CORRIGENDUM
H. Davenport and H. Halberstam

In paper [1], which we recently published in this journal, we quote on page 486 a
general ‘large-sieve! theorem which is Corollary 2 to Theorem 4 of [2]. Professor
L. Schoenfeld has pointed out to us that the proof of this theorem contains an error.
We have been unable to recover the theorem in its original form; but note [3], in
which we draw attention to the error, states and proves a new general result of es-
sentially equal strength (see inequality (3) of [3]). This result, which serves just as
well for the purpose of proving the main theorem of [1], is as follows.

For any character x to the modulus q, let
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and let the a, be any real or complex numbers. Then
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provided X is greater than some numerical constant.

As compared with the original result, the right-hand side of (1) contains an extra
factor log X but omits the factor d(n) previously attached to |a,|2. The proof de-
pends in part on inequality (5) of Gallagher [4].

In some special cases, inequali;cies sharper than (1) are available. Two such
cases, the first implicit in Gallagher [4], are given in [3]; each can be used to obtain
a slight improvement of the main theorem of [1] (see [4, Section 4] ).
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