AVERAGES OVER A PAIR OF CONVEX SURFACES
S. K. Stein

Let C; denote a convex curve in the plane and r the distance from a fixed point
in the region bounded by C; to a variable point on C;. In [3], Sachs obtained a re-
sult equivalent to the assertion that the average of r2 with respect to arc length on
C; is at least as large as the average of r2 with respect to angle. We generalize
this result in several directions.

First we replace r2 with any increasing function of r; then we replace angular
measure (which represents arc length on the unit circle) with arc length in a second
convex curve; finally, we extend the result to convex surfaces in d-dimensional
Euclidean space R4,

The proof rests on the following theorem (see [4, page 146]): If A and B are
convex bodies and A C B, then the measure of the surface of A is less than or equal
to the measure of the surface of B. (If A is properly contained in B, the inequality
is strict.)

In Section 2, we discuss nonconvex surfaces, in particular, the pedal curve of a
convex curve,

1. AVERAGES OF A MONOTONIC FUNCTION OVER CONVEX SURFACES

If Xc RY and t is a positive real number, the set {txl X € X} will be denoted
by tX. Let K; and K, be convex bodies in R9 that contain the origin as an interior
point, and let surface measures m) and mjz be defined on their surfaces S; and S;,
respectively. Let p: S; — S, denote radial projection from the origin. The norm of
x € R4 we shall denote by |x]|.

THEOREM 1. Let K; and K be convex bodies in R containing the origin as
an interior point. Let f: Rl — R! be a monotonically increasing function. Then

(1) ‘a(lsT) j £(]x,|/|p(x)|) dm; > ;;I(Ls;) Ssz #(|p~ (x2)]/|xz|) dm, .

Sy

Proof. For convenience, we shall assume that £(0) = 0, that f is continuous from
the right, and that m(S;) = m(S,). Define g: S; — R! by setting

g(xl) = f(lxll/lp(xl)l)-

Set S)(t) = {x| x € Sy, g(x) > t}. In view of Fubini’s theorem, it suffices to show
that m(S;(t)) > m[p(S;(t))] for each nonnegative real number t. Now,

S ) = {x1| x; € 81, |x1|/|px1)| > t*7,
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where t* = min {u| f(u) > t}. The condition |x;|/|p(x;)| > t* is equivalent to
x) ¢ Int t*K,. Let L(t*)=K;N t*S,. Since t*K, N K; C K;, we see that
m(S; (t)) > m(L,(t*)). Also, since t*K, N K; C t*K,, we have the inequality
m(Sl N t*Kz) < m(t* SZ - (Kl n t* Sz)).

From these inequalities it follows that

m(S;{t)) _ m(S, (t)) m(L,(t*))
m(S;) ~ m(S; N t*Ky) + m(S;(t)) = m(S; N t¥K,) + m(L,{t%))
m(L2(t*)) _ m(Lp(t*))  m[p;(S;(t)]
= m(t*s, - (K; N tS,)) + m(L,(t*))  m(t*s,) — m(S;) 7
hence '
(2) m(S, (t)) > m(p,(S;(t))),

and the proof is complete.

The question when equality occurs in (1) is easily answered. Note that equality
holds in (2) if and only if equality holds in each of the sequence of inequalities lead-
ing to (2). In particular, if m(S; N t*K,) is positive, then m(L;(t*)) = m(S; (t)), that
is, t*K, D K; . Thus, if t* is a number such that m(S; N t*K,) > 0 and t*K, 2 K, ,
then inequality (2) is strict. We may therefore conclude that if f is a strictly in-
creasing function, equality holds in (1) if and only if K, is of the form t* K, for
some number t¥*.

If we let S, in Theorem 1 denote the unit sphere in R? whose center is at the
origin, we obtain the following corollary.

COROLLARY 1. Let K be a convex body in R containing the ovigin as an in-
tevior point, and let S be its surface. Let f be a strictly increasing function. Then

(3) ﬁjs f(|x|)dm_>_%SS #(|x|) dw

wherve Q is the measuve of the solid angle of a spheve and dw denotes solid angular
measuve. Equality holds in (3) if and only if K is a ball with center at the origin.

-
In particular, if n > 0 and C is a convex plane curve surrounding the origin,
then

1 1 27
(4) 1—5 r?ds >§—S r*dé ;
C — 4T Jo
this includes Sachs’ theorem.

Let T be a rigid motion of RY that leaves the origin fixed, and let Ky = T(K)).
In this case, Theorem 1 takes a special form; the following corollary illustrates this
for the case where d = 2, «

COROLLARY 2., Let C be a plane convex curve survounding the ovigin, let its
equation in polar coordinates be r =1(6), and let o be a number. Then

§ teowsce - enlas > §_[1(6 + ay/s(o))as.
C C
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2. AVERAGES OF A MONOTONIC FUNCTION
OVER NONCONVEX SURFACES

If we delete the assumption of convexity, Theorem 1 is no longer valid. We can
see this easily from (4) by considering a curve C that oscillates strongly near the
origin. However, we can say something about arcs or portions of surfaces that may
not be convex.

THEOREM 2. Let S; and S, be smooth (d - 1)-dimensional surfaces in Rd,
not passing through the ovigin, and starlike with respect to the origin. For x € S;,
let p(x) denote the set devivative lim mj(p-1(A))/m,(A). Assume that if x,y € S,

Alx
and lp‘l(x)l/lxl > lp‘l(y)|/ly|, then p(x) > p(y). Let f be a monotonically in-
creasing function. Then

1 1 -
6 e Jy, M/ poDam > e § 076/ Ix]ams.

Proof. Though this is easily proved with the aid of Fubini’s theorem, it also fol-
lows from the Tchebychef inequality [2, page 168, Theorem 236], which in the present
case, applied to the functions f(|x|/|p(x)|) and p(x), yields the relation

(6) js 1dm, SS #(|p=1(x)|/]x]) p(x) dm, > SS #()p~1)|/|x]) am. js p(x)dm; .
2 2 2 2

since | 1dm,=m(s;), |  px)dmy =my(s)), an
s S,

2
§ @)/ 1xDpeam, = § t(lxl/[pt)])amy,
S2 S1

(6) reduces to (5).

COROLLARY 3. Let g be a function of type C%, and let v =g(0) (@ < 0 < B)
describe an arc C in the plane. Assume that g'(6) > 0 and g{0)+ g"(6) > 0 for all
0 € [a, Bl, and let n> 0. Then

S rids S r*dé

C C
2>
Y ds do
C C

Proof. In Theorem 2, let S; = C, and let S, be the radial projection of S; onto

the unit circle. The function p is now v g2+ (g')2. A straightforward computation
shows that p satisfies the hypothesis of Theorem 2.

Note that Corollary 3 applies to a line segment whose interior does not contain
the foot of the perpendicular from the origin to it. It also applies to an arc of the
pedal curve of a convex curve, if the sign of g'(6) does not change on the arc. In
this case, g(6) + g"(6) > 0, since g is the support function of a convex curve whose
radius of curvature is g(0)+g"(6).
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3. A QUESTION

It may be that the analogue of Theorem 1 with reversed inequalities holds for
support functions and nth-power functions f. For instance, let S; be a convex curve
C in the plane, enclosing the origin, and of length L, and let S; be the unit circle. '
Let p be the support function of C relative to the origin, and let n > 0. Can we as- J
sert that

(7) 1 S ptds <L SZﬂpndB ?
L Jo — 21 J, )

For n = 1, this is precisely the isoperimetric inequality, expressed in the form
2A/LLL /211 (Note that equality holds in this case if and only if C is a circle; its
center need not be the origin.) As G. D. Chakerian has pointed out in a conversation, i
the analogue of (7) for n =1 and higher dimensions holds, and it is a consequence of |
known inequalities.

A different inequality involving p® was conjectured by Chern [1] for d = 3,
namely Bﬁ - A C, >0, where A = S ptds, B, = ‘g p?HdS (H = mean curvature),
S S

and C,, = S p" dw.
S
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