and that 0 < § < 2n. Then
f(z) — 0 as .z — 1 in G(0, 0) if (and only if) f has « as a vadial limit at no point of
some arc A0, ') (6' < 09).

Proof. If f is normal and has « as a radial limit at no point of A(0, 0'), then f
has « as an asymptotic value at no point of A(0, 8') (see [5, Theorem 2]). The con-
dition (1) now follows from (4) by Theorem N. Finally, Lehto and Virtanen’s gener-
alization of Lindelof’s theorem implies the desired conclusion.

3. EXAMPLE 1

The following example shows that the condition (4) in Theorem 1 can hold when
« is an asymptotic value of f in each arc A(0, 6).

THEOREM 2. Theve exists a function f, normal and analytic in D, such that

(5) lim |£(8)| =
¢—1%,ter-E

where UE = 0; but, for each 0 (0 < 6 < 27), lim f(z) does not exist as z — 1 in
G(0, 8). It is possible to construct the function f so that it has a nonzero angular
limit at z = 1.

Proof. Let w =A(7) denote the elliptic modular function defined in the disk
D,: | 7| < 1, where the fundamental non-Euclidean triangle has vertices 7 =1,
e2Ti/3 e4Mi/3 that are mapped to w = 0, 1, «, respectively. Then X has radial

limit zero at 7, =1 as well as at all points 7, 1¢“ (n > 2) that are obtained
from 7, =1 by the reflections used to extend 7\ from the fundamental triangle to all
of D, . The unit circle ] | =1 is denoted by I';

For each positive integer v, the set

1
HV—{T.lh(T) V+1}
consists of an enumerable collection of domains A, ( =1, 2, .-) such that each
closure A is a closed Jordan region satisfying the relatlon

K ﬂI‘:{T}.

For each integer v, we shall delete from D, a certain number n, of the closed re-

gions Av ,n SO that 1f G is the resulting simply connected domain and 7 = ¥(z) maps

D conformally onto G, then pE =0, where E is the subset of I" that corresponds to
+ under ¥, If ei? is a point of 1",, such that ¢ # ¢, for n > 1, then either A has

angular limit 1 or « at ei®  or A has no angular limit at ei?. Set f(z) = A (T(2)),

where we assume that ¥(1) = ei®. By [5, p. 57], f is normal in D. For each integer

v, at most finitely many of the closed regions KV n are deleted from D ; therefore

7\(7) — 0 as T — ei® with the restriction that 7 be a boundary point of G in D

Thus (5) holds. For each 6 (0 <6 < 27), lim f(z) does not exist as z — 1 in

G(0, 8), because (5) holds and f does not have angular limit zero at z = 1.

It only remains to exhibit a sequence {n,,} such that pE = 0. First, we note
that the circle I' has harmonic measure w = 0 with respect to each region
D;-Hy,. Forif 7 =¥,(z) maps D conformally onto D, - H,, , then
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I}L(\I/V(Z))] > 1/(v +1). Thus M¥,(z)) has a radial limit at almost every point of T.
Hence ¥, maps almost every point of I" onto a boundary point of D, - H,, lying in
D, , and therefore w(z, '+, D; - H,) = 0. Now, we can choose an integer n,, such
that w(0, I';, G,) < 1/v, where

ny
Gy = D, - U A,
n=1
We set
©0 ny o0
G=D.T—U Xv,n:rlc'v
v=1 n=1 v=1

By the principle of monotoneity,
(0, T7, Q) < w(0,Tr,G)< T (v=1,2,),

and therefore w(z, I'z, G) = 0. Thus, if 7 = ¥(z) maps D conformally onto G and
E C T corresponds to I'- under ¥, then uE = 0.

Remark 1. Theorem 1 (and also Theorem N) no longer holds if f is assumed to
be a normal meromorphic function. We first apply the technique of Theorem 2 to a
Schwarz triangle function w = A(7) for which the fundamental non-Euclidean triangle
has exactly one vertex on I'; and that vertex corresponds to w = 0. Then A, and
hence f, does not have « as an asymptotic value. Also, (4) holds, but it is easily
seen that

lim sup |£(¢)| = +=.
g— 1t

4. EXAMPLE 2

We now show that Theorem 1 is no longer true if we replace the condition that E
be of measure zero by the condition that E have metric density zero from the north
at z = 1.

THEOREM 3. Therve exists a function ¥,novmal and analytic in D, , fov which
the following conditions hold:

(1) lim |F(7)| =0,
T—1t, 7€l -E
wheve E, C I'; has metric density zevo from the novth at 7 = 1;

~ (ii) F has « as an asymptotic value at no point of some arc A0, ®)
(el e T');
(iii) F does not have angular limit zevo at T = 1,
Proof. The set E in Theorem 2 is a perfect, nowhere dense subset of I" of

measure zero. Hence, the part of E lying in A(0, 7/2) can be covered by a se-
quence of open arcs
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(el®(n) ¢in))  (0< aln) < pn) <7/2, n=1,2, )

such that if A, is the closed arc [el®(®), eiP(n)] then U A, has metric density
zero from the north at z = 1. It can be assumed that the sequence { A} converges
monotonically (in the obvious sense) to z = 1. If

[» o]
B=r-U A,

n=1
then

(6) lim l#®)| = o,
t—1T,teB

where f is the function in Theorem 2. Also, f has « as an asymptotic value at no
point of B N A(Q, 7/2).
For each integer n, let C, (,) and Cg,) be circles of radius 1/2 internally

tangent to T at e!®(™) and eiB(n) respectively, and let C,, be the circle of radius 1
that intersects A, and is tangent to each of C,(,) and CB(n) . Let A, be the Jordan

arc traversed as follows: Beginning at ei® (n} follow Ca(n) counterclockwise to its
intersection with C,, follow C, clockwise to its intersection with Cﬁ(n) , and follow

. 1
Cg(n) counterclockwise to eiB(n), If we set 6, = 5 [B(n) - a(n)], then

sin &
3

n

3
< 36, = o HA,.

(N pA, = 6, + 3 arcsin 5

Also, because all radii concerned are at least 1/2, the angle of inclination 6(s) of
the tangent to A, as a function of arclength s on A, satisfies the inequality

(8) s - s| > 2]6(s) - 6(s)] .

If

o0
aA=sulU a,,
n=1

then A is a smooth Jordan curve for which (8) holds, where s now denotes arclength
on A. Using (7), one can easily show that B (considered as a subset of A) has
metric density 1 from the north at z = 1.

Let z = ¥(7) (¥(1) = 1) map D; conformally onto the interior of A. By Kel-
logg’s theorem [4, p. 374], ¥'(7) is continuous and nonzero on the closed disk
| 7| < 1. Let B; denote the set on I'; that corresponds to B under ¥(7). We
claim that B, has metric density 1 from the north at 7 = 1. Given an arc A(0, ¢)
on Iz, let Ay denote the subarc of A that corresponds to A(0, ¢) under ¥. If we
set B4 = Br N A(0, ¢) and My = sup | ¥ (7)] on A(0, ¢), then

pBaagl= | w9 < (1B gD)M, .
B,’_,¢
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Thus, as we asserted,

¢
{7 wei)] oo

B LB NA
lim By gl "‘*"]> lim [A sl o 1v11
(I)-—)O'*' ¢ - (;[)——)0+ ’J'[ ¢] ¢ ¢
1
-1 e  —Lt— =

The function F(7) = f(¥(7)) is normal in D; and has « as an asymptotic value

at no point of the arc A(0, ¢), where ei® = w(ei®(1)), Since f does not have angular
limit zero at z = 1, the same is true for F at 7=1. If E,. =T - B, then (6) im-~
plies that the condition (i) holds for F.
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