CELLULARITY CRITERIA FOR MAPS
R. C. Lacher

In [13], D. R. McMillan gave a criterion for cellularity of a compact set A in a
PL n-manifold M (n #4). Clearly, any such criterion must say that A behaves
topologically like a cell (a sphere can never be cellular), and it must also say some-
thing about the way A is embedded in M (an arc may fail to be cellular in euclidean
space). This is not necessarily the case with cellularity criteria for maps.

It is known, for example, that a proper map f: M — N between topological n-
manifolds (n>> 5) is cellular provided for each y € N the space f-1(y) is cell-like
(a topological property, defined below): thus there is no need for assumptions on the
embeddings f-1(y) € M (y € N). Inthe present paper, we relax the topological con-
ditions on point-inverses in two situations: for self-maps of a PL-manifold, and for
maps between topological manifolds. The general idea of the criteria is to assume
that point-inverses behave like k-connected spaces (that is, have property UVK)
where k is almost n/2. Then properties of the induced map on homology, together
with duality and a kind of Hurewicz theorem for UV-properties, imply that point-
inverses actually behave like contractible spaces, which implies that they are cell-
like and that each inclusion f-1(y) € M satisfies McMillan’s criterion. Our condi-
tions for maps are best possible codimensionally, and they are necessary as well as
sufficient.

Addendum. TIn Section 7, we examine the case in which point-inverses have prop-
erty UVk-1 and M has dimension 2k. In this, the critical codimension, we show that
all but a finite number of point-inverses must be cellular in M (assuming M is com-
pact and PL, and k #2). A result of L. C. Siebenmann then implies that M is home-
omorphic to the connected sum of N and a finite number of closed, (k - 1)-connected
manifolds.

The author thanks J. J. Andrews, J. L. Bryant, and H. F. Kreimer for stimulat-
ing conversation. He is indebted to D. R. McMillan for pointing out how the assump-
tions of compactness and orientability could be removed from the original version
of the paper.

Conventions. RX is euclidean k-spagce, BX is the closed unit ball in RK, and
Sk-1 =3Bk, The symbols H, , H*  and H* denote singular homology, smgular co-
homology, and Cech cohomology, each with integer (Z) coefficients. The symbol ~
over a (co)homology symbol indicates “reduced”. See [20] for a general reference
on algebraic topics.

ANR'’s are always assumed to be metrizable. When A C X, a neighborhood of A
in X is always understood to be an open set of X containing A. Amap f: X—Y is
proper if and only if f‘l(K) is compact for all compact sets KC Y.

Convention on manifolds. In all statements and proofs, a manifold will be taken
to be a connected, locally euclidean metric space. (No boundary points are allowed.)
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1. STATEMENT OF RESULTS

We shall use, at various times, all of the following hypotheses on maps. The
two criteria are stated in terms of property UVKk,

Cellulay maps. A set A in the n-manifold M is cellular in M if it is the inter-
section of a sequence of topological n-cells Q;, Q,, ***, where Q;, ;CIntQ;C M
for all i.

A mapping f: M — Y, where M is a manifold, is called cellular if f-1(y) is
cellular in M for each y € Y.

Cell-like maps. A space A is cell-like if there exist a manifold M and an em-
bedding ¢: A — M such that ¢(A) is cellular in M.

A mapping f: X > Y is cell-like if f‘l(y) is a cell-like space for each y € Y.

Uvk- maps. An inclusion A C X has property k-UV if for each neighborhood U
of A in X there exists a neighborhood V of A in U such that each map SK — V can
be extended to a map BX*! — U, We say A € X has property UVK if it has property
qg-UV for 0 <q<k.

A mapping f: X — Y is UVK-trivial (or is a UVEK-map) if £~ 1(y) C X has prop-
erty UVK for each y € Y.

THEOREM 1.1. Let f: S® — S™ be an onto UVF¥-map. If 2k +2 > n, then f is
cell-like. Hence, if n + 4, f is cellulayr.

(Essentially the same result holds when S™ is replaced by any compact PL n-
manifold. See Section 7.)

Theorem 1.1 fails whenever 2k +2 < n. The condition n # 4 is not known to be
necessary. By strengthening the assumption codimensionally, we obtain a generaliza-
tion to topological manifolds, as follows.

THEOREM 1.2. Let M and N be n- manifolds, and let f: M — N be a proper,
onto UVE-map. If 2k +1 > n, then £ is cell-like. Hence, if n + 3, 4, then f is
cellular.,

Theorem 1.2 fails whenever 2k +1 < n. Again, the condition n # 3, 4 is pos-
sibly unnecessary. In fact, if n = 3, f is cellular if M contains no fake cubes or if
M and N are compact and homeomorphic. (See [13] and [14].)

Cell-like maps preserve many properties of spaces. To illustrate this point, we
quote two theorems.

THEOREM 1.3. Lef X and Y be euclidean neighbovhood relracts, and let
f: X —» Y be a proper, cell-like map. Then, for each open set U of Y (including
U=Y) £ | £-1(U): £-Y(U) — U is a proper homotopy equivalence.

THEOREM 1.4 (Siebenmann). Lef M arnd N be manifolds of dimension at least
5, and let f: M — N be a proper cell-like map. Then f is propevly homotopic to a
homeomovrphism of M onto N.

Theorem 1.3 is proved in [12]. Theorem 1.4 has recently been proved by
Siebenmann [18] as stated above. The simply-connected case had previously been
proved by D. Sullivan. (See [16], [21].)

The proofs of Theorems 1.1 and 1.2, as well as some appropriate examples, are
given in Section 6. Generalizations of Theorems 1.1 and 1.2 (in which the image of £
is not necessarily a manifold) follow from Section 5 below together with Section 4 of

[12].
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Remarks. 1. Property k-UV is an intrinsic topological property of spaces in
the following sense: If A is a compact set in the ANR X, and if A C X has property
k-UV, then every embedding of A into any ANR has property k-UV (see [1]).
Moreover if A is a compact ANR, then A has property k-UV if and only if
T A =0 (see [3]). Thus UVk should be thought of as a kind of Cech k-connectivity.

2. A compact, finite-dimensional metric space is cell-like if and only if it has
property UVK for all k (see [11]).

2. PRODUCING THE ZERO HOMOMORPHISM

Let R be a principal ideal domain.
When G is an R-module, we let Hom G = Hompg (G; R) and Ext G = Extgr (G; R).
K y: G— H is a homomorphism of R-modules, we denote by
Y*: Hom H — Hom G and ¢ ExtH — Ext G
the induced homomorphisms. When G is an R-modﬁle, let

T(G) = {a € G| ra = 0 for some nonzero r € R} .

When ¢: G — H is a homomorphism of R-modules, let T(y): T(G) — T(H) be the
restriction of ¥ to T(G). The following will be needed in Section 3.

THEOREM 2.1. Let F i)» G ﬂ H be homomorphisms of finilely generated R-
modules. If ¢$*=0 and Y* =0, then Yo = 0.

Theorem 2.1 follows from Lemma 2.2 and Corollary 2.5 below.

LEMMA 2.2. Let y: G — H be a homomorphism of finitely generated R-
modules. If ¥* =0, then Im ¥ C T(H).

Proof. Let x € G, y = ¢(x). Suppose that y ¢ T(H). Then there exists a homo-
morphism §: H— R such that $(y) # 0. But

[W*@x) = Foy)x) = §(y) = 0,

by hypothesis, so that y € T(H).

LEMMA 2.3. In the category of finitely generated torsion R-modules, theve
exists a natuval isomorphism G ~ Ext Ext G.

Proof. Let G be a torsion R-module, and let C; and C( be finitely generated
free R-modules such that

0—-C; - Cop—-G—-0
is exact. Then Ext G makes the “Hom?” sequence
0 «ExtG « Hom C; < HomCjy < 0

exact. (Hom G =0, since G is a torsion module.)

Since rank Hom C; = rank Hom Cg, Ext G is a torsion module. (In fact,
Ext G ~ G.) Thus, Ext Ext G makes the sequence



388 R. C. LACHER
0 - HomHomC1 — HomHomC0 - ExtExtG — 0

exact. It is well-known that there are natural isomorphisms h;: C; ~ Hom Hom C;
(i=0, 1), since the C; are free. Thus a unique homomorpmsm h: G — Ext Ext G 1s
1nduced and this is the desired isomorphism. The naturality of h follows from that
of the hi.

COROLLARY 2.4. In the category of finitely genevated R-modules, theve is a
natural isomorvphism T(G) ~ Ext Ext G.

Proof. ¥ G is a finitely generated R-module, then Ext G is naturally iso-
morphic to Ext T(G) under i, where i: T(G) C G. Hence
T(G) ~ Ext Ext T(G) ~ Ext Ext G,

each isomorphism being natural.

COROLLARY 2.5. Lety: G — H be a homomovrphism of finitely genevated R-
modules. If 1,1/ =0, then T(Y) =

Proof. y# =0 implies y#* = 0; therefore T(y) = 0, by Corollary 2.4.

3. HOMOLOGICAL UV-PROPERTIES AND COACYCLICITY

In [15], McMillan introduced the concept of strong acyclicity.
Definition. Let A be a compact set in the ANR X. We say A has property
k-uv if to each neighborhood U of A in X there corresponds a neighborhood V of

A in U such that the inclusion-induced map ﬁkV — ﬁkU (on reduced singular

homology) is zero. If A has properties q-uv for 0 < q <k, we say it has property
k

uv

Property k-uv does not depend on the embedding A C X, as long as X is an
ANR and A is compact. (See [15], and the argument that (a) > (d) in [11].)

Remark. ¥ A is a finite-dimensional compactum, A has property uvk for all
k” is equivalent to A is strongly acyclic” in the sense of [15].

THEOREM 3.1. Let A be a compact set in the ANR X. If HFA = HK'1A =0,
then A C X has property k - uv,

Proof. We may assume that X is (separable) Hilbert space, since the proper-
ties do not depend on particular embeddings.

Let {Ul, U,, -} be a sequence of neighborhoods of A in X with the
properties

(1) ﬁi+1 C Uj for each i, and A = ﬂ Ui,

(2) each Uj is a finite union of open (round) balls.

By (1) and the continuity property of H* we see that 0 = lim_, HLU; for
£ =k, k+1. Thus, each element of HY U1 hits zero somewhere in the sequence

HL{U; - HLU,, , - --. By (2), each HLU; is finitely generated, and hence some
finite composition H{ U, — --- — HLUj(4) is zero for £ = k, k +1 and all i. Taking
the subsequence Indexed by 1, j(1), ji(1), ---, we may assume that the following is

satisfied:
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(3) The inclusion-induced maps H{U; - HLU;, are zero for =k, £ =k +1,
and i > 1.

We now apply the universal coefficient theorem to obtain commutative diagrams

0 —> Ext Hy_, Uy, —> HLU;;; —> Hom H Uy —> 0

T T |

0 —> ExtH,_; U; —> HIU; > Hom HyU; ——> 0

in which the vertical arrows are induced by inclusion and the horizontal rows are
exact (£ =k, k +1). By (3), the middle vertical arrow is zero, hence all vertical
arrows are zero. In particular, the inclusion-induced maps

Ext HkUi — Ext HkUi-i-l and Hom HkUi — Hom HkUi+1

are zero for all i. Applying Theorem 2.1, we obtain the following conclusion.

(4) The inclusion-induced maps Hy U;,, — H U; are zero for all i. Thus,
A C X has property k-uv.

THEOREM 3.2. Let A be a compact set in the ANR X. If A CX has proper-
ties (k - 1)-uv and k-uv, then HKA = 0.

Proof. Let V;, V,, ** be neighborhoods of A in X such that

(1) Vi;1 C V; for each i, and ﬂVi = A, and

(2) the inclusion-induced maps HyV;,; — HyV; are zero for £=k - 1, ¢ =k,
and all i.

Applying again the universal coefficient theorem, we obtain commutative diagrams

0 —> ExtH,_, V.., —> HV,,, —> Hom Hy V, ; —> 0

R

0 —> ExtH, ,V; —> HXV, ———> Hom H V, ——> 0,

with exact rows. Moreover, (2) implies that the vertical arrows on either end are
zero. We deduce easily that Im ¢; € T(HXV,,;) and ¢; |T(HXV;) = 0. Hence
¢;+1?; = 0, and the proof is complete.

COROLLARY 3.3. Let A be a finite-dimensional compact set in the ANR X.
Then A is strongly acyclic (in the sense of [15]) if and only if H*A = 0.

Remark. The above results hold equally well for property k-uv(R) and fI(— : R),
where R is a principal ideal domain.

4. HUREWICZ THEOREMS FOR UV-PROPERTIES

THEOREM 4.1. Let A be a compact set in the ANR X. If A CX has property
UVK, then it has property uvk.

Proof. Let U be a neighborhood of A in X. Find open sets Uy, *=*, Uy, ,;, with
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A C Uy C *-* € Uy, C U, such that each map S — Uy extends to a map
B! - Uy (0<q<k). Let V=Up.

Let K be a complex of dimension at most k, and let C(K) denote the cone on K.
If f: K— V is a map, we can extend f successively over K U C(K9), using the inclu-
sion Uy C Ugyy, to obtain a map C(K) — U. In this way, we can easily see that each
singular g-cycle in V is null-homologous in U (0 < q < k), so that A ¢ X has
property uvk.

THEOREM 4.2. Suppose that A is a compact set in the ANR X, and that k > 2.
If A C X has properties uvk-l and k-uv, then it has property uvk,

Proof. (Compare with [8, pp. 483-485].) Since A is connected, it has arbitrar-
ily small path-connected neighborhoods. Let V C Uy C -+ C Uy C U be path-con-
nected neighborhoods of A in X, chosen so that HxV — HyiUp is zero,

TqUq— TqUq+1 is zero for 0<g<k-1, and U is compact. We shall show that
T V — 7 U is zero.

Let a: SK— V be a map. Then [a@] =0 in Hi Ug. Therefore, there is a sub-
division L of SX such that 27; @7; = dc for some finite singular (k -+ 1)-chain

c = Z)j n;o;. (Here, the 7; are the simplicial maps Ak — L determined by some
ordering of the vertices of L.) Letting K be the geometric realization of the (finite)
singular complex determined by {oj }, we obtain a complex containing L and an ex-
tension 8: K — Uy of @. Let K' be the union of K and the cone on its (k - 1)-
skeleton. Since m1qUq — 7qUgqg+1 is zero for 0<qg<k -1, we can extend B over
successive skeleta to a map @: K' — U. Now, [L] =0 in HyK, hence in Hy K'; there-

fore, by the classical Hurewicz theorem, [SX] = 0 in =, |K'|. Hence [@|SX]=[a]l=0
in 7y U, and the proof is complete.

Remark. I A is a compact set in the locally path-connected metric space X,
then property 0-UV and property 0-uv are each equivalent to connectivity of A.

COROLLARY 4.3. Let A be a compact set in the ANR X. Suppose A C X has
property 1-UV. Then A C X has property uvk if and only if it has property uvk.

COROLLARY 4.4. Let A be a compact set in the ANR X.

1. If A C X has property UVE, then HIA =0 for 0<q <k.

2. If A C X has property UvE-l gnd BRA = YA = 0, where k> 2, then
A C X has property UV™.

Corollary 4.3 follows from Theorems 4.1 and 4.2 together with the Remark.
Corollary 4.4 requires, in addition, some results from Section 3.

5. CRITERIA FOR MAPS TO BE CELL-LIKE

LEMMA 5.1. Let X and Y be connected, locally compact ANR’s, and let f be
a proper UVE-map of X onto Y. Let V be an open set in Y, and let U = £-1(v).
Then

fy: 7o (X, U) — 7g(Y, V) and £ Hy(X, U) — Hg(Y, V)

are isomoyphisms for 0 < q <k and epimovphisms for q =k + 1.
Proof. First assume U=V = @. Then f#: ‘JTqX — 'ITqY is an isomorphism for
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0 < q <k and an epimorphism for q =k +1 (see [12, Corollary 2.4]). If Z; denotes
the mapping cylinder of f, we see that 'nq(Zf, X)=0 for q <k+ 1. By the relative
Hurewicz theorem, Hy(Z¢, X) = 0 for g <k + 1, and hence f,: HyX — HqY is an
isomorphism for q <k and an epimorphism for q = k + 1. The general cases now
follow from a standard generalization of the five-lemma.

LEMMA 5.2. Ifi: X — Y is a proper, onto map between euclidean neighborhood
retracts, and if £ is UVK-trivial for all k, then f is cell-like.

This is a special case of Theorem 2.1 of [12].

THEOREM 5.3. Let Y be a compact ANR such that Hy(Y - {y}) =0 for all
p<n-k-2andall y €Y, andlet f: S — Y be an onto UVE-map. If 2k + 2 > n,
then f is cell-like.

Pyoof. (ﬁ* is reduced homology.) Let A =f-1(y) for some y € Y. Then, by
Alexander duality and Lemma 4.1,

HqA ~ ﬁn_q_l(sn - A-) = I‘\in_q_]_(Y - {Y}) = 0,

provided n-q-1<kand n-q-1<n-k-2. Since n-k -2 <Kk, we see that
H9 A = 0 whenever n - q-1<n-k -2, that is, whenever q > k + 1. Thus, at least
when k > 1, the inclusion A C S™ has property UVY for all q, by Corollary 4.4.2, so
that f is cell-like, by Lemma 5.2.

If, on the other hand, k =0 and n = 2, it is to be shown that A C S% has property
UV! whenever S% - A and A are connected. We leave this statement, as well as the
case k =0, n=1, to the reader. (See [22].)

THEOREM 5.4. Let M and N be n-manifolds. If f: M — N is a proper, onto
UVE-map, and 2k + 1 > n, then f is cell-like.

Proof. Let A = f"l(y) for some y. Then A C M has property Uvk. Assuming
n > 2, we can let V be an open n-cell of N containing y, so that U =f-1(V) isa
simply connected (hence orientable) neighborhood of f-1(y) in M. Consider the
composition
. Dp fy
HIA —> H, (U, U - A) —> H,_(V, V- {y}),

where D, is the duality isomorphism of Theorem 6.2.17 of [20]. If n - q <k, then
f, is an isomorphism, by Lemma 5.1. Hence, HYA =0 for q>n - k. Since
n-k<k+1 H1A =0 for q >k + 1. Again, if k > 1, we are through, by Corollary
4.4.2 and Lemma 5.2, and we leave the case k =0, n=1 to the reader.

(Note. The referee has pointed out that the triviality of fi*A follows from
Theorem 4 of [10].)

Remark. Theorem 5.4 has a generalization similar to Theorem 5.3.

6. PROOFS AND EXAMPLES

Theorems 1.1 and 1.2 follow from Section 5 together with results from [12] and
[13]. In [12], it is shown that proper, cell-like maps between (unbounded) topological
manifolds of dimension at least 5 are cellular, which takes care of Theorem 1.2.
Also, from Theorem 1.3 (which is proved in [12]), we see that if f: M —» N is a
proper cell-like map between topological manifolds of dimension at least 3, then each
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inclusion f~!(y) C M satisfies McMillan’s criterion [13], so that Theorem 1.1 fol-
lows. The cases n < 2 follow from classical results. (See [22].)

We now give some examples to show that the codimensional restrictions in
Theorems 5.3 and 5.4 are best possible.

Example (compare with [2, p. 7]). Let n=k + £ + 1, and write S™ as the join
Slg*siz of two spheres. (That is, let S™ = (Sg X S} X I)/., where “~? identifies
Sp Xy X1 and x X 8; X0 to points, for all x € Sp, ye S;.) If 0<t <1, let T, be
the copy of S X S; Xt at level t in the join, and let

W, = (S, Xs; Xt Usy X8, Xt)/_,

where s; is a base point in S;. Note that Ti/W; = sn-1 | Making the homeomor-
phism “independent” of t, we see that there are maps f;: T, — st-1 such that the
only nondegenerate point-inverse of f; is W;, and f; varies continuously with t

(0 <t < 1). Now we map S onto S(S?~!) ~ S™ by defining
£]T, = £, xt (0<t<1), £(S5) =0, £(8;)=

COROLLARY 6.1. If 2k + 3 <n and k > -1, there exists a map £ of S™ onto
itself whose point-inverses ave tame, k-connected polyhedva but that has some
point-inverses that ave not (k + 1)-connected. Hence,f is UVE- trivial but not cell-
like.

Example. I Corollary 6.1 fails to show that Theorem 5.4 is best possible, then
2k + 3 > n while 2k +2 < n. In other words, 2k +2 =n. For this case, we can map
Sktl x gktl onto Sn by a map whose only nondegenerate inverse set is

COROLLARY 6.2. If 2k +2 < n, there exist closed, orientable, k-connected,
PL n-manifolds M and N and an onto map f: M — N whose point-inverses ave tame,
k-connected polyhedra but not all of whose point-inverses ave (k + 1)-connected.
Thus, f is UVX-trivial but not cell-like.

7. THE NONCELLULAR POINTS OF A MAP BETWEEN
EVEN-DIMENSIONAL MANIFOLDS

Let M and N be n-manifolds, and let f: M — N be an onto, proper UVE-l-map.
Define

Cs = {y € N| f‘l(y) is not cellular in M} .

As the “join” example in Section 6 shows, C;y may be one-dimensional, whenever
2k < n, even if M =N = S™, Moreover, Theorem 1.2 shows (modulo certain plaus-
ible conjectures when n =3 or 4)that C;= @ whenever 2k > n. In this addendum,
we consider the remaining case 2k = n.

It is easy, but instructive, to see that in case n = 2k, Cr can be a finite set with
any number of points: For p > 0, let T, be the connected sum of S2k and p copies
of Sk x 8k. Then, if 0 < q < p, there exists a map of Tp onto Tq that has exactly
p - q nondegenerate point-inverses, each of which is a wedge of two k-spheres. (In
the noncompact case, a similar construction shows that C; can be an infinite dis-
crete set in N.) We show below that these examples are typical. (Compare with

[14].)
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Throughout this section, we assume that
(i) M and N are closed manifolds of even dimension 2k,
(ii) f: M — N is an onto UVX~l-map,

(iii) for each y € N, there is a neighborhood V of f-1y) in M such that
V - f-1(y) can be triangulated as an open PL-manifold, and

(iv) k = 2.

Note. When k =1, assumption (ii) means simply that f is a monotone map of M
onto N.

THEOREM 7.1. Cs is a finite set.

Proof. Let y € N and W=M - f-1(y). Then W is an open 2k-manifold that is
(k - 1)-connected at infinity {(by Lemma 5.1).

Assume first that k > 3. Let
U = £ !(open 2k-cell containing y).
U is (k - 1)-connected, hence orientable. We want to calculate the homology of W.
If q <k -1, then HQW ~ Hgq(N - {y}). For k +1 < q < 2k - 1, the homology se-
quence of the pair (M, W) implies that Hy W ~ Hy M, since
Ho(M, W) ~ Hg(U, U - £71(y)) ~ B#-9171(y) = 0

by excision, duality, and Corollary 4.4.1. Finally, the middle of the sequence of
(M, W) looks like

Hyi (M, W) — H W — H M,

where Hy, (M, W) = 0, as we noted above. Thus

H,(N - {y}) for q <k -1,
a subgroup of H; M for q =k,
HqW.:
HyM for k+1<qg<2k-1,
0 for 2k < q.

From this, we see that H, W is finitely generated. Therefore, we can apply the
main result of [4] (for PL—mamfolds, see [17]) to see that there exists a compact
mainfold W such that W =W - 9W. Since aW is (k - 1)-connected, it is a (2k - 1)-
sphere, by the generalized Poincaré conjecture [6], [19]. It follows that there exists
a compact set K in W such that W - K is homeomorphic to s2k-1 ¥ R,

In the case k = 1, W is an open 2-manifold with exactly one end. An easy argu-
ment shows that W is the connected sum of infinitely many closed manifolds. Since
M is compact, almost all of these closed manifolds must be spheres. As above, it
follows that W - K is homeomorphic to S! X R for some compact set K.

In terms of neighborhoods of f-1(y), we have proved the following result.

COROLLARY 7.2. Fovr each y € N, £-1(y) has a neighbovhood V in M such
that
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V-fl(y) ~ s2k-1xR .
Now let
D = {y € N| £-1(y) does not lie in a topological copy of S2%-1 xR in M} .

An easy argument with limit points proves that D is a finite set. Let y € N - D.
Then f-1(y) has two neighborhoods V C U, where

U=~ 82kIxR and V-f£ly) =~ s2k-lxr.

Since the two-point compactification of U is a 2k-sphere, the generalized Schoen-
flies theorem [5] implies that £-1(y) is cellular in U, and hence in M. Thus C; =D,
and C; is finite. The proof of Theorem 7.1 is now complete.

Let Cs={y,, =", ¥+ }. For each ¥j, let V; be a neighborhood of f‘l(yj) such
that

V; - £ 1(y;) = 251 xR.
Choose the V; so that they are pairwise disjoint. Let M; be the one-point compacti-
fication of V;, and let M' be the end-point compactification of M - f-1C;).
J» f
Define f': M' — N by letting

f' =fon M- f’l(Cf) and f'(end-point determined by f'l(Yj)) =Y;-

COROLLARY 7.3. M' is a closed manifold, and {': M' — N is a cellular map.
Moreover, M is homeomovphic to the connected sum of M' and the closed, (k - 1)-
connected manifolds M, ---, M;.

The result of Siebenmann (Theorem 1.4) now implies that f' is homotopic to a
homeomorphism. Thus we obtain the following result.

COROLLARY 7.4. M is homeomorphic to the connected sum of N and a closed,
(k - 1)-connected manifold.

We can now prove the following generalization of Theorem 1.1.
THEOREM 7.5. If Hi M and Hy N are isomovphic, then f is a cellular map.
The proof is separated into two cases.

Case 1. k = 1. We have three two-manifolds, M, M', and N, where M' is
homotopy-equivalent to N and H{M ~ H;N. Thus M =~ M'. That is, M is homeo-.
morphic to the connected sum of itself and M, ---, M;. A Meyer-Vietoris argu-
ment shows that each M; is a sphere, and hence each Vj is an open 2-cell.

Case 2. k > 3. In this case, we need only show that Hy V;= 0Ofor j=1, -, t;
for then f is UVk-l-trivial and uvk-trivial, and therefore it is UVX-trivial (by
Theorem 4.2) and hence cellular (by Theorem 1.2).

Applying the Meyer-Vietoris sequence in homology, we see that
HM=~HMDHV,® - DHV,.
Since f' is cellular, H M' ~ H; N; moreover, H N ~ H; M by hypothesis. But Hy M

is finitely generated, and we conclude that HxV; = 0 for all j. This concludes the
proof.
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Remark 1. (a) Assume that either k > 3 or M is orientable. Then the mani-
folds M; are (k - 1)-connected and orientable, and therefore the only nonvanishing
homology groups of Mj occur in dimensions 0, k, and 2k; hence Hij is a free
abelian group of even rank. Moreover, we have isomorphisms

ﬁqf"l(yj) ~ HIMj =~ Hzk-qM;j

for q < 2k. Hence, for each y € N, H9f-1(y) is a free abelian group of even rank
for q =k, and

. Z for q=0,
HIf Y(y) =~
0 for q #0, k.

Thus, £-1(y) can be a wedge of an even number of k-spheres (as in the standard
examples) but never a wedge of an odd number of k-spheres.

(b) When k =1 and M is not orientable, H!£-1(y) is a free abelian group, but
not necessarily of even rank: the projective plane maps onto S2 by shrinking the
center line of a Mobius band to a point.

Remark 2. Assumption (iii) can be dropped, except possibly when k = 4. For,
when k > 5, each £-!(y) has a 4-connected neighborhood with a (unique) PL-mani-
fold structure, by the triangulation theorem of R. C. Kirby and L. C. Siebenmann [9].
When k = 3, duality and Theorem 5.1 imply that

H4E"U(y); Z,) ~ H,M, M - £~ 1(y); Z,) = 0;

therefore some neighborhood of £-1(y) has a PL-manifold structure, by a new re-
sult of J. Hollingsworth and R. B. Sher [7]. In fact, duality and [7] yield the following
(this was pointed out to me by McMillan).

PROPOSITION. Let X and Y be (open or closed) topological n-manifolds, and
let g: X — Y be a proper, onto map. Suppose that each inclusion g-1(y) € X has
property uw¥(Z,), where k =min {4, n - 4} and n> 5. Then each g-1(y) has a
neighborhood in X that can be triangulated as a PL-manifold.

(Property uvkX(Z,) is defined similarly to property uvk, except that we use
homology with Z;-coefficients.)

Remavrk 3. There is a version of Theorem 7.1 for open manifolds. The proof is
essentially the same as that of Theorem 7 .1, but the proposition is used to complete
assumption (iii).

THEOREM 7.6. Let X and Y be 2k-manifolds (without boundary), and let
g: X —> Y be a proper, onto UVE-loyngp. Assume that k + 2, and if k = 4, that each
g-1y) has a neighborhood V in X such that V - g-1(y) has a PL-manifold struc-
ture. Then C g is a closed, locally finite subset of Y.

Remark 4. The analogue of Theorem 7.5 for open manifolds is false: There
exists a proper UVk“l-map g of T%ok onto itself for which C, is infinite.
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