COBORDISM AND BUNDLES OVER SPHERES
R. L.. W. Brown

1. INTRODUCTION

P. E. Conner and E. E. Floyd [3] have determined When a (smooth, closed) mani-
fold is cobordant modulo 2 to a bundle over the 1-sphere Sl. If w; is the ith
Stiefel-Whitney class of M™ and o, is the modulo-2 fundamental class, then Mm"
cobordant to a bundle over S! if and only if the Stiefel- Whitney number <wn, n)

vanishes. We study the analogous question for bundles over S%. Let

{ Wn, on) (n even),
c(MP) = |
(W2'Wn.2,0,) (n odd).

THEOREM 1. If M" is cobordant to a bundle ovey S2 then cMm™) =0. If
C(M™) = 0, then M™ is cobordant to a connected bundle over S2 with group U(1).

This answers in the negative the question of Conner [2, end of paper] whether the
generator of the oriented cobordism group 5 = Z can be represented by a bundle
over S2. However, we do not know the complete oriented analogue of Theorem 1.

According to Corollary 6.2 of [3], the square of a bundle over S! is cobordant to
a bundle over S2. We prove a generalization and an analogue of this result.

COROLLARY 1. The product of two bundles over S! is cobordant to a bundle
over S2,

THEOREM 2. The squave of a bundle over S2 is cobordant to a bundle over S4

In Section 2, we derive some necessary conditions for a manifold to be a bundle
over SX (k > 0) by applying the theorem of E. H. Brown and F. P. Peterson [1, Sec-
tion 1] on relations among characteristic classes to the f1ber of the bundle. In
Section 3, we construct some bundles over S2 S4 and S8 ; and in Section 4, we
show that we have enough bundles over S2 to generate the kernel of the character
C: M, — Zz, where f, denotes the unoriented cobordism ring. In Section 5, we
show how to make our bundles connected, and in Section 6 we prove Theorem 2.

An optimistic conjecture is that the necessary conditions derived from Proposi-
tion 2.1 are sufficient for a manifold to be cobordant to a bundle over SK for
k -[1, 2, 4, 8. (They are, for k =1, 2.) For other values of k, see Theorem 8.1
of [3].

2. NECESSARY CONDITIONS

Let k > 0 and n >k, and let M" be a bundle over sk with projection
p: M — SX and fiber F. The tangent bundle of M™ decomposes as a direct sum
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TMP = p*7SK@ 7F,

where T:F is a bundle over M® whose restriction to each fiber is 7F. Because
w(78%) = 1, it follows that

wiM®) =0 (m-k<i<n).

Let 7 M™ — BO classify the stable tangent bundle of M", and let the modulo-2
Steenrod algebra A act on the left of H*(BO) and H*(M™) as in [1]. (All our homol-
ogy is modulo 2.)

PROPOSITION 2.1. 717Sq*(H5(BO)Sq%) = 0, if r >s+t -k and 2t >n - s - k.
Proof, Let j: F — M be the inclusion of the fiber. Then

i*wM) = i*w(TF) = w(F),

and hence j*73;=7%. Let u € H5(BO)Sqt. Then 7%u=0, by [1], because
2t >n-k-s=dim F-s. Thus j*73;u =0, and we can pull back 7;u to a class
v € HS'Y (M, F). Now it suffices to show that Sq* v = 0.

Let Dl_ﬁ and le denote the northern and southern hemispheres of sk. Since the
bundle is trivial over a hemisphere, we have the relations

H*(M, F) 2 H*M, Fx DY) 2 H*(F x DX, Fx s5°!) 2 g*(F)® H* D, s*71).

Let x;. generate Hk(le, Sk'l), and suppose that v is y@ X under this isomor-
phism. Then

Sq¥v = SaT(yR x3) = (A" y) X x4 = 0,

because r > s+t -k =dimy. -

COROLLARY 2.2. If M™ is a bundle over S% and n=2t or n= 2t + 1, then
“W2t=0 and Wot-1 =0, . .

Proof. Take k = 2 and s = 0 in Proposition 2.1. Then, because the ith Wu class
v; of M" is 7"1{/[(1)Sq1, we see by Proposition 2.1 that Sqt-1 v, =0 and Sqtv, = 0.
Now

Wi = Vi+ Sqlvi_l + “°y,

and by [1], v;=0 for j > t; therefore

-

t-1
WZt:Stht=0: Wat.1 =8q  "vg = 0.

Remark 2.3. From Corollary 2.2 we deduce that if M" is cobordant to a bundle
over S2, then certain Stiefel-Whitney numbers must vanish, namely those corre-
sponding to wy,, w; -wn.] for even n and to wn, W1 *Wn-1, W] *Wn_2, W2 Wn-2 for
odd n. Moreover, if we compute some relations among Stiefel-Whitney classes,
using [1], we see that the conditions of Theorem 1 imply those above. In fact, if n is

even, then w; -wy,_] = n é 3) wp; and if n is odd, then w, =0, wy-wn_1 =0,
w% ‘w,_, =0.

n-—
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3. SOME BUNDLES OVER S%, s, AND g8

Let k be 2, 4, or 8, in this section. There exists a real k-plane bundle 7 over
Sk such that w(n) = 1 + x, where x generates HX(SX). (Take 7 to be the underlying
real bundle of the complex, quaternion, or Cayley line bundles, according as
k=24, or 8.)

 Definition 3.1. Let PP'K = RP(n @ (m+1 - k)R), for m >k - 1.
Note that Pf{‘f“rk is a bundle over S¥ whose fiber is real projective m-space P™,

PROPOSITION 3.2. If m is even, then the cobordism class of P{{n‘*k is an in-
decomposable element of N .

Proof. The cohomology ring of Pfj”k is a free H*(S¥)-module with basis
1, c, =+, ¢c™, where ¢ € H{(P™*K) and with the defining relation ¢™*! = xemtl-k,

The total Stiefel-Whitney class of P ig
w(PPE) = (1+0)™ 4 x(1 + )™ = 1 e)™ A+ +x)

(the latter because (1 +c)k =1+ ck; see Section 2 of [3]).
To factor w(P[**X) into linear factors, we let
k
1+ck+x= I (1+1y).

i=1
Then it is sufficient to prove that the Stiefel-Whitney class

k
s (PER) = (m+1 - k)™ 4 25 ¢t
i=1
+k
t"

k
is nonzero. If we expand Ei:l in the elementary symmetric functions of the

k
t;, we see that 275, tPK =0, Because ¢™'K = xc™ # 0, we see that

m+k

Smik(Px ) = (m+1-k)xc™,

and this is nonzero for even m. Hence P{éﬂk is indecomposable for even m.

We now have some even-dimensional generators of %, that are bundles over Sk,
and we define some odd-dimensional generators as follows. Consider the bundle
n X 7P over SKx P,

Definition 3.3. Let P (m, n) be RP(nX 7P"@® (m+1 - k)R), for m >k - 1.

Note that P, (m, n) is a bundle over SK X P™ with fiber P™*" and that the pro-
jection of this bundle composed with the projection on S¥ makes Py (m, n) into a
bundle over Sk.

PROPOSITION 3.4. Py(m, n) is indecomposable if and only if n is even and

(m+k+n—

N 1) = 1 (mod 2).
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Proof. We know that H*(Py(m, n)) is a free H*(Sk)® H*(P™)-module on
1, ¢, -+, ™0 with defining relation

m+n
emtntl — 37 mintl-i

i=1

uj,

where u=1+u; + = (1 +x)(1 +a)*! with @ € H(P™). This relation may be
written as

(1) e Xk 4 3y +a)! = 0.

Multiplying (1) by x, we find that

(2) xe™(c + o) = 0,

because x2 = 0; multiplying (1) by c¥ and applying (2), we obtain the equation
(3) etk 4 gptl = g,

Now w(Py(m, n)) = (1 + a1+ eymk(1 + ek 4+ x)(1 + ¢ + a)t! , and hence, after
factoring 1 + ck + x into linear factors, we can write down S, 1xs2n(Px(m, n)). The
first term (n + 1)a™tkt2n jg zero, because a™"l = 0, The second term is zero, as
we see by applying (3) to ¢™tk+en - emik(e | o 4 3)20 The third term correspond-
ing to 1 + ck + x is zero, as in Proposition 3.2. Applying (3) to

(c +a)m+k+n~l(c + a)n+1’
we see that

(c+a)m+k+2n — <m+k:n" l)cm+k+nan - (m'*'k:n - 1)Cm+nxan.

Because c™xg™ z 0 and the last term is (n + 1)(c + oz)m+k+2n, the proposition
follows.

4. SUFFICIENCY FOR §%

The ring M, is a polynomial algebra over Z, with one generator in each di-
mension not of the form 2% - 1, Take k = 2, in Section 3. By Proposition 3.2, we
have generators that are bundles over S2 in all even dimensions greater than two.

If n is odd and is not of the form 2% - 1, then n can be written uniquely in the form
2P(2q +1) - 1 with p>0 and q > 0. For p>1 and q > 0, the n-manifold

P,(2P - 3, 2Pq) is indecomposable, by Proposition 3.4. Let p = 1, so that n = 4q + 1.
For q > 1, the n-manifold P,(4q - 5, 2) is indecomposable, by Proposition 3.4. This
covers all required odd dimensions except 5. Furthermore, the square of the five-
dimensional generator is cobordant to a bundle over S2 py [3, Corollary 6.2]. Thus,
for each x € %, (n > 2), we can write x uniquely as

X = y+rxi2x%,

where y can be represented by a bundle over S2 (r € Z,, i=0,1,2, -, £¢=0 or
€ =1, and 2i + 5¢ = n). Direct computation shows that C(x}x%) # 0, and hence
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C(x) =r. Thus, if C(x) =0, then x =y. This proves Theorem 1 except for the
connectivity assertion.

To prove Corollary 1, let M™ and N™ be bundles over S!. Then
WninM™ X N?) = w (MM woN?) = 0® 0 = 0,
W2  Wenin-2(MPXN?) = w1 wm-1(M™) @ wi-wn-1(N").

If m +n is even, the first formula proves the result. If m + n is odd, then, say, m
is odd. By Remark 2.3, w] - Wy, (M™) = 0, and the result follows.

5. CONNECTED SUMS OF BUNDLES

Suppose M} and M3 are bundles over a manifold B with fibers F; and F;.
Suppose there exist sections s;;: B — M} (i = 1, 2) such that the normal bundles vj
of s.(B) in M} (i =1, 2) are isomorphic.

LEMMA 5.1. There exists a bundle M over B whose fiber is the connected sum
F, # F, and such that

(i) M is cobordant to the disjoint union M} + M,

(ii) if v; has a nonvanishing section, then therve exists a section s: B — M such
that the normal bundle of s(B) in M is isomovrphic to v, and v, .

Proof. Let E(v;) be the total space of v;, realized as a small open subbundle
neighbourhood of s;(B) in M;. Then M; - E(»;) is a manifold whose boundary is the
sphere bundle S(v;). Form M from

M; - E(v1)U S(v1)XIU M3 - E(v2)

by identifying 2(M; - E(v;)) with S(v;) x {0} and a(M;, - E(v})) with S(v;)x {1}.
Then M is a bundle over B with fiber F; # F,.

Let D be the closed-disc bundle of E(vl ). We can form a manifold W from
M; XIUM,XIUDXI

by identifying the closure of E(v;)Xx {1} with D x {0} and the closure of
E(v,) x {1} with Dx {1}. Then

dW = M; UM, UM,
and this proves (i). If E(v;) has a nonvanishing section, we can move the section s,

over into M; - E(v) and thus obtain a section of M, as in (ii).

Consider now Pr2n+2 . If m > 1, there exists a section s: §% — P’szrz with nor-
mal bundle v =5 & (m - 2)R. Similarly, if m > 1, there exists a section
s: §2 — P,(m, n) with normal bundle v =7 & (m - 2 + 2n)R. However, if we regard
P5(m, n) as a bundle over S2 x P™ and take its restriction to S2 X pt, we obtain a
bundle over S2 that has a section with normal bundle

v=np®m-2+2n)R (m>1),

and this implies that the restriction m > 1 can be replaced by m > 1 for P(m, n).
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The remaining generator of the kernel of the character C is x % . We now give
an explicit representative manifold. Let £ be the nontrivial line bundle over S!. It
is easily verified that RP(£ X TP2) represents xX5. Applying the method in the proof

of Proposition 6.2, we see that CP(n (P 7CP?) represents x% . There exists a sec-
tion of s: S2 — CP(n () 7CP?) with normal bundle v =7 @ 6R.

A product of a generator with another manifold has a section over S% with nor-
mal bundle of the form 7 (DkR. When we start connecting these bundles (using
Lemma 5.1), we see that the hypothesis of (ii) is always satisfied, except in dimen-
sion four, where the normal bundle of the section of P‘zl is . Hence, in dimensions

greater than four, we can obtain a connected bundle over S2. Since x 4 1s the only
nonzero element of ker C in dimension four and Pg is connected, the proof is com-
plete.

6. SQUARES OF BUNDLES OVER S2

In this section, we prove Theorem 2 by complexifying the generators in Section 3.
Let 7% be the quaternion line bundle over S4, considered now as a complex bundle of
dimension two.

Definition 6.1. Let CPP"2 be CP(j ® (m - 1)C), for m > 1.

Then CPE“JrZ is a bundle over S* whose fiber is the complex projective m-
space CP™, Itis a (2m + 4)-manifold.

PROPOSITION 6.2. CPY2 is cobordant to PP2 x P2,

Pyroof, The cohomology and Stiefel- Whitney classes of CP:‘;_“Jr2 are the same as
those of P§n+2 , except that all dimensions are doubled (see [3, Section 2]). But for
each M, the nonzero Stiefel-Whitney numbers of M X M are obtainable from those of
M by doubling dimensions. Hence CP3'2 and P3*2 x PF**2 have the same Stiefel-
Whitney numbers, and they are cobordant.

Definition 6.3. Let CP,(m, n) be CP(f X 7TCP*@ (m - 1)C) (m > 1).
PROPOSITION 6.4. CP,(m, n) is cobovdant to P,(m, n) X P,(m, n).
Pyroof. The argument of 6.2 again applies.

The kernel of C: %, — Z, is generated by x%, X4, X6, X8, X9, ***, and hence
the ideal generated by the squares of elements in the kernel of C is generated by
xg, xi, X?,, ---. By [3], we can represent x‘é by a bundle over S*, and by Proposi-
tions 6.2 and 6.4, we can represent the remaining generators by bundles over S4.

This proves Theorem 2.
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