ON SUBNORMAL SUBGROUPS OF FUNDAMENTAL
GROUPS OF CERTAIN 3-MANIFOLDS

Wolfgang H. Heil

Let M be a P2-irreducible 3-manifold. In [2], it is shown that if F is a 2-
sided, closed, incompressible surface in M such that i,7)(F) is normal in (M),
then M is either a fibre bundle over S! with fibre F, or a line bundle over a closed
surface G (and F is then parallel to gM), or a union of two such line bundles. In
particular, if oM # @ and i*ﬂl(F) is normal in 7,(M), then i, 7;(F) is of index 2 or
1 in 7y(M). In this paper, we show that the same result holds if we replace “normal”
by “subnormal.” Hence i,m;(F) is subnormal in 71(M) if and only if it is normal in
71(M). An analogous result holds for noncontractible, simple closed curves in 2-
manifolds. By way of an application, we classify the sufficiently large 3-manifolds
that have fundamental groups each of whose subgroups is subnormal.

We work throughout in the piecewise linear category. “A surface F C M” al-
ways means a 2-sided embedded surface in M. We say that F is incompressible in
M if genus(F)>1 and ker (i, 7;(F) — 7;(M)) = 0, where i: F —» M denotes inclu-
sion. A 3-manifold is called P2-irveducible if M is irreducible and contains no
(2-sided) projective planes.

A subgroup S of a group G is called subnormal (in G) if there exists a finite
sequence of subgroups S;, -+, S, of G such that S IS; <J--- S, JG.

I wish to thank John Hempel and John Ledlie for helpful conversations.

1. SUBNORMAL SUBGROUPS OF (M)

If F isa surfacein M, let i 7;(F) — 7;(M) denote the homomorphism induced
by inclusion.

THEOREM 1. Let M be a compact, P2-iyveducible 3-manifold, and suppose F
is a 2-sided, closed, incompressible surface in M such that i,71(F) is subnormal
in m;(M). Then one of the following holds:

(a) M is a fibve bundle over S! with fiber F.
(b) M = F X1I.

(c) M is a twisted line bundle over a closed suvface G, and F is pavallel to
oM.

(@) F separates M into two twisted line bundles of type (c).

LEMMA 1. If S is subnormal in G and U C G is a subgvoup containing S, then
S i¢s subnormal in U.

Proof. We have subgroups S;, -+, S, of G such that S <S; <--- S, <G.
Forming intersections with U, we obtain the sequence S <{S; N U <--- S5, NU AU,
and this proves the lemma.
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Proof of Theorem 1. We consider two cases:

Case 1. F is a boundary component of M (hence M # @). We have subgroups
S1, **+, Sp of m1(M) such that

I*WI(F) = SO 481 < v-e <lSn | Sn+1 = ﬂl(M').

Consider the covering spaces of M associated with these subgroups: Let M, =M,

and let M; — M;,; be the covering of M;,, associated with S; <8;,; (i=0, -+, n).
We consider the diagram

Fo © M,

2

o
=

5

Y Y
FCM= Mn+1

where p =p, - ** - pg. Clearly, each covering p;: M; = M;,; (i=0, -+, n) is regu-
lar. Let F € p-1F be a copy over F C M for which p ] Fy is a homeomorphism.

If there exists a component F' e Mg (F' compact, F' # FO), then it follows from
[10, Lemma 5.1} and [1, Proposition 5] that

Mo & FoxI & F x1I.

Since p | F (where F is short for Fo X0 or FgX 1) is one-to-one, it follows that

My P, M is either 1- or 2-sheeted and therefore M is a line bundle over a closed
surface, by [10, Lemma 4.1] and [1, Proposition 4], and we have case (b) or (c) of the
theorem.

We therefore assume that F( is the only closed component of 9dMg; in particu-
lar, F is then the only compact component of p-lF. For i =1, ---, n, there exists
a closed surface F; C 9M; (F; € (p, -~ p;)~! F) that is covered by Fp. Let
F..1 = F. Since pp: My — M, is a regular covering and Fj, € pal F, is compact, it
follows that all components of pal F, are closed surfaces. Therefore p61 F; =¥,
(otherwise, there would be another compact component in p-1 F). Since p| Fp is a
homeomorphism, it follows that p, | Fy is a homeomorphism and hence that
Po: My — M, is a homeomorphism. By the same argument, it follows inductively
that p;: M; — M;,; is a homeomorphism and thus that p: Mg — M is a homeomor-
phism. Therefore 3M; = F, and it follows from [2, Proposition 1] that M, is a
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line bundle over F. But then 7(F;) would be a proper subgroup (of index 2) of
m,(Mp). Thus the case considered cannot occur, since m;(Fq) = m;(M).

Case 2, F C 1\‘71 Let U(F) be a regular neighbourhood of F in M. If F does
not separate M, let M' =M - U(F); if F separates M, let M' be a component of
M - U(F). Then F is an incompressible boundary. component of M', and therefore
the inclusion j: M' — M induces a monomorphism j: 7;(M') — 7, (M). It follows
from Lemma 1 that i 7 (F) is subnormal in j,m;(M'). Therefore we may apply
Case 1 to M' and conclude that M' is a line bundle over F. If F is nonseparating
in M, then M' has (at least) two boundary components; therefore M' = F X I, and we
have Case (a) of the theorem. If F separates M into M; and M;, then (as in [2])
we have Case (b) or (d).

2. SUBNORMAL SUBGROUPS OF m,(F)

THEOREM 2. Let F be a survface, and let k be a 2-sided, noncontractible,
stmple closed curve in ¥, If i (k) is subnovmal in m)(F) (i: k — F denotes in-
clusion), then one of the following holds:

(a) F is a torus or Klein bottle,
(b) F is an annulus,
(c) F is a Moebius strip.

The proof of this is analogous to that of Theorem 1. We replace M by F, “in-
compressible surface” by “noncontractible curve,” and so forth.

Definition. An n-group G is a group each of whose subgroups is subnormal
in G.

COROLLARY. If the fundamental group of a suvface F (which need not be com-
pact) is an n-group, then it is Z, , Z, ov Z D Z (or the trivial group).

Pyroof. If F is noncompact, then 7;(F) is free. If F is compact, then by the
previous theorem, 7;(F) is the trivial group, or Z;, or Z, or Z (P Z, or the funda-
mental group of a Klein bottle K with 7;(K) = |c, d: ede=! =d-!|. The latter group
is not an n-group. We may either prove this directly, by showing that the normal-
izer of the cyclic group Z(c) generated by c equals Z(c), or we may show that Z(c)
is not subnormal in 7} (K), by looking at the covering space Ky associated to Z(c).
The surface Ky is an open Moebius strip, and the covering Ky — K cannot be fac-
tored by a finite sequence of regular coverings.

3. n-GROUPS AND 3-MANIFOLDS

Definition. A P2?-irreducible compact 3-manifold is called strongly sufficiently
large if it contains a 2-sided, closed, incompressible surface.

Examples., If M is orientable and closed, then M is strongly sufficiently large
if and only if it is sufficiently large (in the sense of F. Waldhausen [10]). If M is
nonorientable, closed, and P2-irreducible, then M is strongly sufficiently large. If
oM # @ and M is boundary-irreducible (that is, if every boundary component is in-
compressible), then M is strongly sufficiently large. In particular, if M is the
closure of the complement of a regular neighborhood of a nontrivial knot in S3, then
M is strongly sufficiently large.
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Following A. G. Kurosh [3, p. 220 ff.], we call a group G an N-group if every
proper subgroup is distinct from its normalizer. From the definition it follows that

(i) every subgroup and every factor group of an N-group is itself an N-group,

(ii) if a normal subgroup H of an N-group G has a nontrivial center and G/H
is cyclic, then G itself has a nontrivial center (see [3, p. 224]).

Clearly,every n-group (as defined in Section 2) is an N-group.

THEOREM 3. (a) If the fundamental group of a strongly sufficiently large P2-
irreducible 3-manifold M is an n-group, then w1 (M) is either Z X Z. or an exten-
sion

1 — Z(a) X Z(b) — 7;(M) — Z(c) — 1,

wheve the matvix of the automovphism defined by c has the form ( (1) 517 ) (y an

integer).

(b) Conversely, all such extenszons ave n-groups, and each occurs as the funda-
mental group of exacitly one P2- iyreducible 3- manifold.

Proof. M contains a closed, incompressible surface F, and i, 7;(F) is sub-
normal in 7,(M). In cases (b) and (c) of Theorem 1, m;(M) is the fundamental group
of a closed surface, and therefore, by the Corollary, 1r1(M) = Z (P Z. Since every
subgroup of an n-group is an n-group (Lemma 1), it follows again from the corol-
lary that in case (d) of Theorem 1 we have the isomorphism 7,(M) = A é B, where

A, B, C are free abelian groups of rank 2 and C is a normal subgroup of A and B
of index 2. But then 7;(M) is not an N-group, by virtue of the following result,
which becomes evident if we write the elements of G in normal form.

LEMMA 2. If G=A é B is a nontrvivial free product with amalgamated sub-

group, then A is equal to its normalizer in G.

In case (a) of Theorem 1, 7;(M) is an extension of 7 1(F) by Z, and again the
corollary implies that 7(F) 2 Z@® Z. Now M= F ><I/(x 0) ~ (qu 1), where
¢: F — F is a homeomorphism and F is a torus. The group 7;(M) has a presenta-
tion

{g, v, t: wu-lv-l=1, t-lut=¢,(uw), tlvt=¢m},

where ¢, is the automorphism induced by ¢.

By (ii), ) (M) has nontrivial center. If the center is not contained in 7;(F), let
tkz be an element of the center (k > 0, z € 7; (F)). Then

x = (z-! tK)x(k z) = z'lqbﬁ(x)z = ¢§(x), if x € 7 (F).

Thus a certain power of ¢, is the identity, and by [56] we may assume that ¢ is of
finite order. Hence M is a Seifert fibre space whose orbit surface (“Zerlegungs-
fliche”) is a torus or a Klein bottle (compare [9, p. 515]). This is also true if the
center of 7;(M) is contained in 7(F), and it may be proved as in [9, p. 516]. (Note:
if M is orientable, we may apply Satz 4.1 of [9] in both cases.)

Thus 7;(M) has a presentation (see [6])
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{Q]_ y qn’ r, s, h:

gl = b, thr'l = BE (6 =+1), shsl = hf

’

qflih i

1 [(ai, B;) =1, a; > 2], and either
(% q; - q, rsr~ls™! = hP (b an integer) or
(**) q; --- g, r?s? = hP}.

If the orb1t surface is a Klein bottle, that is, if we have the presentation with

q] ***dnT 252 = hP | then wl(M) is not an N-group. For if H is the smallest normal
subgroup generated by {qi, -, an, h}, then 7;(M)/H is isomorphic to the funda-
mental group of a Klein bottle, and this is not an N-group (see the proof of Corol-
lary 4). Thus 7;(M) has a presentation with relation (*).

First we claim that if 7;(M) is an N—group, then n=0. Forif n>1, let H be
the smallest normal subgroup containing q, -, q,, h. Then

7 (M)/H = {q;, 1, s: q‘fl =1, qrsr-lsl =1; a; >2} = {r, s: (rsr-ls-1)*1},

But if a; > 2, this group is not an N-group. (It follows from the theory of W.
Magnus on groups with one defining relator [4 p. 252] that the subgroup generated
by {s, rsr-1, r2sr-2} has a presentation

_LhQ 1\
|sg, s1: (s1s6')" ' = 1] * |sp, sz (s2s1))" ' = 1]
Z(Sl)
and therefore is not an N-group, by Lemma 6.)
Thus, since @; > 2 for all i, we conclude that n = 0 and (see [6]) 7;(M) has a
presentation
{r, s, h: rthr~! = h®, shs~! = h¥ (g =+1), rsr-ls-l =nP
(b an integer, and if € =-1, then b=0 or b =1)} .

Now the subgroup H generated by r and h is normal, and G/H = Z(s). By
Stalling’s Theorem [7], M is therefore a fiber bundle with 7;(fiber) = H. Since the
fiber is incompressible and TTI(M) is an n-group, there is no other possibility for H
than to be a free abelian group of rank 2. In particular, r and h commute, and it
follows that £ =+1 (since w;(M) has no element of finite order).

Thus the only remaining groups are

WI(M) {I‘, s, h: rhr-! = h, shs-! = h, rsr-1g-! = hb}

{a, b, t:aba~1b-! =1, t-lpt=0b, tlat=abY (y an integer)} ,

which proves part (a) of the theorem.
To prove part (b), let G be an extension 1 — Z(a) X Z(b) - G — Z(c) — 1,

where the automorphism ¢* defined by c is given by ( !

0 1) (y an integer). It is
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easy to see that G is an n-group. Let T be the torus, let ¢: T — T be a homeo-
morphism that induces ¢*, and let M =T X I/(x, 0) ~ (¢x, 1). The 3-manifold M is
Pz-irreducible, and 711(M) 2 G. If N is a P2-irreducible 3-manifold with

71(N) = G, then N ~ M, by Waldhausen’s Theorem [10, Corollary 6.5] and [1,
Corollary].

Now a nilpotent group is an n-group, and the group listed in Theorem 3 are nil-
potent. Thus Theorem 3 remains true if we replace “n-group” by “nilpotent.”
Therefore, in cases where M is P2-irreducible and strongly sufficiently large, we
get the same groups as Charles Thomas [8]. Of course, with our methods we cannot
obtain the complete list of nilpotent groups, as Thomas does for closed manifolds.
However, our manifolds need not be closed. But if 7;(M) # Z X Z (that is, if M is
not a line bundle over a torus) and if M is strongly sufficiently large and P2-irre-
ducible, it follows from Theorem 3 that if 7;(M) is an n-group, then M is closed.
In particular, there exists no strongly sufficiently large P2-irreducible 3-manifold
with boundary, other than a line bundle over a torus, with nilpotent fundamental
group. More generally, we can make the following assertion.

PROPOSITION. Suppose that M is a compact 3-manifold containing no (2-
sided) projective planes, and that w1(M) is nilpotent.

(a) If oM consists only of 2-spheves, then 1)(M) is one of the groups listed by
C. Thomas [8].

(b) If oM contains a surface of genus at least 1, then m)(M) = Z X Z or Z.

Proof. (a) If we fill in the 2-spheres with 3-balls, we get a closed 3-manifold
M* such that 7;(M*) = 7;(M), and we can apply C. Thomas’s results.

(b) Let F C dM have genus at least 1. We may assume that dM contains no
2-spheres (otherwise, we again fill these in with 3-balls).

If F is not incompressible, then by a standard argument ([2, proof of Proposi-
tion 1]) either n;(M) is a nontrivial free product of two groups or 7y(M) ~ Z. In
the first case, nl(M) is not an n-group. Thus we assume F to be incompressible.

Now M has a decomposition M ~ M; # --- # M, into handles and irreducible
manifolds. Since 7;(M) = 7;(M;) *--- x7;(M,) and m;(M) is an n-group, it follows
that 71(M;) =1, for i =2, :--, n, say. Thus 7;(M) = 7;(M;), where M; is either ir-
reducible or is a handle. In the first case, M; is strongly sufficiently large (since
F C 8M,) and P2-irreducible, and thus, by Theorem 3, (M) ~ Z X Z. In the
second case, 7;(M) =~ Z.

Remavrk. If M contains 2-sided projective planes and 7,(M) is nilpotent, then,
looking at the 2-fold orientable cover M' and applying the Proposition to M', we see
immediately that 71(M) is an extension of the groups in the Proposition by Z,. In
particular, if dM contains an orientable surface of genus at least 1, or a nonorient-
able surface of genus at least 2, then 7;(M) is an extension of Z or Z X Z by Z,.
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