A NOTE ON MULTIVALUED MONOTONE OPERATORS

Jean-Pierre Gossez

1. INTRODUCTION

Let E and F be two real vector spaces in duality with respect to a bilinear form $\langle x, u \rangle$ for $x \in E$ and $u \in F$. A (generally multivalued) mapping T: $E \to F$ is called a *monotone operator* if

$$\langle x - y, u - v \rangle \geq 0$$

whenever $u \in Tx$ and $v \in Ty$; the domain of T is defined by

$$D(T) = \{x \in E; Tx \text{ nonempty}\}.$$

The purpose of this note is to show, roughly, that a monotone operator that is actually multivalued admits no continuous selection (Proposition 1) and is not lower-semicontinuous (Proposition 3). We give applications to duality mappings (Proposition 2) and to subdifferentials of convex functions (Proposition 4).

2. SELECTION

A selection for a multivalued mapping $T: E \to F$ is a (singlevalued) mapping $\widetilde{T}: D(T) \to F$ such that $\widetilde{T}x \in Tx$ for every $x \in D(T)$. A selection \widetilde{T} is said to be hemicontinuous at $x \in D(T)$ if it is continuous (in the $\sigma(F, E)$ -topology of F) at x, on each line segment in D(T) with endpoint x.

We shall say that a point x of a subset D of E is *quasi-internal* to D if the convex cone generated by the set of y for which the line segment [x, y] is contained in D is $\sigma(E, F)$ -dense in E. Thus each internal point of D, or each point of D if D is a $\sigma(E, F)$ -dense subspace of E or an open subset of E (for some vector-space topology on E), is quasi-internal to D.

PROPOSITION 1. Let $T: E \to F$ be a monotone operator that is not single-valued at $x \in D(T)$. If x is quasi-internal to D(T), then T admits no selection that is hemicontinuous at x.

Proof. Suppose that T admits a selection \widetilde{T} : $D(T) \to F$, hemicontinuous at x. Since T is not singlevalued at x, there exists $u \in Tx$ with $u \neq \widetilde{T}x$. Take y such that $x + ty \in D(T)$ for all $t \in [0, 1]$. The monotonicity of T implies that

$$\langle (x+ty) - x, \widetilde{T}(x+ty) - u \rangle \geq 0 \quad \forall t \in [0, 1],$$

so that

$$\langle y, \tilde{T}(x+ty) - u \rangle \geq 0 \quad \forall t \in [0, 1];$$

Received February 12, 1970.

This work was supported by the F.N.R.S. in Belgium.

Michigan Math. J. 17 (1970).

if we let $t \rightarrow 0$, it follows by hemicontinuity that

$$\langle y, \tilde{T}x - u \rangle > 0.$$

Since the set of such y generates in E a $\sigma(E, F)$ -dense convex cone, (1) implies that $\widetilde{T}x = u$, a contradiction.

Remark. An assumption of the kind that x is quasi-internal to D(T) is needed, in Proposition 1: take

$$E = F = R$$
, $D(T) = [0, 1]$, $Ty = 0 \ \forall \ y \in [0, 1[$, $T0 =]-\infty$, $0]$, $T1 = [0, +\infty[$, $x = 0$.

This example also shows the insufficiency of the weaker assumption that x is almost internal to D(T) (see below).

Consider now the (multivalued) duality mapping J_{ϕ} of a normed space X into its dual X^* , defined by

$$J_{\phi}(x) = \{u \in X^*; \langle x, u \rangle = ||x|| ||u|| \text{ and } ||u|| = \phi(||x||)\},$$

where ϕ is a strictly increasing continuous function from R^+ to R^+ with $\phi(0)=0$ and $\phi(r)\to +\infty$ as $r\to +\infty$. It is easy to see that $J_{\phi}\colon X\to X^*$ is monotone and that $D(J_{\phi})=X$. Consequently, we have the following proposition.

PROPOSITION 2. Let X be a normed space. If the duality mapping is not singlevalued at x, then it admits no selection that is hemicontinuous at x.

Several fixed-point theorems for nonexpansive mappings in a Banach space X have been proved under the assumption that J_{ϕ} admits a selection that is sequentially continuous on X, $\sigma(X, X^*)$ into X^* , $\sigma(X^*, X)$ (F. E. Browder [3], Z. Opial [7], ...). Proposition 2 implies that a necessary condition for this assumption to be satisfied is that J_{ϕ} be singlevalued. The fact that J_{ϕ} is singlevalued is equivalent to the Gâteaux differentiability of the norm of X (S. Mazur [5]), and (when X is reflexive) to the strict convexity of X^* (Šmulian [8]).

Applications of Proposition 2 to fixed-point problems are given in [4].

3. LOWER-SEMICONTINUITY

A multivalued mapping T: $E \to F$ is said to be *hemi-lower-semicontinuous* (hemi-L.S.C.) at $x \in D(T)$ if it is L.S.C. at x on each line segment in D(T) with endpoint x, in the $\sigma(F, E)$ -topology of F.

We shall say that a point x of a subset D of E is *almost internal* to D if the set of y for which the line segment [x, y] is contained in D distinguishes the points of F. A quasi-internal point is almost internal, but the converse is not true (see the remark above).

PROPOSITION 3. Let T: $E \to F$ be a monotone operator that is not singlevalued at $x \in D(T)$. If x is almost internal to D(T), then T is not hemi-L. S. C. at x.

Proof. Translating T, if necessary, we can assume that x = 0. By assumption, there exist u and v in T0 with $u \neq v$. Since 0 is almost internal to D(T), there exists y in D(T) such that the line segment [0, y] is contained in D(T) and

(2)
$$\langle y, u - v \rangle \neq 0$$
.

Let us denote by G the line $\{ry; r \in R\}$, by i the injection mapping of G into E, and by i* the adjoint projection of F onto G*. The multivalued mapping S: $G \to G^*$ with domain D(S) = [0, y], defined by $Sz = i^*Tiz \ \forall \ z \in [0, y]$ is easily verified to be monotone; it is not singlevalued at 0, since $i^*u \in S0$, $i^*v \in S0$, and, by (2), $i^*u \neq i^*v$. Giving a suitable orientation to the lines G and G^* , we obtain the relation

$$i^*u < i^*v \le Sz \quad \forall z \in]0, y].$$

This clearly shows that S is not hemi-L.S.C. at 0. Consequently, T is not hemi-L.S.C. at 0. \blacksquare

Remark. An assumption of the kind that x is almost internal to D(T) is needed in Proposition 3: take D(T) = $\{y \in E: \langle y, u \rangle = 0\}$, with u in F, u \neq 0, and Ty = $\{ru; r \in R\}$ $\forall y \in D(T)$.

Consider now a locally convex vector space X with a Hausdorff topology, and let f be a proper convex function on X, that is, a convex function from X to $]-\infty, +\infty]$ not identically $+\infty$. The subdifferential of f is the (multivalued) mapping $\partial f: X \to X^*$ defined by

$$\partial f(x) = \{ u \in X^*; f(y) \ge f(x) + \langle y - x, u \rangle \ \forall \ y \in X \}.$$

It is easy to see that $\partial f: X \to X^*$ is monotone. As a corollary of Proposition 3, we have the following result, which may be compared with a theorem of E. Asplund and R. T. Rockafellar [1, p. 460].

PROPOSITION 4. Let f be a lower-semicontinuous, proper, convex function on X. Suppose that f is (finite and) continuous at a point x. Then f is Gâteaux-differentiable at x if and only if $\partial f: X \to X^*$ is hemi-L. S. C. at x.

Proof. It is well-known [2, p. 92] that a finite convex function on an open convex set V is continuous throughout V if it is continuous at one point of V. Thus, in our case f is continuous on the (nonempty) interior of $\{y \in X; f(y) < +\infty\}$. Since $\partial f(y)$ is nonempty at the points y where f is continuous (a consequence of the Hahn-Banach theorem), x is interior (hence almost internal) to $D(\partial f)$. Consequently, by Proposition 3, if $\partial f: X \to X^*$ is hemi-L. S. C. at x, then ∂f is singlevalued at x, and it follows [6, p. 66] from the continuity of f at x that f is Gâteaux-differentiable at x. This proves the first part of the proposition. The converse implication is a consequence of the fact [6, p. 79] that, since f is continuous at x, $\partial f: X \to X^*$, $\sigma(X^*, X)$ is U.S.C. at x.

REFERENCES

- 1. E. Asplund and R. T. Rockafellar, *Gradients of convex functions*. Trans. Amer. Math. Soc. 139 (1969), 443-467.
- 2. N. Bourbaki, Éléments de mathématique. XV. Livre V: Espaces vectoriels topologiques. Actualités Sci. Ind., no. 1189. Hermann, Paris, 1953.
- 3. F. E. Browder, Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Arch. Rational Mech. Anal. 21 (1966), 259-269.
- 4. E. Lami Dozo, Opérateurs non-expansifs, P-compacts et propriétés géométriques de la norme. Thèse, Université de Bruxelles, 1970.

- 5. S. Mazur, Über konvexe Mengen in linearen normierten Räumen. Studia Math. 4 (1933), 70-84.
- 6. J. J. Moreau, Fonctionnelles convexes. Sém. Eq. Dér. Part., Collège de France, 1967.
- 7. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591-597.
- 8. V. L. Šmulian, On some geometrical properties of the unit sphere in the space of type (B). Mat. Sbornik N. S. 6 (48) (1939), 77-94.

Département de Mathématique Université de Bruxelles Bruxelles