THE TWO-GENERATOR PROBLEM FOR IDEALS
Eben Matlis

Among the first things every student of Modern Algebra learns are the ways in
which Dedekind rings are generalizations of principal ideal domains. Almost inci-
dental is the fact that every ideal of a Dedekind ring can be generated by two ele-
ments. There are examples to show that this property in no way characterizes
Dedekind rings. For instance, there is the ring of power series in one variable
(over an arbitrary field) that have no linear term. There are no obvious ring-
theoretic reasons to suggest that there should be some intrinsic way of distinguish-
ing those rings in which every ideal can be generated by two elements from those
requiring three, or four, or any number of generators. That the number two can be
shown to be unique is somewhat remarkable.

For many years, the matter rested with the theorem of I. S. Cohen [4] that if
there exists a fixed finite bound on the number of elements required to generate an
ideal, then the ring is Noetherian and of Krull dimension one. The next step occurred
when the author [6] proved that if a Noetherian local domain {subject to the somewhat
crippling hypothesis that its integral closure is a finitely generated valuation ring)
has the property that every ideal can be generated by two elements, then every ring
extension between the domain and its integral closure is a Gorenstein ring. Shortly
thereafter, H. Bass [2] proved that this property of Noetherian domains uniquely
characterizes the two-generator property. However, Bass also needed a restrictive
hypothesis; namely, that the integral closure is a finitely generated module. In addi-
tion, Bass proved that each of the conditions above is equivalent to the assertion that
every indecomposable, finitely generated, torsion-free module is isomorphic to an
ideal.

The theorem of this paper removes the restrictive hypotheses concerning the
integral closure; and by replacing the concept of a Gorenstein ring of dimension one
by the more general concept of a reflexive ring, our theorem generalizes the char-
acterizations to arbitrary integral domains. Corollary 1 represents an even further
sharpening of the theorem for the case where it is assumed that the domain is
Noetherian. It must be said, however, that Bass considered Noetherian rings that
have no nilpotent elements, but are not necessarily integral domains; hence his
theorem is both more and less general than the one we present here.

We shall now proceed to give several definitions and explain some of our nota-
tion. Throughout this paper, R is an integral domain (not a field) with quotient field
Q, and we set K=Q/R. If A is an R-module, we let A* = Hompg (A, R), the dual of
A with respect to R. There exists a canonical map A — A**; if this map is a mono-
morphism, A is said to be forsionless; if the map is an isomorphism, A is said to
be reflexive.

The integral domain R is called a veflexive ving if every torsionless R-module
of finite rank is reflexive. We have shown in [9] that R is a reflexive ring if and
only if K is the injective envelope of the direct sum of one copy of each of the simple
R-modules. If R is a Noetherian domain, then R is a reflexive ring if and only if R
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is a Gorenstein ring of Krull dimension 1 (a Noetherian ring is a Gorenstein ring if
the ring has finite injective dimension over itself).

If I is an R-submodule of Q, we let I-! = {x € Ql xIc R}. Then I-! is na-
turally isomorphic to I*; and the inclusion map I — I-1-1 is the canonical map

I — I**. It has been shown (see [2] and [9]) that a Noetherian ring is a reflexive ring
if and only if I=1I-1-1 for every ideal of R. A necessary condition for R to be a
reflexive ring is that M-! be generated by two elements, for every maximal ideal M
of R. If R is Noetherian and of Krull dimension one, this condition is also sufficient.
Moreover, if R is a Noetherian integral domain of Krull dimension 1 such that every
maximal ideal can be generated by two elements, then R is a reflexive ring. For
these results, see [9].

A local ring is a ring with only one maximal ideal, and a semilocal ving is a
ring with only a finite number of maximal ideals (no Noetherian conditions are as-
sumed). An h-local ring is a ring in which every nonzero element is contained in at
most a finite number of maximal ideals, and every nonzero prime ideal is contained
in only one maximal ideal. An h-local domain is a domain for which localizations
behave properly; in other words, if T is a torsion R-module, then

= D@1,
M

where M ranges over all maximal ideals of R. In [9], we showed that a reflexive
ring is an h-local ring.

An integral domain R is said to have properiy FD if every finitely generated
torsion-free R-module is a direct sum of modules of rank 1. Equivalently, an inte-
gral domain has property FD if and only if every indecomposable, finitely gener-
ated, torsion-free R-module is isomorphic to an ideal of R. We say that R has
property FD locally if Ry, has property FD for every maximal ideal of R.

We define p x(R) to be the supremum of the minimum number of generators
required to generate an ideal of R.

LEMMA. Let R be an h-local ring. Then the following statements are true:

(1) R is a reflexive ving if and only if Ry is a veflexive ving, for every maxi-
mal ideal M of R.

(2) R is a Noetherian ving if and only if Ry is a Noethervian ving, for every
maximal ideal M of R.

(3) by(R)=max(2, k), where k = supp; 44 (Ry\gp) and M vanges over all maximal
ideals of R (k can be infinite).

Proof. (1) If R is a reflexive ring, then Ry is a reflexive ring, by [9, Cor.
2.8]. Conversely, assume that Ry is a reflexive ring, for every maximal ideal M
of R. Let Ky = Q/Rys; then, by [9, Cor. 2.6], Ky is the injective envelope of
Rym/MRy over Ryg. Since Ry/MRy £ R/M, one can easily see, using [3, Chapter
VI, Ex. 10], that K is the injective envelope of R/M over R. Since R is h-local,
we have the relation

K = E@KM’
M
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by [8, Theorem 3.1]. By [8, Theorem 3.3], K is an injective R-module. I is then

clearly the injective envelope of ZM@ R/M over R. By [9, Cor. 2.6], we have that
R is a reflexive ring.

(2) and (3). I R is Noetherian, then it is elementary that Rys is Noetherian, for
every maximal ideal M of R. Conversely, assume that Ry, is Noetherian for every
M. An examination of the proof of [1, Prop. 1.4] shows that all that is required for
the proof to be valid is that a nonzero element of R be contained in only a finite num-
ber of maximal ideals of R. This establishes that R is Noetherian and proves (3) as
well.

THEOREM. Let R be an arbitrary integral domain with quotient field Q. Then
the following thvee statements are equivalent:

(1) Every ideal of R can be genevated by two elements.
(2) If S is a rving extension of R in Q that is finitely genevated as an R-module,
then S is a veflexive ring and Nr- 0, for every ideal 1 of S.

(3) R is a Noetherian ving that has propevty FD locally. In this case, R is a
Noetherian domain of Krull dimension 1.

Proof. (1) = (2). Assume that every ideal of R can be generated by two ele-
ments. I. S. Cohen has shown that R is then a Noetherian domain of Krull dimension
1. It follows from [9, Theorem 3.9] that R is a reflexive ring. For Noetherian do-
mains, it is well known that

Nr-
n

for every ideal I of R.

If S is some finitely generated ring extension of R in Q, then every ideal of S
is R-isomorphic to an ideal of R and hence can be generated by two elements over
R, and a fortiori over S. Thus S inherits all properties of R listed above.

(2) = (1). Let M be a maximal ideal of R. We shall show that R, inherits the
properties of R. Let A be a ring extension of Ry in Q that is finitely generated as

an Rpy/-module. Then there exist elements x;, **, X, in A such that

A = Ryplxy, -, x4l
Each x; is integral over Ry, and hence there emst elements sj, ***, Sp in R- M
such that a; = 5;%; is integral over R (i=1, ---, n). Let S= R[a.l , ***, a,]; then

Sm = A. It follows from [11, Chapter V, Sectmn 1] that S is finitely generated as
an R-module.

Since S is finitely generated over R, one can show that there exists a one-to-
one correspondence between the maximal ideals of A and the maximal ideals of S
that do not meet R - M. Hence, if L is a maximal ideal of A, there is a maximal
ideal N of S such that Ny,=L and L N S=N. For each positive integer k, we
have that

LX = ()< = ().

Smce Nk isa primary ideal for the maximal ideal N, we have the equation
k (NK)y = ( ﬂk Nk) M. Now ﬂk NX = 0, by assumption on S, and therefore
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nLk=D(Nk)M=(n Nk) - 0.

k k M

It follows that ﬂk Ik = 0, for every ideal I of A.

Since S is a reflexive ring by assumption, it follows from [9, Theorem 2.7] that
S is an h-local ring. By the one-to-one correspondence between the maximal (re-
spectively, prime) ideals of A and the maximal (respectively, prime) ideals of S
that do not meet R - M, we have that A is an h-local ring. One can easily see that
Ar = (Sp)1 = Sy - Since S is a reflexive ring, Sy is a reflexive ring, by the lemma.
Hence A is an h-local ring with the property that A;, is a reflexive ring, for every
maximal ideal L. of A. By the lemma, A is a reflexive ring.

Now that we see that Ry; possesses all assumed properties of R, the lemma
tells us that if (2) implies (1) for local domains, then (2) implies (1), for every inte-
gral domain. Hence we may assume from now on that R is a local ring with maxi-
mal ideal M.

If M is a projective ideal of R, then it is a principal ideal of R. Because of the

condition ﬂk Mk = 0, this would imply that R is a discrete valuation ring. This
would establish the implication (2) => (1), and hence we may assume that M is not a
projective ideal of R. But then M-1 M = M, which shows that M-l = R, is a ring
extension of R in Q. By [9, Prop. 2.5], R; is generated by two elements over R
and R; /R £ R/M. Hence R, is a reflexive ring by assumption.

If T is not a principal ideal of R, then I is actually an ideal of R; . For we
have the inclusion II-! C M, and therefore

®R,; DI’ c Ry M = M.

Hence RjIC (I"1)"l=1L
We proceed to establish several properties of R and R;.
(a) M is a principal ideal of R .

If I is an ideal of R;, we define " = {x € Ql xI C Rl}; thus I is the dual of I
with respect to R;. Suppose M is not a principal ideal of R;. Since Rj isa
finitely generated module over the local ring R, R; is a semilocal ring, and finitely
generated projective Rj-modules are free. Thus M is not a projective ideal of R,
and we have that MM?" # R;. Thus there exists a maximal ideal P of R;] such that
MM?” C P. Hence

(p*MmM* ¢ P*P c Ry,
and therefore P#¥M C M##. Since R, is a reflexive ring, we have that M## = M,
and hence P#M C M. Thus P¥ € M-l = Ry, and it follows that Pf =R;. But R is

a reflexive ring, and therefore P## = P. This contradiction shows that M is a
principal ideal of Rj.

We have just shown that there exists an element a € M such that M = R; a.
Thus we have the relations

M2=Ma%Ra§M.

It also follows that if x € M, then x/a € R;.



THE TWO-GENERATOR PROBLEM FOR IDEALS 261

(b) If Ry is not a local ving with maximal ideal N 2 M, then R is a principal
ideal ring.

Since R; /R £ R/M, every maximal ideal of R; contains M, and there are at
most two such ideals. If R; is local with maximal ideal M, then, since M is a

principal ideal of R; and ﬂk Mk = 0, it follows that R; is a discrete valuation
ring. Thus we may suppose that R; has two maximal ideals N; and N,. Then
M =N; NN, =N;N,. It follows that N; and N, are projective ideals and thus
principal ideals of R; . Since

Mx=0 ana [In§-=o,
k k

we see that N; and N, are the only nonzero prime ideals of R;. By Cohen’s
Theorem [10, Chapter I, Theorem 3.4}, R is a Noetherian ring, and this forces R;
to be a principal ideal ring, establishing our assertion.

If R) is a principal ideal ring, then every nonprincipal ideal of R, being an
ideal of R;, is isomorphic to R;. Because R; is generated by two elements over
R, every ideal of R can thus be generated by two elements. Therefore we may as-
sume that R; is not a principal ideal ring. We then have, by (b), that R; is a local
ring with maximal ideal N 2 M. If N is a principal ideal of R}, then R is a prin-

cipal ideal ring. Thus we may assume that N is not a principal ideal of R;. Let
R, = N#, the dual of N with respect to R;; then R, is a ring that is generated by
two elements over R; .

(c) N=Rja, where M = Rja.

We have the inclusions M % N cq:& R ; hence, by taking duals with respect to R,
we have that M ¢ N-1 G R;. It is easy to see that N-! is an R;-ideal, and hence
N-1 c N. Thus we have that M - N-lcN GR;. Since, by [9, Prop. 2.5], the length

of R} /M is 2, we must have that N-1 = N. It is easy to see that N¥ = (MN)-!.
Therefore,

R, = N* = (MN)"! = @N)! = N“la-! = Na-!

)

and hence N =R,a.

The remarks above concerning (b) and (c) have established the following state-
ment.

(d) There exists a chain of local rings RCR] CR, C - C R, C *** such that
each R; is a reflexive ving; Riy1 is genevated by two elements over Ry and hence
is finitely genevated over R; if Ni is the maximal ideal of Ry, then Ry is the dual
of Nj with rvespect to Ri; Nj=Rit1a;and M C N C N2 C ---. This chain terminates
if and only if R, is a principal ideal ving, for somie n.

(e) R is a Noetherian ring.

Suppose that R is not a Noetherian ring. Then, according to Cohen’s Theorem
[10, Chapter I, Theorem 3.4], R has a nonfinitely generated prime ideal P. The
ideal P is actually an R -ideal for each integer n. If R, were a principal ideal
ring, then P would be isomorphic to R, and hence finitely generated over R. This
contradiction shows that the chain of rings in (d) does not terminate.
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Since each R; is integral over R, there exists a chain
PcP,cCcP,cC = CP,C ",

where each P; is a prime ideal of R;, Pj;; N R; = P;, and P; N R = P. 1t follows
that P; # N; for each i, and hence no power of a lies in any P;. Let b be a non-
zero element of P. Since b € M, b/a is an element of R;. We have that

E.a:be P].:
a

and hence b/a € P;. Therefore

lcst and -a2=b€P2,

b
az 3.2

which shows that b/a% € P,. By an obvious induction, we obtain that b/a™ € R,, for
every n. But since P is an R, -ideal, it follows that

2
P‘ﬁ'b=PT1€ P,
a a

for every integer n. Hence

b2e MparcIMmE=0.
n k

This contradiction shows that R is a Noetherian ring.
(1) py(R) <2

Since R is a Noetherian reflexive ring, it has Krull dimension 1, by [9, Theo-
rem 3.8]. Thus if I is a nonzero ideal of R, R/I has finite length, which we shall
denote by £(R/I). Since M = Rja is isomorphic to R, it is generated by two ele-
ments. Hence ¢(M/M?2) =2, and thus ¢(R/M2) = 3. We have seen in part (a) that

MzgRagMgR.

Hence ¢(R/Ra) = 2.

Let I be a nonprincipal ideal of R. From the exact sequence

Ra R R
O~ "M " Ra 0
we conclude that ¢(R/MI) = £(R/Ra) + £(Ra/MI). But ,MI = R al = al, and hence
Ra/MI = Ra/Ia £ R/I. Thus we have that ¢(R/MI) = 2 + ¢(R/I). From the exact se-
quence

0 — I/MI —» R/MI — R/I — 0,

we conclude that ¢(R/MI) = ¢(I/MI) + ¢(R/I). Putting the two equalities together, we
have that 2 + (R/I) = £(I/MI) + ¢(R/I). Therefore, £(I/MI) = 2, which shows that I
can be generated by two elements. Thus we have proved the inequality u*(R) < 2.
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(3) = (1). The following argument is entirely due to Bass [2, Prop. 7.5], and we
reproduce it here merely for the sake of completeness.

Let R be a Noetherian local domain with property FD. By the lemma, it is suf-

ficient to prove that p,(R) < 2. Let I be a nonzero ideal of R, and let a;, -, a,
be a minimal generating set for I. We can assume that n > 2. Let F = R",
x=(y, ', a,) € F, and let B be the pure submodule of F generated by x. Then B

is torsion-free of rank 1, and F/B is torsion-free of rank n - 1. By property FD,
we have that F/B=C) @ @ Cn-1, where Cj is torsion-free of rank 1. By the

theory of projective covers available to us over a local rmg, there exists a direct-
sum decomposition F = F; (3 ---@ F,_; such that if B; = F; N B, then

=B ® "@®B,.;1 and C; = F;/B;.

However, B is torsion-free of rank 1 and hence is indecomposable. Therefore, we
can assume that B C F] . Now the coordinates of x relative to any basis of F are
a generating set for I. Hence, due to the fact that n is the minimal number of ele-
ments needed to generate I, B cannot be contained in any proper direct summand of
F. Thus F=Fj,and n- 1=1. Hence n=2, and p,(R)<2.

(2) = (3). Up to a point, our proof will be a modification of that of Bass [2,
Prop. 7.2]. Since we have already proved that (2) implies (3), we can assume that R
is a Noetherian local domain of Krull dimension 1 such that every ideal of R can be
generated by two elements. Let A be a finitely generated, torsion-free R-module
whose rank exceeds 1. We shall assume that A is indecomposable and obtain a
contradiction.

Let I = 2o o+ £(A) be the trace ideal of A.

fe
Case I I=R.
There exist elements x), -+, X, € A and f], -+, f, € A* such that

E?zl fi(x;) = 1. Since R is a local ring, there is an integer i such that fi(x;) is a
unit of R. Hence there are elements x € A and f € A* such that f(x) = 1. If we de-
fine g: R — A by g(r) = rx, then fg is equal to the identity on R. Hence Rx is a
direct summand of A. This is a contradiction, and thus I # R.

Case II: 1C M, the maximal ideal of R.

If M is projective, then, as we have seen in the proof of the implication
(2) = (1), R is a principal ideal ring. But then A is a free R-module whose rank
exceeds 1, and hence A cannot be indecomposable. Thus M is not projective, and
R; =M-! is a ring. We shall show that A is an Rj-module.

Let q € R;, x € A, and f € A*. We define (qx)(f) = qf(x). Since M-1 c1-! and
f(x) € 1, it follows that qf(x) € R. Thus gx € A**. Since R is a reflexive ring, we
have that A¥ = A and hence gx € A. Therefore, we haye defined an operation of
R, on A, extendmg that of R; in other words, A is an R|-module.

Using the chain of rings RC R} C R, C --- C R,, C *-* established in part (d), we
repeat our procedure and see that A is an R,-module, for each n. If the chain
terminates at R, then R is a principal ideal domain, and A decomposes. This
contradiction shows that the chain does not terminate.

Let S= U:zo R,; then S is a ring, and S is not finitely generated as an R-
module. Furthermore, A is an S-module by the preceding remarks. Let x # 0 € A;
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then Sx C A, and Sx is an R-submodule of A isomorphic to S. But every R-
submodule of A is finitely generated. This contradiction shows that A is not inde-
composable, and (3) is established.

This concludes the proof of the theorem.

COROLLARY 1. Let R be a Noethevian integval domain. Then the following
two conditions are equivalent:

(1) Every ideal of R can be genevated by two elements.

(2) R is a Gorenstein ving of dimension 1; and if M is a maximal ideal of R,
then either M is projective or M- is a Gorenstein ving of dimension 1.

Proof. An examination of the proof of the implication (2) => (1) of the theorem
shows that the only place where we needed to know that every finitely generated ring
extension of R is reflexive was in the proof that R was Noetherian.

COROLLARY 2. Let R be a Noetherian domain such that every ideal of R can
be generated by two elements. Lel 1 be an ideal of R. Then there exists a finitely
genevated ving extension R' of R in Q such that 1 is a projective ideal of R'. (If R
is local, then 1 is a principal ideal of R'.)

Proof. Using the techniques of localization employed in the initial part of the
theorem, we can assume without loss of generality that R is a local ring. Let

RCRycCcRpcCc "CR,C

be the chain of rings established in part (d) of the theorem. If I is not a principal

ideal of R, for some n, then I is an ideal of S = U:; 1 Ry and the chain does not
terminate. Let x # 0 € I; then Sx is an ideal of R that is isomorphic to S. Since S
is not finitely generated, this contradiction shows that I is a principal ideal of Ry,
for some n.

Remarks. (1) One can show, using the techniques of the theorem, that a partial
converse of Corollary 2 is true; namely that if R is a Noetherian local domain of
Krull dimension 1 such that each ideal of R is a principal ideal of some finitely
generated ring extension of R in Q, then the number of elements required to gen-
erate an ideal of R is bounded by the minimal number of generators of the maximal
ideal of R. I do not know if, in fact, this number is two; that is, whether this is
another characterization of the two-generator property.

(2) Let R be a Noetherian local domain such that every ideal of R can be gen-

erated by two elements. Let S = Uolf:o R, be the ring established in part (d) of the
theorem. Then S is a principal ideal domain, and if the chain does not terminate,
then S is a discrete valuation ring. For if the chain terminates at n, then S=R, is
a principal ideal domain, as we have seen. Hence suppose that the chain does not
terminate. Then S is a local ring with principal maximal ideal Sa, as can readily
be seen from part (a) of the theorem. It follows from Corollary 2 that every finitely
generated ideal of S is principal. But this forces S to be a valuation ring. Thus

nn Sa™ is a prime ideal of S whose intersection with R is zero, and hence
ﬂn Sa™= 0. It follows that S is a discrete valuation ring.

In all cases, S is integral over R and is integrally closed. Thus S is the inte-
gral closure of R. It now follows from [8, Cor. 7.5] that there is a decomposable
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factor module of Q if and only if the integral closure of R is a finitely generated
principal ideal domain with exactly two primes.

(3) Let R be a Noetherian integral domain. It is easy to see that if the integral
closure of R is a finitely generated R-module, or if R is a semilocal ring, then the
conditions of the theorem are equivalent to the condition that R has property FD. It
is an open question whether this is true in general; in other words, whether R has
property FD if and only if R has property FD locally.
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