A NOTE ON MULTIVALUED MONOTONE OPERATORS
Jean-Pierre Gossez

1. INTRODUCTION

Let E and F be two real vector spaces in duality with respect to a bilinear
form <x, u> for x € E and u € F. A (generally multivalued) mapping T: E — F is
called a monotone operator if

(x -y, u- v> >0
whenever u € Tx and v € Ty; the domain of T is defined by
D(T) = {x € E; Tx nonempty } .

The purpose of this note is to show, roughly, that a monotone operator that is
actually multivalued admits no continuous selection (Proposition 1) and is not lower-
semicontinuous (Proposition 3). We give applications to duality mappings (Proposi-
tion 2) and to subdifferentials of convex functions (Proposition 4).

2. SELECTION

A selection for a multivalued mapping T: E — F is a (singlevalued) mapping
T: D(T) — F such that Tx € Tx for every x € D(T). A selection T is said to be
hemicontinuous at x € D(T) if it is continuous (in the o (F, E)-topology of F) at x,
on each line segment in D(T) with endpoint x.

We shall say that a point x of a subset D of E is quasi-internal to D if the
convex cone generated by the set of y for which the line segment [x, y] is contained
in D is o(E, F)-dense in E. Thus each internal point of D, or each point of D if
D is a o(E, F)-dense subspace of E or an open subset of E (for some vector-space
topology on E), is quasi-internal to D.

PROPOSITION 1. Let T: E — F be a monotone opevator that is not single-
valued at x € D(T). If x is quasi-internal to D(T), then T admits no selection that
is hemicontinuous at X.

Proof. Suppose that T admits a selection T: D(T) — F, hemicontinuous at x.
Since T is not singlevalued at x, there exists u € Tx with u # Tx. Take y such that
x +ty € D(T) for all t € [0, 1]. The monotonicity of T implies that

(x+ty)-x, Tx+ty)-u) >0 vtelo 1,
so that
(y, Tx+ty)-u) >0 vVtelo, 1];
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if we let t — 0, it follows by hemicontinuity that
(1) <y,"i"x—u>20.

Since the set of such y generates in E a o(E, F)-dense convex cone, (1) implies
that Tx = u, a contradiction. &

Remark. An assumption of the kind that x is quasi-internal to D(T) is needed,
in Proposition 1: take

E=F=R, D(T)=[0,1], Ty=0Vye ]0,1[, TO=]-, 0], T1=[0, +[, x=0.

This example also shows the insufficiency of the weaker assumption that x is almost
internal to D(T) (see below).

Consider now the (multivalued) duality mapping J & of a normed space X into its
dual X*, defined by

Tox) = {ue X% (x,u) = |x| [u] ana [u] = ¢(|x]?,

where ¢ is a strictly increasing continuous function from R* to R™ with ¢(0) =0
and ¢(r) —» +w as r — +w. It is easy to see that J;: X — X* is monotone and that
D(J ¢) = X. Consequently, we have the following proposition.

PROPOSITION 2. Let X be a novmed space. If the duality mapping is not
singlevalued at x, then it admits no selection that is hemicontinuous at x.

Several fixed-point theorems for nonexpansive mappings in a Banach space X
have been proved under the assumption that J ¢ admits a selection that is sequen-
tially continuous on X, o (X, X*) into X*, o(X*, X) (F. E. Browder [3], Z. Opial [7],
.-+ ). Proposition 2 implies that a necessary condition for this assumption to be
satisfied is that J¢ be singlevalued. The fact that J, is singlevalued is equivalent
to the Gateaux differentiability of the norm of X (8. KJ/Iazur [5]), and (when X is re-
flexive) to the strict convexity of X* (Smulian [8]).

Applications of Proposition 2 to fixed-point problems are given in [4].

3. LOWER-SEMICONTINUITY

A multivalued mapping T: E — F is said to be hemi-lower-semicontinuous
(hemi-L.S.C.) at x € D(T) if it is L.S.C. at x on each line segment in D(T) with
endpoint x, in the o(F, E)-topology of F.

We shall say that a point x of a subset D of E is almost internal to D if the
set of y for which the line segment [x, y] is contained in D distinguishes the points
of F. A quasi-internal point is almost internal, but the converse is not true (see the
remark above).

PROPOSITION 3. Let T: E — F be a monotone opeafatbr that is not singlevalued
at x € D(T). If x is almost internal to D(T), then T is not hemi-L. S.C. at x.

Proof. Translating T, if necessary, we can assume that x = 0. By assumption,
there exist u and v in TO with u # v. Since 0 is almost internal to D(T), there
exists y in D(T) such that the line segment [0, y] is contained in D(T') and

2) <y,u—v> #0.
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Let us denote by G the line {ry; re R}, by i the injection mapping of G into E,
and by i* the adjoint projection of F onto G*. The multivalued mapping S: G — G*
with domain D(S) = [0, y], defined by Sz = i*Tiz V z € [0, y] is easily verified to be
monotone; it is not singlevalued at 0, since i*u € S0, i*v € S0, and, by (2),

i*u #i*v. Giving a suitable orientation to the lines G and G*, we obtain the rela-
tion

i*u<i*v§Sz Vzeloyl.

This clearly shows that S is not hemi-L.S.C. at 0. Consequently, T is not hemi-
L.S.C.at 0. m

Remavrk. An assumption of the kind that x is almost internal to D(T) is needed
in Proposition 3; take D(T)= {y € E: (y, u) =0}, with u in F, u #0, and
Ty = {ru;r € R} Vy e D(T).

Consider now a locally convex vector space X with a Hausdorff topology, and let
f be a proper convex function on X, that is, a convex function from X to J-e, +o
not identically +w. The subdifferential of f is the (multivalued) mapping af: X — X*
defined by

of(x) = {u e X*; f(y) > f(x) + <y - X, u> VyeX}.

It is easy to see that 9f: X — X* is monotone. As a corollary of Proposition 3, we
have the following result, which may be compared with a theorem of E. Asplund and
R. T. Rockafellar [1, p. 460]. :

PROPOSITION 4. Let f be a lower-semicontinuous, proper, convex function on
X. Suppose that £ is (finite and) continuous at a point x. Then f is Gateaux-
differentiable at x if and only if 3f: X — X* is hemi-L. S.C. at x.

Proof. It is well-known [2, p. 92] that a finite convex function on an open convex
set V is continuous throughout V if it is continuous at one point of V. Thus, in our
case f is continuous on the (nonempty) interior of {y € X; f(y) <+« }. Since 2f(y)
is nonempty at the points y where f is continuous (a consequence of the Hahn-
Banach theorem), x is interior (hence almost internal) to D(3f). Consequently, by
Proposition 3, if 3f: X — X* is hemi-L.S.C. at x, then 3f is singlevalued at x, and’
it follows [6, p. 66] from the continuity of f at x that f is Giteaux-differentiable at
X. This proves the first part of the proposition. The converse implication is a con-
sequence of the fact [6, p. 79] that, since f is continuous at x, 9f: X — X* o(X*, X)
isU.S.C.at x. &
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