AN EXTENSION OF THE HAUSDORFF-YOUNG THEOREM
C. N. Kellogg

1. INTRODUCTION

The classical Hausdorff-Young theorem consists of the following pair of mu-
tually dual assertions. For 1 <p <2, define p' by 1/p+1/p'=1. If f € LP (on
the unit circle), then the Fourier transform f of fis a member of ﬁp and
]|f||p < ]|f|| . I X € {P | then there exists an f € LP' such that f=2 and
"f” ' < ||7t|| . A discussion of the Hausdorff-Young theorem and some of its con-
sequences can be found in [2(II), Chapter 13] and [8(II), Chapter XII].

In this paper, we prove an extension of the Hausdorff- Young theorem to the set-
ting of mixed-norm spaces (see [1] and [5]). We then apply the extended version to
obtain sufficient conditions for membership in the multiplier spaces (LP, LY and
(HP, HY). The sufficient conditions significantly extend the results found in [5] and
[2(I), p. 268].

Our method is to characterize first the multipliers of the mixed-norm spaces
and then, by means of Hedlund’s results [5], to prove the extended Hausdorff-Young
theorem. The theorem’s ultimate dependence on interpolation and on a theorem of
Hardy and Littlewood [4, p. 167] is somewhat obscured by this approach.

2. MULTIPLIERS OF MIXED-NORM SPACES

In this section, we give definitions and preliminary results. We begin by defin-
ing the mixed-norm spaces LP*? and HP’9 . Corresponding to a bounded sequence
A= {xn)}o-  and real numbers p and q in the interval [1, «], we let

1/q

" q/p
Moo-( Z | 2 bol| )

m=-°| né€l{m)

where

{nez:2m ! <n<a2™} if m>0,
Im) = § {0} if m=0,
{nez:-22m<n< -2}  if m<o.

In the case where p or q is infinite, replace the corresponding sum by a supremum.
We define LP:9 to be the set of all bounded sequences A such that ||}\|| p,g <. The

symbol HP*? denotes the set of all A € LP*? such that A(n) = 0 for n < 0.
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With suitable modifications, the following remarks made about LP:9 apply to
HP»9, It is clear that L9 (with the norm | - ||, 4) is a Banach space and that
LP'P ig precisely the space (P of doubly-infinite p-summable sequences. It is easy
to see that LP’? has many of the properties of ¢P, such as

LP1c 19 if1<p<r<=,

LPY c LP®  if 1<q<s< ™,
and
LPY* = LPHT yf 1 <p,q<wand 1/p+1/p'=1/q+1/q'=1.
For any two subsets A and B of £, we define the set of multipliers from A

to B (denoted by (A, B)) to be the set of all A € £° such that Aa = {A(n)a(n) }or o
is an element of B for all a € A.

The following theorem characterizes the multiplier spaces (L*:°, L'"*V), In ad-
dition to being interesting in its own right, it is useful in some of our later calcula-
tions.

THEOREM 1. Let r, s, u, and v be veal numbers in [1, ], and define p and q
by

1/p

1/q =1/v-1/s if s>v, q=x ifs<v.

1/u-1/r ifr>u, p=« ifr<u,

Then (L*°°, L'V) =LP9,
Proof. f 1<r<u<eand 1<s<v<®, then L"'® c L™V,

[+ 0]

o0
¢ c (LS, LYYy c ¢,

and the result follows.

We next suppose that 1 <u<r <« andthat 1 <v<s<<x. We shall show that
if A € LP9 and x € L¥°%, then Ax ¢ L™V, By applying Holder’s inequality, first to
the inside sum with @ = r/(r - u) and then to the outside sum with 8 = s/(s - v), we
see that

1/v

N v/u
(Z) 27 | amxm)|*® ) < A

m=-N| n€ I(m)

pa I%

r,s

for each positive integer N. It now follows that Ax € L™V X e (L™° L"™V), and
LP:9 c (L*%, L"Y),

In order to show the reverse inclusion relation, choose A € (L% L'“V). It fol-
lows from the closed-graph theorem that T) , defined by T)(x) = Ax (x € L™5), is a
bounded linear operator from L*:S to L"V; we denote its operator norm by

]I Tx]lo. For each positive integer N, define the bounded linear operator Ty from
L% to L™V by

M) ym) if -2N <n <2l
T () () = {

0 otherwise .
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The computations given above show that

N a/p\1l/q
o < Z [ 2 b))
m=-N| n€l{m)

We shall show that equality holds. First, choose N large enough to guarantee that

2N
27 |A()| > 0.
n=-2Ny1
Then, for -N <m <N, let
{qu-pv)/puv
( 2 |7L(n)|p) it 2 l?\(n)l #0),
Cm = nel(m) n€Il(m)
0 otherwise .

Finally, define the sequence x by

dep, [Am|P/T i -N<m <N and n € I(m),
x(n) = {

0 otherwise,

N a/p\ (v-q)/qv
d=(2 [ > |A<n)1p] ) .
m=~-N| nel{m)

A rather long but elementary calculation then shows that ||x|| r,s = 1 and that

where

N

a/py\ l/q
BTN (.2 bl ] )
m=-N| n€l(m)

Hence
N » J2/P\1/a
imdo=( 2 [ 2 bl 7)™
m=-N]| n€l(m)
Since | TN ”0 < ”T)\ ”0 , the partial sums of ||| p,q are bounded. Therefore

A e LP9 apd (L™'%, L™V) c LP 9,

Since the remaining two cases are quite similar, we give an argument only for
1<u<r<«and 1 <s<v<<w. The proof that

1/p
L% c (L%, L") and [Tnlo < max ( 2z Ih(n)‘p)

proceeds just as above, if we note that || . ||u < || . ||u s - Choose N as before,
and then choose mg € [-N, N] so that '
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1/p 1/p
( 22 |A(n) |P) =  max ( 22 |>\(n)|P) .
né€I{mg) -N<m <N \ nel(m)

-1/r
Let ¢ = ( EnGI(mo) |>L(n)|p) , and define the sequence x by

c |h(n)|1°/r if n € I(mg) ,
x(n) = {
0 otherwise.

This choice of x shows that

1/p
[Tl =  max 2 IMH)'p) ,

-N<Im<N nel(m)

and the conclusion (L™*°, L") ¢ LP*? follows as before.

3. THE HAUSDORFF-YOUNG THEOREM

In this section, we present an extension of the classical Hausdorff-Young theo-
rem. For 1 <p < =, we denote by LP the usual space of equivalence classes of
functions on [0, 27] normed by

21 1/p
||f||p = (21_7; SO |f(x)|pdx) .

For each f € L!, the Fourier transform f of f is defined by

1

f(n) = %

27
S f(x) exp(~inx)dx (ne Z).
0

The Hardy space I:Ip is the closed subspace of LP consisting of those functions
f € LP for which f(n) =0 (n <0).

THEOREM 2. Suppose that 1 <p <2, andlet 1/p+1/p' = 1. Then there exists
a constant Ay such that for each f € HP,

A~ I"z ~
fe Hp and "f”p”z S Ap”f”p'
Proof. The proof of this theorem uses the result of J. H. Hedlund [5, p. 1068]
that for 1 <p <2,
HZP/(Z"p):OO C (Hp, Hz) .
Note that we regard HP as a subset of 0% by identifying it with the corresponding
space of Fourier transforms. Hedlund’s result and Theorem 1 imply that

Hp C (HZP/(Z-P)s”’ HZ) = (HZP/(Z-P).‘” HZJZ) — HP',Z .

’
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Thus, f € HP"2 for every f € HP. The inclusion operator mapping HP into HP"?2 is
closed and is thus bounded by the closed-graph theorem. If A, denotes its norm, it
follows that

”f"p',z S Ap "f”p
An application of the Riesz projection theorem [7, p. 217] now yields the follow-
ing result.
THEOREM 3. If 1<p<2and 1/p+1/p'= 1, then theve exists a constant Cp
such that if £ € LP, then
A I’2 A~
feLP and uf"p',z _.<_. Cp"f“p

It should be noted that the restr1ct1on 1 < p in Theorem 3 is necessary. To see
this, choose any nonnegative A € £~ such that im| |5 e An) =0 and A ¢ L2

By a theorem in Edwards [Z(I)é p. 117], there exists an f € L1 such that |f(n)| > A(n)
for all n € Z. Hence f ¢ L™

We proceed to the second half of our extension of the Hausdorff-Young theorem.

THEOREM 4. Suppose that 1 <p < 2 and let 1/p +1/p' = 1. Then theve exists
a constant By such that for each \ € LP»2 , theve exists an £ € LP' such that

f=2 and “f"p' S Bp”Anp,Z
Proof. The convolution L! * LP is contained in LP. Therefore, by Theorem 3,
= (*xg) e (LP) cLP"?

for all f ¢ L1 and g € LP. It now follows that (L1)" ¢ (LP, LP"2). Since
(LP, LP"2) = (Lp’ LP' ), we conclude that

LP% c (L1, 1PY) .

However, (L1, LP') = (LP')" (see [2(1I), p. 255]), and hence LP:2 c (LP "". As in the
proof of Theorem 2, the inclusion operator mapping LP:2 into LP' is closed and is
thus bounded by the closed-graph theorem. If B, denotes its norm, the conclusion
follows.

The following example shows that the restriction 1 < p in Theorem 4 is neces-
sary. For any real number t (1/2 <t < 1), let

o0

f(x) = 20 (m+1)"t exp(i2™x).

m=0

It is clear that f ¢ H™ and that f € H!:2 . The author thanks the referee for noting
the following general example. Let {n } be any lacunary sequence of integers, take

c € g2\ ¢!, and set
c(j) if n = n;,
A(n) = {

0 otherwise .
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-~ 0
Then XA ={, where i(x) = En= _oo Mn) exp(inx). Clearly, » € L2 and f € L2. But

b A
fd L°°, for each lacunary series in L satisfies the condition Enz o |E)| <
[8(1), p. 247].

In a positive direction, we can assert that
where (LY)" is the restriction of (L°)" to the nonnegative integers. The inclusion

is due to Hedlund [6], and the equality to G. I. Gaudry [3].

For 1 <p<2, P and LP'"s? are proper subsets of LP*? and ¢P' , respectively.
Thus, our theorems are proper extensions of the classical Hausdorff-Young theorem.

4. SUFFICIENT CONDITIONS FOR MULTIPLIERS

We now use the results of the preceding sections to obtain sufficient conditions
for a bounded sequence to belong to (HP, HY) or (LP, L9). The theorems will sig-
nificantly extend Hedlund’s Theorem 1 [5] and a theorem in Edwards [2(II), p. 268].

THEOREM 5. If 1 <p<2<q<® and 1/s=1/p - 1/q, then H>* c (HP, HY).

R Palfoof. Choose A € H°*® and f € HP. Since f € HP | Theorem 2 guarantees that
f € HP''2 | By HOlder’s inequality,

2/q" 2/s 2/
( > |A(n)f(n)|q') q_<_ 2 ]A(n)|s) ( 2 If(n)lp') P

n€l{m) nel(m) n€l{m)

It follows that
Iafllgr,2 < 2]

S,00 ”f"p',z <o

Theorem 4 now implies that Af € (H%)", and hence HS'® c (HP, HY).

If in the previous argument we use Theorem 3 in place of Theorem 2, we obtain
the following result.

THEOREM 6. If 1<p<2<q<w and 1/s =1/p - 1/q, then L>* c (LP  L9).

We note that, except for q =2 and p=1 or p=2 in Theorem 5, and for
p =q =2 in Theorem 6, the sufficient conditions obtained are far from necessary.
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