ON THE NORMAL TYPE OF A FINITE COMPLEX

Thomas J. Kyrouz

Introduction. We define the normal type $\eta(K)$ of a finite complex K as follows. Let M be a compact smooth manifold having the homotopy type of K, and let F_M denote the homotopy fiber of the inclusion $\partial M \to M$. Then $\eta(K)$ is defined to be the S-type of F_M .

In this paper we show that $\eta(K)$ does not depend on the choice of M, but only on the homotopy type of K. We also show that $\eta(K \times L) = \eta(K) * \eta(L)$, so that η is a homomorphism of semigroups.

1. Let M^m be a compact, smooth, 1-connected manifold with nonempty, connected boundary. Replacing the inclusion i: $\partial M \to M$ by a fibering in the usual way, we obtain the fiber

$$\mathbf{F}_{\mathbf{M}} = \left\{ \alpha \in \mathbf{M}^{\mathbf{I}} \middle| \alpha(0) = * \text{ and } \alpha(1) \in \partial \mathbf{M} \right\}.$$

The following is our main result; the proof will be given in Section 3.

THEOREM 1. The S-type of F_M depends only on the homotopy type of M.

This is in contrast with the situation for the cofiber $M/\partial M$. For example, let M and M' be the total spaces of k-disk bundles ξ and ξ' over a closed manifold V^{m-k} such that $J(\xi)=0$, $J(\xi')\neq 0$. Then $M/\partial M$ and $M'/\partial M'$ are the corresponding Thom complexes, and $M/\partial M$ is S-coreducible, while $M'/\partial M'$ is not. Observe that $M\sim V\sim M'$ and $F_M\sim S^{k-1}\sim F_{M'}$. This example suggests the following theorem [2].

THEOREM 2. Let M be 1-connected. Then F_M has the S-type of a sphere S^{k-1} if and only if M is a Poincaré complex of formal dimension m-k.

It follows from Theorem 2 that the elements of ker η are precisely the Poincaré complexes. Our next theorem says that F is multiplicative.

THEOREM 3. $F_{M\times N}$ has the homotopy type of $F_M * F_N$.

COROLLARY.
$$F_{I \times M} \sim S^0 * F_M \sim S^1 \wedge F_M$$
.

THEOREM 4. If $A \times B$ is a 1-connected Poincaré complex, then the same is true of A and B.

Proof. By Theorems 1 and 2, it is enough to take M and N of the homotopy types of A and B, and to show that F_M and F_N are homology spheres. We see from Theorems 2 and 3 that $F_M \ast F_N$ is a homology sphere, and the result now follows from the Künneth formula.

2. Despite the noninvariance of $M/\partial M$, the Poincaré duality theorem states that $H_i(M/\partial M)$ is isomorphic to $H^{m-i}(M)$. We do not have a good formula for $H_*(F_M)$. Using the Serre spectral sequence for $F_M \to \partial M \to M$, we obtain the following result.

Received September 13, 1968.

THEOREM 5. Let M be 1-connected; then either F_M is a sphere, or $H_*(F_M)$ is not of finite dimension.

Proof. For simplicity, we prove this for rational coefficients; the proof for Z-coefficients is similar. Let $H_{k-1}(\mathbf{F}_M, \mathbf{Q})$ be the first nonzero rational homology group. Then we have isomorphisms

$$H_{k-1}(F_M, Q) \approx H_k(M/\partial M, Q) \approx H^{m-k}(M, Q) \approx H_{m-k}(M, Q),$$

and $H_i(M, Q) = 0$ for i > m - k. Then, in the spectral sequence,

$$E_{m-k,k-1}^2 = H_{m-k}(M, Q) \otimes H_{k-1}(F_M, Q) \neq 0.$$

If $\ell > k-1$, then $m-k+\ell > m-1$, and $E_{m-k,\ell}^{\infty} = 0$.

If $H_{\ell}(F_M,Q) \neq 0$ ($\ell > k-1$), then some outgoing differential d^r must be nonzero at $(m-k,\ell)$, since the incoming differentials there are all zero. Thus the condition that $H_{\ell}(M,Q) \neq 0$ ($\ell > k-1$) implies that $H_{q}(F_M,Q) \neq 0$ for some $q > \ell$, and thus that $H_{*}(F_M,Q)$ is not of finite dimension. If $H_{\ell}(F_M,Q) = 0$ for all $\ell > k-1$, then

$$E_{m-k,k-1}^{\infty} = E_{m-k,k-1}^{2} = H_{m-k}(M, Q) \otimes H_{k-1}(F_{M}, Q);$$

but $H_{m-1}(\partial M, Q) = Q$, so that $H_{k-1}(F_M, Q)$ has rank 1.

3. In order to prove Theorem 1, we first establish a special case:

THEOREM 6. Let M^m be a compact, smooth, 1-connected manifold with non-empty boundary, and let $D^k \to N \xrightarrow{\pi} M$ be a k-disk bundle over M. Let $\sigma \colon M \to N$ be the zero section, and let $E \xrightarrow{p} M$ be the associated sphere bundle. Then there is a commutative diagram

$$\begin{array}{cccc}
\mathbf{F}_{\mathbf{M}} * \mathbf{S}^{k-1} & \xrightarrow{\mathbf{f}} & \mathbf{F}_{\mathbf{N}} \\
\downarrow & & \downarrow & \downarrow \\
\overline{\partial \mathbf{M}} \oplus \mathbf{E} & \xrightarrow{\sigma} & \overline{\partial \mathbf{N}} \\
\downarrow & & \downarrow & \downarrow \\
\mathbf{M} & \xrightarrow{\sigma} & \mathbf{N}
\end{array}$$

in which ϕ and f are equivalences.

Proof. It is enough to define ϕ and \underline{f} , to verify commutativity, and to show that \underline{f} is a homotopy equivalence. Recall that $\underline{\partial M} = \{\alpha \in M^I | \alpha(1) \in \partial M\}$, where $\overline{\partial M} \to M$ denotes evaluation at $0 \in I$. The space $\underline{\partial M} \oplus E$ can be defined as a quotient space of the set of triples (α, θ, x) with $\alpha \in \overline{\partial M}$, $0 < \theta < \pi/2$, $x \in E$, and $\alpha(0) = p(x)$.

Choose a Hurewicz lifting function L for $N \xrightarrow{\pi} M$. Now, given a triple (α, θ, x) representing an element of $\overline{\partial M} \oplus E$, define $\phi(\alpha, \theta, x)$ as follows. First, x determines a line segment in N from x to $p(x) = \alpha(0)$. Translate this segment L_x along α to obtain a square in N, that is, a map

$$\Gamma_{\alpha,x}$$
: I × I \rightarrow N with $\Gamma(t, 0) = L_x(t)$ and $\Gamma(0, s) = \alpha(s)$.

Now let $\hat{\theta}$ be the line from (0, 0) to $\partial [I \times I]$ with angle θ , so that $\hat{\theta} \colon I \to I \times I$. Define $\phi(\alpha, \theta, x) \in \overline{\partial N}$ by $\phi(\alpha, \theta, x) = \Gamma_{\alpha, x} \cdot \hat{\theta}$. It is easy to verify that ϕ takes values in $\overline{\partial N}$, is well-defined on $\overline{\partial M} \oplus E$, and covers σ . Thus ϕ induces

$$f: F_M * S^{k-1} \rightarrow F_N$$

by restriction. To see that f is a homotopy equivalence, write $\partial N = E \cup \pi^{-1} \partial M$; then $F_N = A \cup B$, where

$$A = \{\alpha \in F_N | \alpha(1) \in E\} \quad \text{and} \quad B = \{\alpha \in F_N | \alpha(1) \in \pi^{-1} \partial M\}.$$

One can show that (F_N, A, B) is a proper triad. Similarly, let

$$X = \{(\alpha, \theta, x) | \theta > \pi/4\}$$
 and $Y = \{(\alpha, \theta, x) | \theta \leq \pi/4\}$.

Then f is a map of triads:

$$(F_M * S^{k-1}, X, Y) \rightarrow (F_N, A, B).$$

One can show without difficulty that f induces homotopy equivalences $X \to A$, $Y \to B$, $X \cap Y \to A \cap B$. It follows from the *spectral sequence* of [1] that f is a homotopy equivalence.

Proof of Theorem 3. Define a map $F_M * F_N \xrightarrow{h} F_{M \times N}$ as follows: first, let $PM = \{\alpha \in M^I \mid \alpha(0) = *\}$. Let $\alpha_s \in PM$ be defined by $\alpha_s(t) = \alpha(t - ts)$. Note that $\alpha_1 = *$ and $\alpha_0 = \alpha$. Consider $F_M * F_N$ as a quotient of the space of triples (α, t, β) with $\alpha \in F_M$, $\beta \in F_N$, $-1 \le t \le 1$. Define

$$h(\alpha, t, \beta) = \begin{cases} (\alpha_{|t|}, \beta) & \text{if } -1 \leq t \leq 0, \\ (\alpha, \beta_t) & \text{if } 0 \leq t \leq 1. \end{cases}$$

Using the spectral sequence of [1] in the obvious way, one sees that h is a homotopy equivalence.

Proof of Theorem 1. Let $G: M \to N$ be a homotopy equivalence. If r is large, we may deform g to a proper imbedding in $I^r \times N$. It follows from the relative h-cobordism theorem that $I^r \times N$ is the total space of a k-disk bundle over M. We now appeal to Theorems 6 and 3 to obtain a homotopy equivalence

$$S^{k-1} * F_M \rightarrow S^{r-1} * F_N$$
.

REFERENCES

- 1. M. Artin and B. Mazur, On the van Kampen theorem. Topology 5 (1966), 179-
- 2. M. Spivak, Spaces satisfying Poincaré duality. Topology 6 (1967), 77-101.

University of Georgia Athens, Georgia 30601