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1. INTRODUCTION

Let S denote the triangulated n-sphere. Starting with SO, we define S™ induc-
tively as the suspension of S?-!. Let k, denote the simplicial involution of S that
leaves Sn-! pointwise fixed and interchanges the suspension vertices. Define two
involutions h; and h, of S! X 82 by

h(x, ) = (ki(x), y) and ho(x,y) = (x, ka(¥)).

In this paper, we prove the following uniqueness results.

THEOREM 1. Let h be a piecewise linear (PL) involution of S! x 82, with
homogeneously 2-dimensional fixed point set F. If F is nol connected, then h is
PL- equivalent to hy .

THEOREM 2. Let h be a PL involution of Sl x 82 with 2-dimensional con-
nected fixed point set F and orientable orbit space. Then h is PL-equivalent to h,.

There is a PL-involution of S! x S2 that has a Klein bottle as fixed point set and
a nonorientable 2-disk bundle over S! as orbit space. Hence the orientability of the
orbit space in Theorem 2 is essential. It is equivalent to the assumption that F
separates S! x S2.

The following remark applies to both theorems. Since F is 2-dimensional, h
has the property that near each point of F it maps one side of F to the other side.
If this were not the case, one could produce a small invariant 2-sphere S near F
such that h l S has a 2-cell as fixed point set. But this is impossible. Hence, near
each point of F (and therefore globally), h reverses the orientation. Throughout, we
use the singular (or simplicial) homology, with integer coefficients unless it is other-
wise specified.

2. PROOF OF THEOREM 1

PROPOSITION 1. F separates S x S2.

Proof. Suppose S!x S2 - F is connected. Consider the homology sequence
0 - Hy(S!x 5% % my(s!x 82 F) & m(F) % Hy(s! x 82)

of (S! x 8%, F) over Z,. Since H5(S!x 82 F)=~ Z,, rank Hp(F) < 1. But
rank H,(F) is the number of components of F. Since F is not connected, the result
follows.

The following proposition implies that F is orientable.

PROPOSITION 2. Sl x S2- F has exactly two components, and they ave inter-
changed undeyv h.
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Proof. Suppose a component U of S! X S2 - F is invariant under h. Since h
switches sides near each point of F, U is a closed manifold and U = S! x S2. This
contradicts Proposition 1. Hence h maps each component of S! X S2 - F onto
another. Since the interior of the orbit space is connected, there are exactly two
components.

PROPOSITION 3. F has two components.

Proof. The exact sequence used in the proof of Proposition 1 shows that
rank H,(F) < rank H5(S! x S2, F);

that is, F has no more components than S1x S2 - F, Since F is not connected, the
result follows.

PROPOSITION 4. Each component of F is a 2-sphere.

Proof. Let M; and M, be the closures of the complementary domains of F in
S1x 82, Then M;N M;,=F,

Since the M; are retracts of S! X S2, the H;i(M;) are isomorphic to a direct
summand of H;(S! x S2) ~ Z. Hence H;(M;) ~ Z or 0.

Consider the following reduced Mayer-Vietoris sequence of (S! X S2, M;, M)

Ha(S! x §2) — Hy(F) — H(M))+H;(M2) ¥ 18" x §2) B Hy(F) - o.

Now H(S! x S2) ~ Z and Hy(F) ~ Z. Since A is an epimorphism, it must be an
isomorphism in this case. Hence ¥ is trivial, and

rank H,(F) < 2 rank H,(M;) +1 < 3.

Since each component of F is an orientable surface, rank H;(F) is 0 or 2. Hence at
least one component F; of F is a 2-sphere. Let F, denote the other component
of F.

Now F; does not separate S! x S2. This is so because (as is well-known) a
nice 2-sphere separating S1 x 82 pounds a 3-cell. Cut S!x 82 along F; to pro-
duce a compact 3-manifold X whose boundary is the disjoint union of two 2-spheres
A and B. Because h switches sides of F;, h gives rise to an involution h' of X
such that h'(A) = B and the fixed point set is homeomorphic to F,. Now attach two
3-cells to X along A and B to obtain a closed 3-manifold Y. The involution h'
easily extends to an involution h" of Y with fixed point set homeomorphic to F,.
Asin[1], S1 XS24 Y =~ S! X S2 and Y is a 3-sphere, and therefore the fixed point
set must be a 2-sphere.

PROPOSITION 5. The orbit space of h is homeomorphic to [0, 1] x S2.

Proof. We use the notation of the proof of Proposition 4. The orbit space of h
is homeomorphic to the orbit space of h'. Now the orbit space of h" is homeomor-
phic to the closure C of the component of Y (the fixed point set) that contains A.
Clearly, C is a 3-cell. Therefore the orbit space of h' is homeomorphic to C
Eninu]s the2 open 3-cell bounded by A. Hence the orbit space of h is homeomorphic to

0, 1] x 8=,

Proof of Theorem 1. Propositions 2, 3, and 5 show that M; and Mj are homeo-
morphic to [0, 1] x S2. Let D; and D, be arcs in S! such that k1(D;) =D, and
D, N D, =S50, Define a map t: S1 x S2 — S!x S2 as follows. Let t| M; bea PL
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homeomorphism u of M; onto D; X S2 (such a homeomorphism exists, by Proposi-
tion 5). Let t| M, =h)-u-(h|Mz). Then t is a PL homeomorphism and
h=t-lht

1 .

3. PROOF OF THEOREM 2

PROPOSITION 6. F separates S! x §2.

Proof. If the proposition were false, h Sl x 82 - F would be an orientation-
reversing involution of a connected set. Hence the orbit space would not be orient-
able.

Just as in Section 2, it can be shown that F has exactly two complementary do-
mains and that they are interchanged under h. Write S! x 82 = M; U M;, with
M; N Mz = F and with M; homeomorphic to the orbit space.

PROPOSITION 7. w;(M;) is infinite cyclic.

Proof. Since M; is a retract of S! X S2, 71(M;) is infinite cyclic or trivial. If
7 (M;) were trivial, 7 1(S! X S2) would also be trivial, since Mj N Mz is path-
connected.

The following result may be found in [3].

LEMMA (Tollefson). Let M; be a 3-manifold with connected boundary such that
the double of M is homeomorphic to S1 x S2. Then M) is irreducible.

Recall that the double of a manifold is obtained by attaching two copies of the
manifold along the boundary by the identity map. The proof of the lemma is not dif-
ficult, and we leave it to the reader.

PROPOSITION 8. M is homeomorphic to S' x D?, where D? is a 2-cell.

Proof. By the lemma, Proposition 7, the observation preceding Proposition 7,
and [2], M, is fibered over the circle with 1-connected fiber. The fiber in this case
must be a compact 2-manifold with nonempty boundary. Hence it is a 2-cell. Thus
M; may be obtained from [0, 1] X D2 by identifying each (0, x) (x € D2) with
(1, g(x)), where g is a homeomorphism of DZ onto itself.

Since M; is orientable, g must preserve the orientation, and therefore it is
isotopic to the identity. Hence M; is homeomorphic to S! x D2,

Theorem 2 now follows as in the corresponding part of Section 2.

4. A CORRECTION

I take this opportunity to point out an oversight in the paper Examples of geneval-
ized manifold approaches to topological manifolds (Vol. 14 (1967), 225-229 of this
journal). The argument on page 228 that rules out Case 2 is incorrect. Instead,
Case 2 should be ruled out by the following observation:

If X is a connected manifold with a connected nonorientable boundary B, then the
inclusion B C X is essential.

Proof. Clearly, X is nonorientable. Let p: X — X be the orientable double
covering. Being orientable, p~1(B) must be connected. On the other hand, if B € X
were inessential, the induced covering p~1(B) — B would be trivial and therefore
disconnected.
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