ON CONSISTENCY WITH RESPECT TO FUNCTIONALS
OF ¢ - { TRANSFORMATIONS

G. E. Peterson

1. INTRODUCTION

Let ¢ denote the space of absolutely convergent series of complex numbers.
Many theorems concerning ¢ - ¢ methods of summation are stated relative to the
natural lineay functional o € (', that is, the complex-valued functional defined by

o(x) = Z)n X, for every x € {. For example, H. I. Brown and V. F. Cowling have
proved a theorem [1, Theorem 3] relating the concepts of perfectness and consist-
ency (with respect to ¢). One may ask what happens to these theorems if the natural
linear functional is replaced by an arbitrary linear functional. The present research
grew out of an attempt to answer this question as it pertains to the theorem of Brown
and Cowling.

Let s denote a space of sequences, and let A and B denote matrices that repre-
sent mappings from s into £; in other words, let A and B represent s - £ trans-
formations. If F € ¢', we say that A and B are F-consistent on s provided
F(Ax) = F(Bx) for each x € s. If A is an ¢ - ¢ transformation, we say that F-con-
sistency is extendable from { to {, (see [1] and [3] for notation not defined here)
provided A and B are F-consistent on {, whenever B is an 2 - ¢ method that is
F-consistent with A on £ and satisfies the condition £5 > £, . Brown and Cowling :
proved [1, Theorem 3] that o-consistency is extendable from ¢ to (p if and only if .
A is perfect. We show (see Theorems 3, 4, and 5) that this result extends to a func-

tional F € ¢' if and only if F _has the representation F(x) = Z) h, x,, where

h ¢ cg. We are then able to define a class of transformations that is included in the,
class of £ - ¢ transformations as a proper subset but includes the perfect trans-
formations as a proper subset (Theorem 7). In the process of proving théese theo-
rems, we establish some other results. For example, Theorem C gives netessary
and sufficient conditions for A to map the space of absolutely convergent sequences. .
into ¢, and Theorem 1 is a generalization of the lemma of [1].

2. MATRIX TRANSFORMATIONS OF SEQUENCE SPACES

x

‘Let E” (respectlvely, ac, cg, C, m) denote the space cons1st1ng of -all complex 1
sequences X = {x,| such that X, = =0 for all but finitely many n (respectively, such

that En |xn - xn+1| <o, lim, x, =0, hmn Xn emsts, supn IXnI <), If sisa
sequence space and A = (a_;) is an infinite matrix, then s, denotes the space of all

sequences x such that Ax = Z)k ank xk} ¢ s, If .'s; and s -are sequencé spaces,
we say that A defines an s; - s, transiormation if and only if Ax € s, for every

X € 1. The unit sequences ek -are defined by the’ equatlons (e ) = 8, - The dual
of the FK-space s is denoted by s'.

THEOREM A [2, p. 29]. The matrix A defines an { - ¢ tfmnsformatzon if and
only if
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sup |apg| <~ and  lim ay exists for each k.
n,k n

If these conditions are satisfied, then lim Ek a XK = Ek lim, a,; X} for every
X € L.

THEOREM B [2, p. 21]. The matrix A defines a Cg - ¢ transformation if and
only if

sup 27 Iankl < e and lim ay; exists for each k.
n k n

If these conditions are satisfied, then lim, Ek Apk Xk = Ek lim,, apK Xy for every
X€Co.
THEOREM C. The matrix B defines an ac - { tvansformation if and only if

o0 [eo]
sup 2% I Ebnkl < o,
j n=1 k=j
Proof. Let x € ac and y € £ be related by the equation yy = x) - xp_ (x¢ = 0),
ite o . Z)m Z\m e

and write Zsy _; b Xy in rflhe form Zs;, ¥j “4k=j bnk- An application of
Theorem A with a ;= Ek:j b,k shows that Ek b exists for each n and that
(Bx), = E;l ¥j Eoﬁ:j bhk. Thus, B defines an ac - ¢ transformation if and only if

the matrix D given by dpj = E:zj b,k defines an ¢ - ¢ transformation. The result
now follows from a theorem due to Knopp, Lorentz, and Mears [1, p. 357].

3. THEOREMS ABOUT FUNCTIONALS

THEOREM 1. Let F € {' have the vepresentation F(x) = 2_h_x, (h € m but
h ¢ cqy). Let A bean £ -4 transformation, and let f € 0. Then theve exists a
transformation B such that gD L and F(Bx) = £(x) for all x € 0,.

Our proof is similar to the proof of the lemma in [1], which is the special case
F = o of this theorem.

Proof. Since h ¢ cg, there exist an increasing sequence ji= {j(n)} of integers
and a number 6 such that lhj(n) IZ 6> 0 for every n. If b, = 1/hj(n), then b € m.
Let f € £ ; then

f(X) = Z) tn E‘ankxk+ Eakxk
n k k

for some t, a € m [1, p. 358, equation (4)]. Define
b2 ™ a +ta,,y) (n=j(m)),
0 (n ¢ {i(m)}).

For x € £ 5 we have the relations

bnk -
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2| (Bx),| = Z |§bj(n),kxk| = E)!Ek(bnz'“ et Dt 2 )

nn nkX
< Db l2 |2 akxk| + 27 b t_| |Eankxk| < e,
n k n k

Thus 5D £ 5. Similarly, for every x € £,,

F(BX) = Eh Ebnkxk Eh (n) Eb (2 ax +t ank)xk

212, 2™ + 27 2 toa X = 27 aj X + 27 Z:tnankxk = f(x).
n k k

n k k n
The theorem is proved.
We shall now show that the restriction h ¢ ¢y cannot be omitted in Theorem 1.
THEOREM 2. Let F € {' have the representation F(x) = 22, hyx, (h € cg).
Then theve exist an { - { trvansformation A and an f € '\ such that no trvansforma-

tion B satisfies the two conditions (gD  p and F(Bx) ={(x) forall x € 5. In
fact, no B satisfies the weakey conditions gD L, and F(Bx) = {(x) for all x € {.

Proof. Consider the matrix

By the theorem of Knopp, Lorentz, and Mears, A is an ¢ - ¢ method, and we can
easily verify that the sequence {2k} belongs to £, . For every x € £4, define f by

the formula f(x) = E Ek a,k Xk - By using the closure theorem of Banach and .
Steinhaus [3, p. 225], we can easily show that f € £, . Now suppose there is a method

B such that {g D £, and F(Bx) = f(x) for all x € £. Then Z)k bnkzk exists for
every n, since £ D ¢, . This implies that limy b, ; 2K = 0 and hence

(1) limb,; = 0 for every n.
k

Upon applying the relation F(Bx) = f(x) to the sequences x = ek, we obtain the rela-
tion

(2) 27 h b= 2ray =1 for every k.

n n
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Furthermore, since B is an ( - ¢ method,

(3) sup 27 |b | < .
k n

By (1) and (3), Bt (the transposé of B)is a cg - ¢ method. But this contradicts (2),
which says that B' maps h € ¢, into {1} ¢ c,.

4. THE MAIN THEOREMS

THEOREM 3. If A is perfect, then F-consistency is extendable from ( to
for every F € (',

THEOREM 4, Let A bean { - ¢ transformation, and let F € (' have the vepre-

sentation F(x) = Z\n h x, (h € m but h ¢ cg). If F-consistency is extendable from
£ to Lp, then A is perfect.

These theorems generalize the sufficient conditions and the necessary conditions
in Theorem 3 of [1]. The proofs are trivial modifications of the proof of [1, Theo-
rem 3], and we omit them. In the proof of Theorem 4, our Theorem 1 takes the place
of the lemma of [1].

We shall now show that the restriction h € ¢y cannot be omitted in Theorem 4.
THEOREM 5. Let F € ' have the vepresentation F(x) = 22, h,x, (h € ¢g).

Then there exists an { - { lransformation A that is not perfect but for which F-con-
sistency is extendable from £ to Lp .

The proof of Theorem 5 is based on Theorem 6.
THEOREM 6. If the malvix B defines an ac - { lvansformation and F € ' has

the rvepresentation F(x) = En h x  (h € cg), then

F(BX) = E Xk 2 hnbnk -
k n §

for every x € ac.

Proof. Suppose x € ac, and let yy = Xy - Xx_;. First we shall show that the
matrix C = (cjn), given by

j
Cjn = 20 bpkXg,
k=1

defines a c( - ¢ transformation. It is clear that lim; c;,, exists for every n.
Furthermore, by Theorem C,

© 1 J J J © | 0
2 lejnl = 20 | 20y Zbng| < 20 [y 20 | Zbpi- 2 by <M< o,
n n=1 |k=1 = i=k k=1 n=1 |iz=k i=j+1

where the constant M does not depend on j. Thus C defines a ¢ - ¢ transforma-
tion. By Theorem B,
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E Xk E hnbnk
k n

j n n
Proof of Theorvem 5. The matrix
1 0 o0
-1 1 0
A = 0o -1 1
0 0 -1

= lim 2 hye;, = 2 h lime

J

jn

285

= 231%;3? b, % = F(Bx).
n

-

defines an ¢ - £ method, which is not perfect, because A is reversible but is not of

type M* [1, Theorem 2]. (The sequence {1} is a left annihilator of A.) Suppose B
is a matrix such that gD ¢, and F(Bx) = F(Ax) on (. By applying the latter rela-
tion to the unit sequence x = ek, we find that

§ hnbnk = ? hnank for every k.

Since ¢, = ac, both A and B define ac - ¢ transformations. By Theorem 6,

F(Bx) = 2y x. 20,h by = 24y %, 27 h_a_; = F(Ax) for every x € 24 .. Thus
F-consistency is extendable from £ to £, . This completes the proof of Theorem 5.

Not every { - £ method has the property in Theorem 5. That is, there exist an

£ - £ method A and an F € (' with the representation F(x) = Z}n hpx, (h € cg)
such that F-consistency is not extendable from ¢ to £, . For example, let A be the

matrix used in the proof of Theorem 2, let

8! 82
272 0 0

B=| 0 27 9
0 0 -2

« 1
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has the same summability field as A (that is, £c = £,), and C has the right inverse
[ 1/2 1/4 1/8 1/16 ]
0 /2 1/4 1/8
D=| 0 0o 1/2 1/4

0 0 0 1/2

Since D defines an ¢ - ¢ transformation, it follows as in [3, p. 4, Problems 20 and
21] that 0c = 0@ {2K}. Thus ¢, = ¢@ {2k}. Furthermore, {2k} € ¢y, and
hence {5 D £, . Now

2 2'nank =2 2'nbnk = 0 for every k.
n n

Therefore F(Ax) = F(Bx) for every x € £. However, F(A{2k})=-1 and
F(B{ Zk}) = 0. Thus F-consistency is not extendable from ¢ to 04 .

We summarize our results in the following theorem.
THEOREM 7. Let &, represent the class of all elements F in (', and let &,

and %3 denote the subclasses of -#1 whose elements have the form F(x) = En hy Xn
with h € ¢g and h € E* | respectively. For i=1, 2, 3, let K; consist of all
matrices A such that F-consistency is extendable from { to 0, for each F € ¥,
Then K, consists of all perfect ¢ - ( transformations, K3 consists of all ¢ - ¢

transformations, and K| C K, C K3 (strict inclusions).

Proof. We have proved everything except the statement that K3 consists of all
£ - ¢ transformations. Let A be an arbitrary ¢ - ¢ transformation, and let F € ¢'

have the representation F(x) = En h,x, (h € E°). Let B be an ¢ - £ method such

that ¢ 2 ¢, and F(Bx) = F(Ax) for every x € ¢. Then Z)n h, by = 27, h, ank
for all k. For every x € (,, we have the identities

F(Bx) = 22 h_ 2 b_,x, = 22 x, 22 h b,
k n

n k

27 X 27 hoa, = 27 h 27 g Xy = F(Ax).
k n n k

The interchanges in the order of summation are permissible because Z)n is a finite

sum and Zk exists for each n.
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