ON THE NORMAL TYPE OF A FINITE COMPLEX
Thomas J. Kyrouz

Introduction. We define the normal type n(K) of a finite complex K as follows.
Let M be a compact smooth manifold having the homotopy type of K, and let Fjp4
denote the homotopy fiber of the inclusion aM — M. Then 7n(K) is defined to be the
S-type of Fypg.

In this paper we show that n(K) does not depend on the choice of M, but only on
the homotopy type of K. We also show that (K X L) = n(K)* n(L.), so that n is a
homomorphism of semigroups.

1. Let M™ be a compact, smooth, 1-connected manifold with nonempty, con-
nected boundary. Replacing the inclusion i: 9M — M by a fibering in the usual way,
we obtain the fiber

Fy = {a € MI| 2(0) = x and a(l) €e oM} .

The following is our main result; the proof will be given in Section 3.
THEOREM 1. The S-type of ¥4 depends only on the homolopy type of M.

This is in contrast with the situation for the cofiber M/oM. For example, let M
and M' be the total spaces of k-disk bundles £ and &' over a closed manifold ym-k
such that J(¢£) =0, J(¢') #0. Then M/oM and M'/oM' are the corresponding Thom
complexes, and M/0M is S-coreducible, while M'/3M' is not. Observe that
M~ V-~ M'and Fp;~ Sk-1 ~ Fyr. This example suggests the following theorem

[2].

THEOREM 2. Let M be 1-connected. Then Fy, has the S-type of a sphere
Sk-1 if and only if M is a Poincaré complex of formal dimension m - k.

It follows from Theorem 2 that the elements of ker 7 are precisely the Poincaré
complexes. Our next theorem says that F is multiplicative.

THEOREM 3. Fp\w« N has the homotopy type of Fy* Fi.
COROLLARY. Fixm ~ S0* Fy ~ S1A Fy.

THEOREM 4. If A X B is a 1-connected Poincaré complex, then the same is
true of A and B.

Proof. By Theorems 1 and 2, it is enough to take M and N of the homotopy
types of A and B, and to show that F)s; and Fy are homology spheres. We see
from Theorems 2 and 3 that Fy;* Fy is a homology sphere, and the result now fol-
lows from the Kiinneth formula.,

2. Despite the noninvariance of M/oM, the Poincaré duality theorem states that
H;(M/aM) is isomorphic to H™-i(M). We do not have a good formula for H, (Fy,).
Using the Serre spectral sequence for Fp; — dM — M, we obtain the following re-
sult.
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THEOREM 5. Let M be 1-connected; then either Fyp is a sphere, or H, (Fypy)
is nol of finite dimension.

Proof. For simplicity, we prove this for rational coefficients; the proof for Z-
coefficients is similar. Let Hyp_1(Fp, Q) be the first nonzero rational homology
group. Then we have isomorphisms

Hi 1(Fm, Q) ~ H(M/OM, Q) ~ H*™¥(M, Q) ~ H,, (M, Q),

and H;(M, Q) =0 for i > m - k. Then, in the spectral sequence,

2

Em—k,k—l = I_Im-k(NI: Q)®Hk_1(FM, Q) + 0.

If ¢>k-1,then m-k+2¢>m-1,and E  ,=0.

If Hp(Fp, Q) #0 (2> k - 1), then some outgoing differential d® must be nonzero
at (m - k, ¢), since the incoming differentials there are all zero. Thus the condition
that HE(M, Q) #0 (£> k - 1) implies that Hq(Fy;, Q) # 0 for some q > ¢, and thus
that H, (Fy, Q) is not of finite dimension. I Hy(Fn, Q) =0 for all £> k - 1, then

o0

2
Emkk-1 = Emoxk-1 = Hy oM, Q) ®Hy_1(Fp, Q);

but H.,_;(@M, Q) = Q, so that Hx_1(Fpm, Q) hasrank 1. ®

3. In order to prove Theorem 1, we first establish a special case:

THEOREM 6. Let M™ be a compact, smooth, 1-connected manifold with non-
empty boundary, and let DX = N L M be a k-disk bundle over M. Let 6: M — N

be the zero section, and let E A M be the associated spheve bundle. Then theve is a
commulative diagram

AP L FN
! , |

IM@E —— 9N
l l
M ° N

in which ¢ and f ave equivalences.

Proof. It is enough to define ¢ and f, to verify commutativity, and to show that {
is a homotopy equivalence. Recall that 9M = {& € MI| a(1) € aM}, where a9M — M
denotes evaluation at 0 € I. The space oM ® E can be defined as a quotient space of
the set of triples (o, 6, x) with @ € 9M, 0< 0 <#/2, x € E, and @(0) = p(x).

Choose a Hurewicz lifting function L for N M. Now, given a triple (¢, 6, x)

representing an element of a_M@ E, define ¢(a, 0, x) as follows. First, x deter-
mines a line segment in N from x to p(x) = ¢(0). Translate this segment Ly along
a to obtain a square in N, that is, a map

Tgx:IXI = N with I(t, 0) = L,(t) and T(0, s) = a(s).
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Now let § be the line from (0, 0) to 3 [I X I] with angle 0, so that 6: 1 -1IxI. De-
fine ¢(a, 6, x) € ON by ¢(a, 6, x) = Ty - 0. It is easy to verify that ¢ takes values
in 9N, is well-defined on aM (P E, and covers o. Thus ¢ induces

f: Fymx S5 Py

by restriction. To see that f is a homotopy equivalence, write 9N = E U 7-19M; then
Fn = A U B, where

A={aeFylel)e E} and B={ae Fy|al)erlom}.
One can show that (Fy, A, B) is a proper triad. Similarly, let
X={(a, 0,x)| 6 >7/4} and Y ={(o, 0,x)| 6 <n/d}.
Then f is a map of triads:
(Fy * 8571, X, Y) — (Fy, A, B).

One can show without difficulty that f induces homotopy equivalences X — A, Y — B,
XNY— AN B. It follows from the spectral sequence of [1] that f is a homotopy
equivalence. H

Proof of Theorem 3. Define a map Fpp * Fy K Fumxn as follows: first, let

PM = {a € M!| a(0) = *}. Let ag € PM be defined by a4(t) = a(t - ts). Note that
@) =* and ag=a. Consider Fy;* Fy as a quotient of the space of triples (a, t, )
with a € Fy, B € Fy, -1 <t< 1. Define

(@]¢], B) if -1<t<0,
hie, t, B) =
(@, Br) if0<t<1.

Using the spectral sequence of [1] in the obvious way, one sees that h is a homotopy
equivalence.

Proof of Theorem 1. Let G: M — N be a homotopy equivalence. If r is large,
we may deform g to a proper imbedding in I' X N. It follows from the relative h-
cobordism theorem that I* X N is the total space of a k-disk bundle over M. We
now appeal to Theorems 6 and 3 to obtain a homotopy equivalence

sk-lupy - 8™ lery. =
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