BACKWARD LOWER BOUNDS FOR SOLUTIONS
OF MIXED PARABOLIC PROBLEMS

A. E. Hurd

1. A number of recent papers dealt with lower bounds for solutions of abstract
first-order differential inequalities in Hilbert space, with applications to parabolic
problems. P. J. Cohen and M. Lees [4] investigated an inequality of the form

d—u—Au

it < o) ul,

(1)

and assuming that A is symmetric and ¢(t) € Lp(O, «) they proved that

|ut)| > Ke Kt for some constants K and y. In [2], S. Agmon and L. Nirenberg
improved these results. Agmon [1] then developed a unified approach to the con-
vexity methods that made their debut in [2], and he made it possible to treat equa-
tions of the form (1), where A(t) satisfies rather weak conditions and, in particular,
need not be self-adjoint.

One problem, which was pointed out by J.-L. Lions and B. Malgrange [6], is that
Agmon’s results do not apply to parabolic problems with lower-order terms whose
order exceeds half the order of the elliptic operator corresponding to A(t). How-
ever, A. Friedman [5] established a forward uniqueness theorem for equations of the
form

Tat " At)u
where 7 is sufficiently small, which in applications placed no restriction on the
lower-order terms. Friedman also obtained a “uniqueness at -«” result for such

equations,

< la®ul +K Ju],

This paper is devoted to generalizations of Friedman’s latter results. We ob-
tain backward lower bounds in a higher norm for solutions of abstract equations in
Hilbert space. In the applications to parabolic problems, the norm can be taken to
be that in the Sobolev space H™(R2), where 2m is the order of the equation. Our as-
sumptions about the equation and its solution are in most respects less restrictive
than those imposed by Friedman. In particular, we need not suppose that the resol-
vent of A(t) exists.

2. Let H denote a complex Hilbert space with norm [ . | and inner product
(-, -). We study H-valued functions u(t) that satisfy the vector differential equation

(3) M+ AW = 1(t, w)

almost everywhere in (a, b). Here the H-valued function du/dt, defined almost
everywhere on (a, b), denotes the derivative of u(t) in the distribution sense of [7],
and, for almost all t € (a, b), we require that u(t) lie in the domain @ (t) of the (in
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98 A. E. HURD
general unbounded) operator A(t). The H-valued function f(t, u) is subject to an in-
equality to be presented shortly.

We suppose that it is possible to write
A(t) = Ap(t) + Aj(t)
for almost all t € (a, b), where Ag(t) and A(t) both have domain @(t), and we re-
quire that the following five conditions are satisfied.
I. R(A,(t)ult), ult) = 0.

II. There exists a nonnegative, differentiable function A(t) on (a, b) such that

R(Ag(t)ult), ult)) + ) |ut)|? > o,
whenever u(t) # 0.
TII. |A ) ult)|? < K(g, t, u, Ag),
where

K(e, t, u, Ag) = ¢ |Ag(t)ult)|® +K@E)[] %t (Agu(t), u®)| + |u(t)|?],

K(t) is locally integrable on (a, b), and € is a nonnegative constant not exceeding
1/5.

So far, we have made no assumptions on the regularity of A(t) as a function of t
and very weak assumptions on u(t). Some such assumptions have proved unavoidable
in previous work, and we state our version in the following condition.

IV. The functions |u(1:)[2 and 9(Ag(t)ult), u(t)) are absolutely continuous, and
for almost all t € (a, b), we have the relation

dit ut)]? = 2 m(u(t),g—;l).

Moreov er, puttmg
— R (A (t)u(t) ’Ll(t)) -9 (A (t) u(t) TS ) = af (t u(t))
dt ' 0 ? ' 0 > dt 0%

whenever the derivatives are defined, we obtain the inequality
lag(t; ult))| < K, t, u, Ag).
V. |£(t, ut)|? < K(e, t, u, Ag).

These conditions should be compared with the corresponding ones in [1] and [6].
The weak condition II replaces the ellipticity condition in [6]. Concerning the regu-
larity assumption IV, one can show that (in the notation of [6]) if u(t) € L%(a, b; V)
and if u(t) has a distribution derivative in LZ(a, b; V), then ”u(t) ”2 belongs to the
Sobolev space Wl.l(a, b) and, hence, is absolutely continuous (as is |u(t)[2). If
N ao(t; u, v) is absolutely continuous in t for fixed u, v € V and if it has a uni-
formly bounded derivative almost everywhere, then ag(t; v(t)) is absolutely con-
tinuous.

Assuming the five conditions above, we can prove the following theorem.
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THEOREM 1. Suppose u(t) is a solution of (3) on (a, b), and let

p(t) = % (Ag(t)ult), ult)) + w(t) [u(t)]?,

99

where w(t) = At) +n(t) for some positivé, differentiable function n(t) whose inverse

and derivative are locally integrable. If u(t) #0 on (1, d) C (a, b), then

d
p(7) > p(d)exp (- S M(t)dt) ,
T

where

M(t) = 5(1 +n(t)"1) max {K(t) + 2e w(t), (w(t) + 1)K(t) + € [w(t)]? + ' ()} +2w(t).

Proof. From II, we obtain the inequality
(4) R (Aglt)ult), ul®) + () [u®)]* > n(t) ju®)|?,

t
where w(t) = A(t) + n(t). If we substitute u(t) = eg(t)v(t), where Qf(t) = S w(s)ds,
d
then v(t) satisfies the condition

dv _
@ + B(t)v = g(t, v),

where B(t) = A(t) + w(t) and g(t, v) = e=2Mt)f(t, () y(t)). Put By(t) = Aglt) + wl(t)
and B;(t) = A;(t). Then, from I, we obtain the relation

(5) % (B1(t)v(t), v(t)) = 0,
and II yields the inequality
(6) % (Bo(t) v(t), v(t)) > n(t)|v(t)|*.

From our assumptions, we obtain after some calculation the following inequalities
(for convenience, we suppress the variable t):

(7a) |B1v|? < Ky, t, v, Bo),
(o) byt v < Ky(e, ¢, v, By,
and
(c) lg(t, v)|? < Ki(g, t, v, By),
where
1 d 1 " dv
bolt; v) = it R(Bov, v) - 2% (Bov, a?),

Ky, t, v, Bg) = & |Bov|2 +K (1) [ % (Bgv, v) + |v|?,
and

K;(t) = max {K(t) + 2ew(t), (w(t) + 1)KE) + € [w®)]? + w'®)} .
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Now let B(t) = % (By(t)v(t), v(t)). Then

log p(d) = log P(7) +S 28 dt,

where

dv
»dt

q) = < SL(BOV v) = bh(t; v) + 2 9‘(Bov

b(t; v) +2 % (Bov, g) - 2|Bov|% - 2% (Bov, By v).
The relation
|B0v+B1v - g|2 = |B0v|2+ IBlvlz + |g|2+2 % (Bov, Byv)

-2% (Bov, g -2%(Byv, g)
implies that
at) = -|Bgv+B;v - g|? - |Byv]|? +r(t),
where

rt) = |B,v|?+|g|?- 2% (B,v, g)+bylt; v).
Using inequalities (7), we see that

|x(t)| < 5¢|Byv|? + Blt)L(t),
where
L(t) = 5K;(t)(1 +7(t)"1).
Now
- - d |B0v|2 d|B01v+B1v—g|2
log B(d) < log §(7) - (1 - 5¢) 51— W dt - ST 50

dt + X L(t) dt
T

d
< log 5(7)+‘S‘ L(t)dt;
T

hence

d
B(r) > ﬁ(d)exp(—S L(t)dt).
T

But () = e"2S4t) p(t), so that

d
p(r) > p(d)exp(-j M(t)dt).
T

This completes the proof.

As a corollary, we obtain the following uniqueness theorem.
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COROLLARY. If

d
lim sup p(7)exp (S M(t)dt) =0,
T

7 —at

then u(t) =0 for a <t <d.
With a = -, the corollary should be compared with Theorem 3 in [5].

The translation of mixed problems for parabolic equations into the abstract
framework of Theorem 1 is standard. For example, consider the equation

%1-4— A(x, t; D)u = B(x, t; u)

on the cylinder @ X (a, b), where Q is a bounded domain in E”, and  and # are
differential operators on £ whose coefficients depend on x = (xy, -+, x,) and t.
We assume that .« is elliptic of order 2m and that the order of # is less than 2m.
If we require the solutions u(x, t) to satisfy certain null boundary conditions for
each t, then we may consider the more general problem

(8) -gTu-I—A(t)u = B(t)u,

where the unbounded operators A(t) and B(t) are defined on some subspace ®(t) of
the Sobolev space Hzm(ﬂ), which is determined by the boundary conditions. For our
purposes, it is not necessary that the subspaces ®(t) are closed or dense in
H2m(Q), or even that there exists some relationship between the spaces ®(t) as t
varies. In fact, it is relatively easy to check that conditions I to V are satisfied, and
this avoids the resolvent questions associated with the assumptions made in [5] We
may suppose that Ag(t) = A(t) and A;(t) = 0, so that I and Il hold. Condition II is
much weaker than the corresponding assumption

(9) ®(Agu, W) +x(t) [u]? > at) |ulln

in [6], and the ellipticity of A(t) assures inequality (9). Condition IV will hold if the
coefficients of A(t) satisfy rather mild regularity conditions as functions of t (see
(ii) below). To establish condition V, we start with the inequality

(10) A ) u] < k@) [ullzm- s

where k(t) is a function associated with the maximum norm of the coefficients.
Ehrling’s Lemma implies that for each € > 0, there exists a constant K such that

lu®om-1 < € lu®)|2m +X][ulo,

and finally the standard ellipticity estimates due to Agmon, Douglis, and Nirenberg
[3] yield the inequality

(11) a2 < CO (Ao u®)]o + [[ut)]o)-

Consequently, condition V holds if C(t) is uniformly bounded in t.
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Applying Theorem 1 to (8), we obtain a generalization of Theorem 5 in [5]. As a
particular example that can easily be compared with the results in [5], we make the
following assumptions:

(i) The ellipticity of the operator (x, t; D) is uniformly bounded in t. This
means that the coefficients of #(x, t; D) are smooth enough to ensure that the esti-
mates (9) and (11) are valid, and the functions A(t), A'(t), and C(t) are uniformly
bounded in t.

(ii) The coefficients of the leading coefficients in «(x, t; D) are differentiable
in t and have uniformly bounded derivatives. This guarantees that condition IV is
satisfied.

(iii) The coefficients of #(x, t; D) are uniformly bounded in t (so that condition
V is satisfied).

Under these assumptions, we obtain the following result.
THEOREM 2. There exist constants M and K such that

lim sup ”u('r)”me-MT >K.
T—a

This result strengthens Theorem 5 in [5], where Friedman shows that solutions
u that satisfy the condition

lim  [u(7)|,,,e*7 =0

T — =00

for all ¢ > 0 must be identically zero. Theorem 2 shows that 2m can be replaced
by m in Friedman’s result. He states that, under additional assumptions which we
have not made, 2m can be replaced by some j (j < 2m).
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