A CHARACTERIZATION OF UNIFORMLY CONTINUOUS
UNITARY REPRESENTATIONS OF CONNECTED
LOCALLY COMPACT GROUPS

Robert R. Kallman

In this paper, we characterize the uniformly continuous unitary representations
of connected, locally compact groups. Roughly stated, the main theorem says that a
unitary representation of a connected, locally compact group is uniformly continuous
if and only if its support (see J. Dixmier [1, Definition 18.1.7, p. 315]) is a nice
bounded set.

In what follows, G denotes a connected, locally compact group whose topology

satisfies the second axiom of countability. Let H = nﬂ Ker 7, where 7 ranges over
the set of finite-dimensional unitary representations of G. Then H is a closed,
normal subgroup of G. Hence, G/H is also a connected, locally compact group
whose topology satisfies the second axiom of countability.

The notation used in this paper is that of Dixmier [1]. Specific notation and re-
sults from [1] will be recalled as the need arises. To avoid needless circumlocution,
we abbrev1ate “strongly continuous unitary representation”.to “umtary representa-
tion.” ~

The main result is that 7(-) is a uniformly continuous unitary representatmn of
G if and only if #(-) is quasi-equivalent to a direct integral
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Where n is a positive integer depending on 7, and where py isa Borel measure on
GQ (1 < ¢ <n) with compact support. In the process of proving this, we character-
ize the compact subsets of G (m a positive integer). Each compact subset of G
is the union of finitely many sets of the form (#, C). Here # € Gn, C is'a compact
subset of G1 (the set of characters of G), and

(#, ©) = [ix| x < Cl.

We first prove the theorem for the connected group G/H, making essential use of
the fact that G//H\is the direct product of a compact group and a vector group. Then
we show that (G/H), and G, are homeomorphic in a natural manner. The main re-
sult then follows from this. :

LEMMA 1. G/H is the direct product of a connected compact group and a vector
group.

Proof. By construction, G/H has a separating collection of finite-dimensional
unitary representations. The theorem now follows from a result of R. V. Kadison
and I. M. Singer [2, Theorem 1, p. 420]. =
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LEMMA 2. Let w be a uniformly continuous unitary vepresentation of G on
some Hilbert space. Then H C Ker 7.

Proof. G/Ker m has a faithful uniformly continuous unitary representation.
Hence (see [2, Corollary 4, p. 423]), G/Ker 7 is the direct product of a compact
group and a vector group. But each locally compact.group has a separating collec-
tion of irreducible unitary representations. Each irreducible representation of a
compact group or vector group is finite-dimensional. Hence, Ker 7 is the intersec-
tion of kernels of finite-dimensional unitary representations of G. Hence,
HCKer7n. &

Remark 3. Lemma 2 shows that each uniformly continuous unitary representa-
tion of a connected locally compact group generates a Type I von Neumann algebra.
Hence, each uniformly continuous representation is quasi-equivalent to a uniformly
continuous, multiplicity-free representation.

Let F be a locally compact group. If n is a cardinal, let &, be a fixed Hilbert
space of dimension n, and let Irr,(F) be the collection of irreducible unitary repre-
sentations of F into s, with the natural topology. Let F be the collection of uni-
tary equivalence classes of irreducible unitary representations of F. If 7 is an ir-
reducible unitary representation of F, denote by # the corresponding equivalence
class in F Let

= [#| 7 € Irry(F)].

Suppose F is of Type I and the topology of F satisfies the second axiom of counta-
bility. Then there exists a topology on F that generates a nice Borel structure on
F. Recall that there is a one-to-one correspondence between multiplicity-free
representations of F and Borel measure classes in F. For the foregoing, see
Dixmier [1] and G. W. Mackey [4].

By Lemma 1, G/H =K X V, where K is a connected compact group and V isa
vector group. S1nce V is abehan each element of V is one-dimensional, and there-
fore we may identify it with a character of V. Hence, there is a bijective map ¢ of
Irr, (K) X V onto Irr,(K X V), where

¢ (m, x) > 7m-x (e Irry(K), x € V).

Here (m-x)(k, v)=7n(k)x(v) ke K, ve V).
LEMMA 4. The function ¢: Irr, (K) X V — Irr, (K X V) is a homeomorphism.

Proof To show that ¢ is continuous, suppose 7y, 7 € Irry(K), o — 7, and
Xgs X € V Xg = X- We want to conclude that m, - Xg = 7-X- Let x € .%”n, and let

C be a compact subset of K X V. Choose compact subsets A C K and B C V such
that C € A X B. Then

sup ||(mg - xpg) G, v)x - (m-x) (&, v)x|
{k,v)eC

< sup lmgxp) G, V)X - (@ x) &k, v)x|
(k,v)€AX B

< suwp g -xp) &, VIx - (@ xp) (&, V)x||
(k,v)JEAXDB
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+  sup [(mxg)k, v)x - (7 x) G, Vx|
(k,v)eAXB

= sup |lmg@)x - w)x| + sup |xg(v) - x(@)] - [x[| — 0
keA vEDB

as @l « g1 since ny, — 7 and Xg — X. Hence, 1y -Xg — - X as @ 1 o,
BT . Hence ¢ is continuous.

To see that ¢ -1 js also continuous, let 7, - Xy — 7 X, and let C be compact in
K. Then C X (0) is compact in K X V. Hence, if x € &, then

sup ”'na(k)x - TT(k)X" = sup ” Ty - Xa) & v)x - (%) (K, v)x” -0
keC (k,v)eCx(0)

as @ T «, since ny "Xy — 7-X. Hence mg — 7. Similarly, let C be a compact sub-
set of V. Then (e) X C is compact in K X V. Hence, if x € &, is a unit vector,
then

sup |xo(¥) - x®)| = sup  |[(mg - xa) &, V)x - (m-x) &k, v)x|| — 0
veC (k,v}e(e) XC
as o | «, since 7y X — 7-X. Hence, Xao — X- Hence, q’>“1 is continuous. W

Let 7y, 7, € Irr(K), X1, X2 € V. Then 71 - X1 1s unitarily equivalent to
72 -X2 if and only 1f X1=X2 and 73 }slmtarlly equivalent to 72 . Hence, ¢ in-
duces a bijection ¢ of R, XV onto (KX V)_.

A ~ T
COROLLARY 5. ¢ is a homeomorphism of Kn XV onto (KX V).

Proof. Use Lemma 4, the preceding remarks, plus the following: if F is a lo-
cally compact group and n is a cardinal, then the quotient map of Irr,(F) onto ¥y,
is open and continuous. M

Remark 6. Let F be a locally compact group. On U n> 1 Fn, consider the uni-
que Borel field of Hilbert spaces & — (&) such that .%”(E) =, for £ € F
There exists a field £ — 7(£) of unitary representations of F on (&) such that

w(£) € £ for all £ € Unz 1 f‘n and £ — w(£) is measurable for every positive
Borel measure on Un> 1 f‘n. (For these results, see Dixmier [1, p. 154].)

LEMMA 7. Let n(-) be a multiplicity-free vepresentation of G/H. Then u(-)
is uniformly continuous if and only if w(-) is unitarily equivalent to

n

n
Zo Scﬂ ")) o D@ S@E}ﬂ H(E) iy (8).
Here (1) n is some positive integer (depending upon w);
(2) the mappings & — H#(&) and & — w(£) are described in Remark 6;
(3) Cy is a compact subset of (E/E)ﬂ (1 <2 <n);
(4) 1y is a Borel measure on (673)!2 , supported by Cy.
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Proof. G/H =K X V is separable, of Type I, and has only finite-dimensional ir-
reducible unitary representations. Hence, by changing #(-) to a unitarily equivalent
representation, we may assume that

]

J _oeawn = 2o w@Cawe

KXV n> 1 (KX V),

a(*)

2o (£) () du(8)

n>1 YR XV

(by Corollary 5). w(-) acts on

| _wwwn-Zol __ xeawe.
KXV n>1 (G/H),
Here & — o#(£) and & — 7(£) are as in Remark 6, and p is a Borel measure on
G/H.
Now K, and hence K, , is discrete (Dixmier [1, Corollaire 18.4.3, p. 322]).
If ke K and v € V, then

§. a@evae = ZO® [ xman.0-pE)w
Rox ¥ £edy UV

where §n - ﬁn (n>1), g1 is a nonzero Borel measure on V, and p(£') € &'.
Hence

v = Z@ [ x@ang60-pE)®).
n>1 v
£ s,

Let 7'=7 | K. Then

1'k) = 2@ pENk (k€ K).
n>1
£'e Sn

Suppose 7(-) is uniformly continuous. We claim that Un> 1 §n is finite. There
exists a neighborhood N of e in K such that -

2> swp -] = swp [eE)@) - pE) )] -
a€EN ae N
‘E' € Un2 1 §n

Choose a continuous function f on K such that f is zero outside of N, f > 0, and

‘S f(a)da = 1. Then
K
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o) @) - p(g) (e)|| = " SN f(a)p(¢') (a)da - EN f(a)p(t') (e)da

DO =

< S f(a)da - sup [p(¢') @) - p(&')(e)|| <
N a€N

Therefore, if &' € UnZl §n, then

lo(e) D] = [ac")(e) + [o(£") (£) - p(£') (e)]|

> leg @) - [lp(E) @) - p(E) )] > 1 -

D=
]
D | =t

Hence, by [1, Proposition 3.3.7, p. 64], Un>1 én is contained in a quasi-compact

subset of K. But by [1, Corollaire 18.4.3], R is discrete. Hence, Un>1 S, is
finite. B

Similarly, by restricting 7 to V, one sees that each of the unitary representa-
tions

vof xmanpm (o ngl 5 )

is uniformly continuous. Hence, each pz+ has compact support in v (see Kallman
[3, Lemma 1, p. 251]). Hence, if 7 (-) is uniformly continuous, it has the form
described in the lemma.

Conversely, suppose 7(-) has the described direct integral decomposition. That
7(-) is uniformly continuous, then follows if we combine Corollary 9, the discrete-
ness of K, and [3, Lemma 1, p. 251]. =

Now let ¥: G — G/H be the natural quotient mapping. Then iy induces a bijec-
tive mapping ¥* of Rep(G/H) onto the subset of Rep(G) whose kernels contain H,
via ¢*(r) =7 o . If n is a positive integer, then y*: Irr, (G/H) — Irr,(G) is a bi-
jection. Recall that if F is a locally compact group, then there is a nice topology on
Irr,(F) (see Dixmier [1, pp. 58-79 and pp. 314-316]).

LEMMA 8. y* is a homeomovphism of Irrn(G/H) onto Irr,(G).

Proof. To show that ¥* is continuous, let C be a compact subset of G; then
¥(C) is a compact subset of G/H (¢ is continuous and G/H is a Hausdorff space,
since H is closed). Suppose that 7y, 7 € Irr, (G/H) and that 7, — 7. Then, if

X € H,, sup “'na(a)x -m(@)x| - 0 as @ 1 . Hence

a€yY(C) |
sup [[¢*(ry)@)x - Y¥(m)(a)x]| = sup [|m, o wla)x - 7 o Yia)x||
a€C a€eC

sup |mgla)x - m@@)x|| — 0.
a€eY(C)

Hence, * is continuous.
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Conversely, suppose 7y, 7 € Irr (G) and 7y — 7. Let C € G/H be compact.
Let G = UB g3, where each ﬁB is an open subset of G with compact closure. Then
Y(op) is open for all B (¥ is an open mapping). Since C € G/H = UB Y( @B), there

exists a finite set of indices 8, -, B, such that
n n n
cc Uway) - w(U 7 ) gw(UE )
i=1 i j=1 1 -1 P

n —_—
Note that U;_; @, = C' is compact in G. If x € %, then

sup |[v* 1@y @x - ¢* @) @x| < sup [agl)x - a@)x|| — 0
a€eC a€ C!

as @ 1 =. Hence, ¥* ! is continuous. Therefore,
Y*: Irr (G/H) — Irr,(G)

is a homeomorphism. B

If m;, n, € Irr (G/H), then 7; and 7, are unitarily equivalent if and only if
Y*(n,) and ¢*(r,) are unitarily equivalent. Hence, /* induces a bijective mapping

~ —_— ~
¢ of (G/H), onto Gp,.
-~ . - /\ »~
COROLLARY 9. ¢ is a homeomorphism of (G/H), onto G, .

Proof. Use Lemma 9, the previous discussion, plus the fact that if « is a C*-
algebra, then the quotient mapping of Irr () onto A, is continuous and open. ®

Remark 10. Note that Corollary 9 and the proof (not the statement) of Lemma 7
imply the following result. The compact subsets of Gy (n a positive intege;) are
unions of finitely many sets of the form (#, C), where # € G,, where CC G] isa
compact subset, and where (#, C)=[#-x| x € CI.

THEOREM 11. Let 7(-) be a multiplicity-free unitary repvesentation of G.
Then 7(+) is uniformly continuous if and only if n(-) is unitarily equivalent to

n n
Zo | oeiae o Z@ [ w@aug.
=1 Cyp £=1 Gy
Here (1) n is a positive integey (depencfz’ng on 1);

(2) &£ - ow(£), £ = w(€) are described in Remark 6;

(3) Cy is a compact subset of éﬁ 1< e<n)

(4) py is a Borel measure on éﬂ , supported by C, .

Proof. Suppose 7(-) is uniformly continuous. By Lemma 3, H C Ker 7, and
hence (y*-1#)(-) is a uniformly continuous, unitary representation of G/H. Hence,
combining Lemma 7 and Corollary 9, we find that if a € G/H, then

Vinw=20f mwe@aw) o Zof weae.
£=1 Cp 2=1 Gy
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Here (1), (3), and (4) are satisfied, and £ — #(£)(-) is a field of unitary representa-
tions of G/H on (&) such that 7(§) € :,l/ 1(¢) for all £ € Un>1 Gn, and £ — 7w(&)

is measurable for every positive Borel measure on Un> 1 Gn. To complete the
argument, let a = Y(b) (b € G), and note that

7(b)

W m) o) = E@S 7€) - (b 4(¢)
£=1 Cy

E@j V@) ®)dug() (b e G).
£=1 C
Observe that £ — Y*(7(£))(-) is a Borel field of unitary representations of G on

#(£) such that Y (@(£)) € & for all £ € Un> 1 G . Hence, if 7(-) is uniformly
continuous, it has the required form.

Conversely, suppose 7(-) has the stated direct integral decomposition. Then
Remark 10 and [3, Lemma 1, p. 251] show that #(-) is uniformly continuous. ®
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